基于2,2’-联萘炔模板的光学活性环芳化合物的设计与合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在对环芳化合物的大量的文献调研的基础上,综述了环芳化合物的合成以及它们在各个领域的应用研究。经过几十年的发展,环芳化学已经成为超分子化学、分子识别学、有机催化剂的构筑学、分子接受器的模板构筑学、冠醚化学、穴状配体的构筑学和富碳化学等领域的重要组成部分。本文还进一步阐述了本实验室以前的工作,在此基础上设计并合成了一系列新型的光学活性的环芳化合物及其衍生物。
     由于联萘在反应前后构型保持的稳定性,以及乙炔键在空间上良好的定向作用,本文选择了光学活性的2,2’-二乙炔基-1,1’-联萘作为合成模板来构筑目标分子。第二章主要讨论具有单一手性[(R)构型或(S)构型]的2,2’-二乙炔基-1,1’-联萘模板的合成。光学纯的(R)-或(S)-联萘二酚可以方便的购买,是一个理想的起始原料。通过酚羟基的酯化反应、磺酸酯与格氏试剂的Kumada反应、甲基的溴化反应、二溴甲基的水解反应和特殊的Wittig反应来制得2,2’-二乙炔基-1,1’-联萘。
     第三章主要讨论了新型手征性笼状化合物的设计与合成。从(R)和(S)-2,2’-二乙炔基-1,1’-联萘模板出发,通过保护基的控制导入,偶联反应,保护基脱去以及分子间偶合成环4个步骤成功地合成了光学活性分子方?—(R,R,R,R)-95和(S,S,S,S)-95。为了增加化合物的内穴的大小,本文又设计并合成了一组联萘炔单元之间的连接桥的长度不一的化合物(R,R,R,R)-96、(R,R,R,R)-97以及(R,R,R,R)-98,这组化合物结构中的联萘单元之间的连接桥为对位的苯环基团。同时以(R)和(S)-2,2’-二乙炔基-1,1’-联萘模板出发,以间位亚苯基为连接桥,通过Cu催化的Eglinton反应和Cu、Pd共催化的Sonogashira反应,分别设计合成了具有相同片断的含4、6、8个联萘单元的笼状化合物(R,R,R,R)-和(S,S,S,S)-99、(R,R,R,R,R,R)-100以及(R,R,R,R,R,R,R,R)-和(S,S,S,S,S,S,S,S)-101。在化合物(R,R,R,R)-95和(S,S,S,S)-95的合成中,通过Sonogashira反应条件下的炔的二聚反应,本文成功地解决了基团TMS在一般的Eglinton反应条件下会变质的问题。本文还测定这些化合物的CD、比旋光度、紫外等性能,异构体的CD谱呈现出良好的镜像对称关系,这表明了异构体为对映异构体。通过Chem3D的计算,本文给出了化合物结构的填充模型图,并且计算了目标化合物的空穴大小。目标化合物的空穴尺度的大小达到了1.0-2.3 nm,可以容纳下1-3个C60。对这些化合物的空穴尺度的大小的研究,对主客体化学有着重要的意义。
     第四章从(R)-2,2’-二乙炔基-1,1’-联萘模板出发,通过保护基的控制导入,连接桥的链接以及分子内的Sonogashira反应等步骤设计并合成了以间位和邻位亚苯基为连接桥的具有双螺旋结构的化合物(R,P)-102和(R,P)-103。对于最后一步分子内的Sonogashira反应,我们采用定时注射泵来控制反应物滴入的速率,从而达到控制反应物浓度的目的,以防止因为反应物浓度过高而造成的分子间的Sonogashira反应和两分子炔氢的偶联反应。通过此种方法,本文大大提高了最后一步的分子内关环反应的产率。
     第五章从(R)-2,2’-二乙炔基-1,1’-联萘出发,以具有双螺旋结构的环芳化合物为哑铃的球体,刚性的苯基炔化合物为连接桥,通过Sonogashira偶联反应成功地合成了几个光学活性的哑铃状化合物[(R,P),(R,P)]-104-106以及螺旋单元构筑的枝状化合物[(R,P),(R,P),(R,P)]-107。本章化合物的合成都需串行反应十五步左右,在合成上有很大的挑战性。通过长时间的努力,顺利地合成了化合物104-107,并且通过Chem3D的计算,给出了化合物结构的填充模型图。计算得出,化合物104-107的分子大小都达到了2-3纳米,可望在纳米材料方面得到应用。
     本文当中所有的中间体和目标化合物都经过MS、IR、1H NMR、13C NMR和DEPT组合测定得到确认。
The synthesis of cyclophynes and their applications in various fields are reviewed in this paper based on a large number of references. After several decades’development, the chemistry of cyclophynes has become a major component of supramolecular chemistry, of molecular recognition, of the building blocks for organic catalysts, receptor models, crown ethers, cryptands and of carbon-rich chemistry. The previous work of our lab was described, and a series of new type of cyclophynes and their derivatives were designed and synthesized.
     Because of the stability of binaphthalene’s configuration in the reactions and the fine directional function of ethynyl in the space, enantiopure 2,2’-diethynyl-1,1’-binaphthyl was used as synthetic template for the synthesis of target molecules. In the second chapter in this paper, the synthesis of enantiopure [(R)- or (S)-form] 2,2’-diethynyl-1,1’-binaphthyl was described. Enantiopure (R)- or (S)-binapythol can be purchased conveniently and was a good material. 2,2’-Diethynyl-1,1’-binaphthyl was synthesized from binapythol by esterification of hydroxyl, Kumada reaction of sulfonic ester with Grignard reagent, bromination of methyl, hydrolyzation of dibromomethyl and especial Wittig reaction.
     In the third chapter, the design and synthesis of enantiopure compounds with cage structure were described. Enantiopure molecule square--(R,R,R,R)- and (S,S,S,S)-95 were synthesized from (R)- and (S)-2,2’-diethynyl-1,1’-binaphthyl templates by four steps including the introduction of protecting group, intermolecular coupling reaction, removal of protecting group, and intermolecular cross-coupling cyclization. In order to enhance the cavity sizes of compounds, a series of compounds with different length linkages of p-phenylene groups between 2,2’-diethynyl-1,1’-binaphthyl, including (R,R,R,R)-96, (R,R,R,R)-97 and (R,R,R,R)-98, were also designed and synthesized in this paper. In addition, via the linking of m-phenylene, compounds (R,R,R,R)- and (S,S,S,S)-99, (R,R,R,R,R,R)-100, (R,R,R,R,R,R,R,R)- and (S,S,S,S,S,S,S,S)-101 with cage structure were designed and synthesized from (R)- and (S)-2,2’-diethynyl-1,1’-binaphthyl templates. These compounds have the same building block and involve four, six and eight units of binaphthyl, respectively. In the synthesis of compounds (R,R,R,R)-95 and (S,S,S,S)-95, the decomposition of TMS group in common Eglinton reaction was successfully avoided by the homocoupling of alkyne under Sonogashira reaction condition. The circular dichroism (CD) spectra, specific rotations ([α]D25) and UV spectra of these compounds were characterized. Their CD spectra represented exactly mirror images of each other, which reflected unambiguously enantiomeric relation between two isomers. The space models of these compounds were obtained and the cavity sizes of these compounds were calculated using Chem3D. The cavity sizes of the target compounds were 1.0-2.3 nm, which are 1-3 times of the diameter of C60. Study on the cavity sizes of these compounds is of great significance to host-guest chemistry.
     In the fourth chapter, compounds (R,P)-102 and (R,P)-103 with double helical structure were designed and synthesized from (R)-2,2’-diethynyl-1,1’-binaphthyl by the introduction of protecting group, the connecting of linking bridges and intramolecular Sonogashira reaction. In the last intramolecular Sonogashira reaction, a syringe pump that can control the dropping rate of reactant solution was used in order to avoid the high concentration of reactant. The high concentration of reactant will produce intermolecular Sonogashira and Eglinton reaction. By using the syringe pump, the yields of the last step of intramolecular Sonogashira reaction were greatly improved.
     In the fifth chapter, several enantiopure Dumbbell-compounds [(R,P),(R,P)]-104-106 and dentritic compound [(R,P),(R,P),(R,P)]-107 with helical units were synthesized from (R)-2,2’-diethynyl-1,1’-binaphthyl by Sonogashira coupling reaction. In the structures of these compounds, cyclophyne bearing helical structure and rigid phenylethynyl were used as the ball of dumbbell and linking bridge, respectively. The synthesis of these compounds is a big challenge because abount 15 steps are required for each compound. Compounds 104-107 were successfully synthesized after great efforts, and their space models were given using Chem3D. The molecular sizes of compounds 104-107 are 2-3 nm, which makes these compounds have potential application as nanomaterials.
     All the intermediates and target compounds synthesized in this paper were characterized by MS, IR, 1H NMR, 13C NMR and DEPT.
引文
[1] Houghton T J. Synthesis and study of some novel and interesting cyclophanes: [dissertation]. Newfoundland: Memorial University of Newfoundland, 1999, 4-6
    [2] Brown C J, Farthing A C. Preparation and structure of di-p-xylylene. Nature, 1949, 164(4178): 915-916
    [3] Cram D J, Steinberg H. Macro rings. I. Preparation and spectra of the paracyclophanes. J. Am. Chem. Soc., 1951, 73(12): 5691-5704
    [4] Gleiter R, Hopf H. Modern cyclophane chemistry. Weinheim: Wiley, 2004, 1-40
    [5] Haley M M, Tykwinski R R. Carbon-rich compounds. Weinheim: Wiley, 2006, 229-294
    [6] Meijere A, Kozhushkov S I. Macrocyclic structurally homoconjugated oligoacetylenes: acetylene- and diacetylene-expanded cycloalkanes and rotanes. Topics in Current Chemistry, 1999, 201, 1-42
    [7] Diederich F, Gobbi L. Cyclic and linear acetylenic molecular scaffolding. Topics in Current Chemistry, 1999, 201, 43-80
    [8] Haley M M, Pak J J, Brand S C. Macrocyclic oligo(phenylacetylenes) and oligo(phenyldiacetylenes). Topics in Current Chemistry, 1999, 201, 81-130
    [9] Bunz U H F. Carbon-rich molecular objects from multiply ethynylated π-complexes. Topics in Current Chemistry, 1999, 201, 131-161
    [10] Moore J S. Shape-persistent molecular architectures of nanoscale dimension. Acc. Chem. Res., 1997, 30(10): 402-413
    [11] Zhao D J, Moore S. Shape-persistent arylene ethynylene macrocycles: syntheses and supramolecular chemistry. Chem. Commun., 2003, (7): 807-818
    [12] Haley M M. It takes alkynes to make a world-new methods for dehydrobenzoannulene synthesis. Synlett, 1998, 1998(6):557-565
    [13] Marsden J A, Palmer G J, Haley M M. Synthetic strategies for dehydrobenzo[n]annulenes. Eur. J. Org. Chem., 2003, 2003(13): 2355-2369
    [14] Bunz U H F, Rubin Y, Tobe Y. Polyethynylated cyclic π-systems: scaffoldings for novel two and three-dimensional carbon networks. Chem. Soc. Rev., 1999, 28(2): 107-119
    [15] H?ger S. Highly efficient methods for the preparation of shape-persistent macrocyclics. J. Polym. Sci. Part A: Polym. Chem., 1999, 37(15): 2685-2698
    [16] Youngs W J, Tessier C A, Bradshaw J D. ortho-Arene cyclynes, related heterocyclynes, and their metal chemistry. Chem. Rev., 1999, 99(11): 3153-3180
    [17] Grave C, Schlüter A D. Shape-persistent, nano-sized macrocycles. Eur. J. Org. Chem., 2002, 2002(18): 3075-3098
    [18] Toyota S, Iyoda M, Toda F. Aromatic chemistry. Annu. Rep. Prog. Chem., Sect. B, 2002, 98: 359-407
    [19] Bodwell G J, Satou T. “Polyunsaturated” cyclophanes. Angew. Chem. Int. Ed., 2002, 41(21): 4003-4006
    [20] Solooki D, Bradshaw J D, Tessier C A, et al. Syntheses and crystal structures of 1,2:5,6:9,10:13,14:17,18:21,22-hexabenzo-3,7,11,15,19,23-hexadehydro[24] annulene (HBC), 1,2:5,6:9,10:13,14-tetrabenzo-3,7,11,15-tetradehydro[16] annulene (QBC) and a tetracobalt complex of QBC. The first example of a transition metal complex of QBC. J. Organomet. Chem., 1994, 470(2): 231-236
    [21] Iyoda M, Vorasingha A, Kuwatani Y, et al. A one-step synthesis of dehydro[12]annulenes using palladium-catalyzed reaction of o-diiodoarenes with acetylene gas. Tetrahedron Lett., 1998, 39(26): 4701-4704
    [22] Kehoe J M, Kiley J H, English J J, et al. Carbon networks based on dehydrobenzoannulenes. 3. Synthesis of graphyne substructures. Org. Lett., 2000, 2(7): 969-972
    [23] Miljanic O S, Vollhardt K P C, Whitener G D. An alkyne metathesis-based route to ortho-dehydrobenzannulenes. Synlett, 2003, 2003(1): 29-34
    [24] Solooki D, Bradshaw J D, Tessier C A, et al. Synthesis and characterization of trithienocyclotryne(TTC) and its tetracobalt complex. The first example of a dehydroannulene containing thiophene rings. Organometallics, 1994, 13(2): 451-455
    [25] Ferrara J D, Tessier-Youngs C, Youngs W J. Synthesis and characterization of the first transition metal complex 1,2:5,6:9,10-tribenzocyclododeca-1,5,9- triene-3,7,11-triyne. J. Am. Chem. Soc., 1985, 107(23): 6719-6721
    [26] Ferrara J D, Youngs C T, Youngs W J. Synthesis and characterization of a copper(I) triflate complex of 1,2:5,6:9,10-tribenzocyclododeca-1,5,9-triene- 3,7,11-triyne. Organometallics, 1987, 6(3), 676-678
    [27] Djebli A, Ferrara J D, Youngs C T. The synthesis and structuralcharacterization of a novel tetracobalt cluster of 5,6,11,12,17,18- hexadehydrotribenzo[a,e,i]-cyclododecine. J. Chem. Soc., Chem. Commun., 1988, (8): 548-549
    [28] Ferrara J D, Djebli A, Tessier-Youngs C, et al. Synthesis and characterization of a silver(I) triflate sandwich complex of 1,2:5,6:9,10-tribenzocyclododeca- 1,5,9-triene-3,7,11-triyne. The first example of a 12-membered macrocycle sandwich complex. J. Am. Chem. Soc., 1988, 110(2): 647-649
    [29] Ferrara J D, Youngs C T, Youngs W J. Synthesis and molecular structure of a trinuclear copper(I) cofacial bimacrocycle. Inorg. Chem., 1988, 27(13): 2201-2202
    [30] Ferrara J D, Tessier-Youngs C, Youngs W J. A novel n-doped metallomacrocyclic conductor. J. Am. Chem. Soc., 1988, 110(10): 3326-3327
    [31] Ferrara J D, Tanaka A A, Fierro C, et al. Synthesis and structural and theoretical characterization of a nickel(0) complex of tribenzocyclyne (TBC) and the preparation of a novel organometallic conductor. Organometallics, 1989, 8(9): 2089-2098
    [32] Kinder J D, Tessier C A, Youngs W J. Synthesis of a para-methoxy substituted tribenzocyclotriyne. Synlett, 1993, 1993(2): 149-150
    [33] Youngs W J, Kinder J D, Bradshaw J D, et al. Synthesis of nickel(0) complex of a methoxy-substituted tribenzocyclotriyne. X-ray crystallographic evidence for an intermolecular carbon-hydrogen-nickel agostic interaction. Organometallics, 1993, 12(7): 2406-2407
    [34] Zhang D, Tessier C A, Youngs W J. Synthesis of tris(2,5-dialkynylthieno)cyclotriynes, tris(4,5-dialkoxyphenyl)cyclotriynes, and tetrakis(4,5-dialkoxyphenyl)cyclotetraynes with long-chain alkyl substituents, and the nickel and cobalt complexes of tris[4,5-(didodecyloxy)phenyl]cyclotriyne. Chem. Mater., 1999, 11(11): 3050-3057
    [35] Iyoda M, Fuchigami K, Kusaka A, et al. Z-Tribenzo[c,g,k]-1,2,5,6- tetradehydro[12]annulene, a concave π-electron system. Chem. Lett., 2000, 29(8): 860-861
    [36] Wandel H, Wiest O. Enediynes in 11-membered rings. Synthesis, structure, and reactivity of highly strained but unusually stable macrocycles. J. Org. Chem., 2002, 67(2), 388-393
    [37] Eickmeier C, Junga H, Matzger A J, et al. 5,6,11,12,17,18-hexadehydro-1,4,7,10,13,16-hexaethynyltribenzo[a,e,i,]cyclododecene: synthesis and CpCo-catalyzed cycloisomerization to the first superdelocalized oligophenylenes. Angew. Chem. Int. Ed., 1997, 36(19): 2103-2108
    [38] Tovar J D, Jux N, Jarrosson T, et al. Synthesis and X-ray characterization of an octaalkynyldibenzooctadehydro[12]-annulene. J. Org. Chem., 1997, 62(11): 3432-3433
    [39] Palmer G J, Parkin S R, Anthony J E. Synthesis of a remarkably stable dehydro[14]annulene. Angew. Chem. Int. Ed., 2001, 40(13): 2509-2512
    [40] Nishinaga T, Nodera N, Miyata Y, et al. Dehydro[12]- and -[18]annulenes fused with tetrafluorobenzene: synthesis, electronic properties, packing structures, and reactivity in the solid state. J. Org. Chem., 2002, 67(17): 6091-6096
    [41] Jusélius J, Sundholm D. The aromaticity and antiaromaticity of dehydroannulenes. Phys. Chem. Chem. Phys., 2001, 3(12): 2433-2437
    [42] Alkorta I, Rozas I, Elguero J. An ab initio study of the NMR properties (absolute shieldings and NICS) of a series of significant aromatic and antiaromatic compounds. Tetrahedron, 2001, 57(28): 6043-6049
    [43] Matzger A J, Vollhardt K P C. Benzocyclynes adhere to Hückel's rule by the ring current criterion in experiment (1H NMR) and theory (NICS). Tetrahedron Lett., 1998, 39(38): 6791-6794
    [44] Tobe Y, Ohki I, Sonoda M, et al. Generation and characterization of highly strained dibenzotetrakisdehydro[12]annulene. J. Am. Chem. Soc., 2003, 125(19): 5614-5615
    [45] Hisaki I, Eda T, Sonoda M, et al. Formation and characterization of highly strained dibenzopentakisdehydro[14]annulene and theoretical study on its aromaticity. Chem. Lett., 2004, 33(5): 620-621
    [46] Baldwin K P, Matzger A J, Scheiman D A, et al. Synthesis, crystal structure, and polymerization of 1,2:5,6:9,10-tribenzo-3,7,11,13-tetradehydro[14] annulene. Synlett, 1995, 1995(12): 1215-1218
    [47] Blanchette H S, Brand S C, Naruse H, et al. Bis(enediyne) macrocycles: synthesis, reactivity, and structural analysis. Tetrahedron, 2000, 56(49): 9581-9588
    [48] Boydston A J, Haley M M. Diatropicity of dehydrobenzo[14]annulenes: comparative analysis of the bond-fixing ability of benzene on the parent 3,4,7,8,9,10,13,14-octadehydro[14]annulene. Org. Lett., 2001, 3(22):3599-3601
    [49] Boydston A J, Haley M M, Williams R V, et al. Diatropicity of 3,4,7,8,9,10,13,14-octadehydro[14]annulenes: a combined experimental and theoretical investigation. J. Org. Chem., 2002, 67(25): 8812-8819
    [50] Kimball D B, Haley M M, Mitchell R H, et al. Dehydrobenzoannulene- dimethyldihydropyrene hybrids: model systems for the synthesis of molecular aromatic probes. Org. Lett., 2001, 3(11): 1709-1711
    [51] Kimball D B, Haley M M, Mitchell R H, et al. Dimethyldihydropyrene- dehydrobenzoannulene hybrids: studies in aromaticity and photoisomerization. J. Org. Chem., 2002, 67(25): 8798-8811
    [52] Boydston A J, Bondarenko L, Dix I, et al. [2.2]Paracyclophane/ dehydrobenzoannulene hybrids: transannular delocalization in open-circuited conjugated macrocycles. Angew. Chem. Int. Ed., 2001, 40(16): 2986-2989
    [53] Haley M M, Brand S C, Pak J J. Carbon networks based on dehydrobenzoannulenes: dynthesis of graphdiyne substructures. Angew. Chem. Int. Ed., 1997, 36(8): 836-838
    [54] Wan W B, Brand S C, Pak J J, et al. Carbon networks based on dehydrobenzoannulenes: Part 2 Synthesis of expanded graphdiyne substructures. Chem. Eur. J., 2000, 6(11): 2044-2052
    [55] Pak J J, Weakley T J R, Haley M M. Stepwise assembly of site specifically functionalized dehydrobenzo[18]annulenes. J. Am. Chem. Soc., 1999, 121(36): 8182-8192
    [56] Sarkar A, Pak J J, Rayfield G W, et al. Nonlinear optical properties of dehydrobenzo[18]annulenes: expanded two-dimensional dipolar and octupolar NLO chromophores. J. Mater. Chem., 2001, 11(12): 2943-2945
    [57] Haley M M, Bell M L, English J J, et al. Versatile synthetic route to and DSC analysis of dehydrobenzoannulenes: crystal structure of a heretofore inaccessible [20]annulene derivative. J. Am. Chem. Soc., 1997, 119(12): 2956-2957
    [58] Bell M L, Chiechi R C, Johnson C A, et al. A versatile synthetic route to dehydrobenzoannulenes via in situ generation of reactive alkynes. Tetrahedron, 2001, 57(17): 3507-3520
    [59] Sarkar A, Haley M M. Synthesis and characterization of dehydrothieno[18]annulenes. Chem. Commun., 2000, (18): 1733-1734
    [60] Pak J J, Weakley T J R, Haley M M, et al. Synthesis and characterization ofannulene-fused pseudorotaxanes. Synthesis, 2002, 2002(9): 1256-1260
    [61] Wan W B, Haley M M. Carbon networks based on dehydrobenzoannulenes. 4. Synthesis of “star” and “trefoil” graphdiyne substructures via sixfold cross-coupling of hexaiodobenzene. J. Org. Chem., 2001, 66(11): 3893-3901
    [62] Altmann M, Friedrich J, Beer F, et al. Synthesis of organometallic dehydroannulenes containing ferrocene or (cyclopentadienylcobalt) cyclobutadiene moieties. J. Am. Chem. Soc., 1997, 119(6): 1472-1473
    [63] Bunz U H F, Roidl G, Altmann M, et al. Synthesis and structure characterization of novel organometallic dehydroannulenes with fused CpCo-cyclobutadiene and ferrocene units including a cyclic fullerenyne segment. J. Am. Chem. Soc., 1999, 121(46): 10719-10726
    [64] Laskoski M, Steffen W, Smith M D, et al. Is ferrocene more aromatic than benzene? Chem. Commun., 2001, (8): 691-692
    [65] Laskoski M, Smith M D, Morton J G M, et al. Organometallic dehydro[14]annulenes containing Vollhardt’s cyclobutadiene: are CpCo-complexed cyclobutadienes more aromatic than benzene? J. Org. Chem., 2001, 66(15): 5174-5181
    [66] Laskoski M, Steffen W, Morton J G M, et al. Synthesis and explosive decomposition of organometallic dehydro[18]annulenes: an access to carbon nanostructures. J. Am. Chem. Soc., 2002, 124(46): 13814-13818
    [67] Laskoski M, Roidl G, Smith M D, et al. Concave butterfly-shaped organometallic hydrocarbons? Angew. Chem. Int. Ed., 2001, 40(8): 1460-1463
    [68] Laskoski M, Steffen W, Morton J G M, et al. Synthesis and structural characterization of organometallic cyclynes: novel nanoscale, carbon-rich topologies. Angew. Chem. Int. Ed., 2002, 41(13): 2378-2382
    [69] Dosa P I, Erben C, Iyer V S, et al. Metal encapsulating carbon nanostructures from oligoalkyne metal complexes. J. Am. Chem. Soc., 1999, 121(44): 10430-10431
    [70] Boese R, Matzger A J, Vollhardt K P C. Synthesis, crystal structure, and explosive decomposition of 1,2:5,6:11,12:15,16-tetrabenzo-3,7,9,13,17,19- hexadehydro[20]annulene: formation of onion- and tube-like closed-shell carbon particles. J. Am. Chem. Soc., 1997, 119(8): 2052-2053
    [71] Baldwin K P, Simons R S, Rose J, et al. Crystal structure of 1,2 : 5,6 : 9,10 : 13,14 : 17,18 : 21,22 : 25,26 : 29,30 : 33,34 : 37,38 decabenzo-3,7,11,15,19,23, 27,31,35,39-decadehydro[40]annulene (C80H40), a 40-membered macrocyclicring and the synthesis and characterization of its 80-(C160H80), 120-(C240H120), 160-(C320H160) and 200-(C400H200) membered ring homologues. J. Chem. Soc., Chem. Commun., 1994, (10): 1257-1258
    [72] Collins S K, Yap G P A, Fallis A G. The synthesis of a novel strained diyneparacyclophane and its dimer by metal-mediated coupling. Angew. Chem. Int. Ed., 2000, 39(2): 385-388
    [73] Collins S K, Yap G P A, Fallis A G. Synthesis of novel acetylenic cyclophanes with helical chirality: potential new structures for liquid crystals. Org. Lett., 2000, 2(20): 3189-3192
    [74] Heuft M A, Collins S K, Fallis A G. Molecular folding of C60 acetylenic cyclophanes: π-stacking of superimposed aromatic rings. Org. Lett., 2003, 5(11): 1911-1914
    [75] Haley M M, Bell M L, Brand S C, et al. One-pot desilylation/dimerization of ethynyl- and butadiynyltrimethylsilanes. Synthesis of tetrayne-linked dehydrobenzoannulenes. Tetrahedron Lett., 1997, 38(43): 7483-7486
    [76] Heuft M A, Collins S K, Yap G P A, et al. Synthesis of diynes and tetraynes from in situ desilylation/dimerization of acetylenes. Org. Lett., 2001, 3(18): 2883-2886
    [77] Marsella M J, Wang Z Q, Reid R J, et al. Synthesis of acetylenic cyclophanes via intramolecular self-assembly: evidence of perfluorophenyl-phenyl quadrupole interactions in the solution state. Org. Lett., 2001, 3(6): 885-887
    [78] Baxter P N W. Synthesis and fluorescence ion-sensory properties of the first dehydropyridoannulene-type cyclophane with enforced exotopic metal ion binding sites. Chem. Eur. J., 2003, 9(11): 2531-2541
    [79] Baxter P N W. Synthesis and properties of a twistophane ion sensor: a new conjugated macrocyclic ligand for the spectroscopic detection of metal ions. J. Org. Chem., 2001, 66(12), 4170-4179
    [80] Baxter P N W. Twistophane macrocycles with integrated 6,6’-connected-2,2’- bipyridine units: a new lead class of fluorescence sensors for metal ions. Chem. Eur. J., 2002, 8(22): 5250-5264
    [81] Heuft M A, Fallis A G. Template-directed synthesis of helical phenanthroline cyclophanes. Angew. Chem. Int. Ed., 2002, 41(23): 4520-4523
    [82] Agrofoglio L A, Gillaizeau I, Saito Y. Palladium-assisted route to nucleosides. Chem. Rev., 2003, 103(5): 1875-1916
    [83] Sonogashira K, Tohda Y, Hagihara N. A convenient synthesis of acetylenes:catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett., 1975, 16(50): 4467-4470
    [84] Tykwinski R R. Evolution in the palladium-catalyzed cross-coupling of sp- and sp2-hybridized carbon atoms. Angew. Chem. Int. Ed., 2003, 42(14): 1566-1568
    [85] Behr O M, Eglinton G, Galbraith A R, et al. Macrocyclic Acetylenic Compounds. 2. 1,2,7,8-Dibenzocyclododeca-1,7-Diene-3,5,9,11-Tetrayne. J. Chem. Soc. 1960, 3614-3625
    [86] H?ger S, Meckenstock A D, Pellen H. High-yield macrocyclization via Glaser coupling of temporary covalent templated bisacetylenes. J. Org. Chem., 1997, 62(14): 4556-4557
    [87] H?ger S, Meckenstock A D. Template-directed synthesis of shape-persistent macrocyclic amphiphiles with convergently arranged functionalities. Chem. Eur. J., 1999, 5(6): 1686-1691
    [88] Kawase T, Ueda N, Darabi H R. et al. [2.2.2.2]Metacyclophane-1,9,17,25- tetrayne. Angew. Chem. Int. Ed., 1996, 35(13-14): 1556-1558
    [89] Kawase T, Ueda N, Oda M. [2.2.2]Metacyclophane-1,9,17-triyne. Tetrahedron Lett., 1997, 38(38): 6681-6684
    [90] Kawase T, Hosokawa Y, Kurata H, et al. 8,16,24,32-Tetramethoxy[2.2.2.2] metacyclophane-1,9,17,25-tetrayne: a novel ionophore having a preorganized but unexpectedly flexible cavity. Chem. Lett., 1999, 28(8): 745-746
    [91] Utsumi K, Kawase T, Oda M. [2.0.2.0]Metacyclophane-1,15-diynes. A potential fragment of double-helical conjugated systems. Chem. Lett., 2003, 32(4): 412-413
    [92] Srinivasan M, Sankararaman S, Dix I, et al. Synthesis and structure of a new [6,6]metacyclophane with enediyne bridges. Org. Lett., 2000, 2(24): 3849-3851
    [93] Yamaguchi Y, Kobayashi S, Wakamiya T, et al. A simple hybrid cyclyne consisting of 1,3-diethynylbenzene and ether units: synthesis and novel Ag+-induced cyclization leading to the perylene skeleton formation. J. Am. Chem. Soc., 2000, 122(30): 7404-7405
    [94] Kobayashi S, Wakumoto S, Yamaguchi Y, et al. Synthesis and properties of novel thiaarenecyclynes. Tetrahedron Lett., 2003, 44(9): 1807-1810
    [95] Bodwell G J, Houghton T J, Miller D. Expanded cyclophanes 1. Synthesis and structure of 4,17-dithia[7.7]metacyclophane-1,6,14,19-tetrayne. Tetrahedron Lett., 1998, 39(16): 2231-2234
    [96] Nakamura K, Okubo H, Yamaguchi M. Synthesis and self-aggregation of cyclic alkynes containing helicene. Org. Lett., 2001, 3(8): 1097-1099
    [97] H?ger S, Enkelmann V. Synthesis and X-ray structure of a shape-persistent macrocyclic amphiphile. Angew. Chem. Int. Ed., 1995, 34(23-24): 2713-2716
    [98] H?ger S, Meckenstock A D, Müller S. Synthesis and properties of shape-persistent macrocyclic amphiphiles with switchable amphiphilic portions. Chem. Eur. J., 1998, 4(12): 2423-2434
    [99] H?ger S, Bonrad K, Karcher L, et al. Structure and temperature effects on the cyclization of rigid bisacetylenes. J. Org. Chem., 2000, 65(5): 1588-1589
    [100] H?ger S, Morrison D L, Enkelmann V. Solvent triggering between conformational states in amphiphilic shape-persistent macrocycles. J. Am. Chem. Soc., 2002, 124(23): 6734-6736
    [101] Morrison D L, H?ger S. Shape-persistent macrocyclic amphiphiles: molecular reversible coats. Chem. Commun., 1996, (20): 2313-2314
    [102] H?ger S, Enkelmann V, Bonrad K, et al. Alkyl-substituted shape-persistent macrocycles: the first discotic liquid crystal composed of a rigid periphery and a flexible core. Angew. Chem. Int. Ed., 2000, 39(13): 2267-2270
    [103] H?ger S, Bonrad K, Mourran A, et al. Synthesis, aggregation, and adsorption phenomena of shape-persistent macrocycles with extraannular polyalkyl substituents. J. Am. Chem. Soc., 2001, 123(24): 5651-5659
    [104] Rosselli S, Ramminger A D, Wagner T, et al. Coil-ring-coil block copolymers as building blocks for supramolecular hollow cylindrical brushes. Angew. Chem. Int. Ed., 2001, 40(17): 3137-3141
    [105] ünsal ?, Godt A. Synthesis of a [2]catenane with functionalities and 87-membered rings. Chem. Eur. J., 1999, 5(6): 1728-1733
    [106] Godt A, Duda S, ünsal ?, et al. An efficient synthesis of liquid crystalline gigantocycles combining banana-shaped and rod-like mesogenic units. Chem. Eur. J., 2002, 8(22): 5094-5106
    [107] Shah M R, Duda S, Müller B, et al. Facile access to monodisperse ultralarge rings. J. Am. Chem. Soc., 2003, 125(18): 5408-5414
    [108] Kawase T, Darabi H R, Oda M. Cyclic [6]- and [8]paraphenylacetylenes. Angew. Chem. Int. Ed., 1996, 35(22): 2664-2666
    [109] Kawase T, Ueda N, Tanaka K, et al. The newly modified McMurry reaction toward the improved synthesis of cyclic paraphenylacetylenes. Tetrahedron Lett., 2001, 42(32): 5509-5511
    [110] Kawase T, Seirai Y, Darabi H R, et al. All-hydrocarbon inclusion complexes of carbon nanorings: cyclic [6]- and [8]paraphenyleneacetylenes. Angew. Chem. Int. Ed., 2003, 42(14): 1621-1624
    [111] Kawase T, Tanaka K, Fujiwara N, et al. Complexation of a carbon nanoring with fullerenes. Angew. Chem. Int. Ed., 2003, 42(14): 1624-1628
    [112] Ohkita M, Ando K, Tsuji T. Synthesis and characterization of [46]paracyclophanedodecayne derivative. Chem. Commun., 2001, (24): 2570-2571
    [113] Ohkita M, Ando K, Yamamoto K, et al. First Dewar benzene approach to acetylenic oligophenylene macrocycles: synthesis and structure of a molecular rectangle bearing two spindles. Chem. Commun., 2000, (1): 83-84
    [114] Ohkita M, Ando K, Suzuki T, et al. Syntheses of acetylenic oligophenylene macrocycles based on a novel Dewar benzene building block approach. J. Org. Chem., 2000, 65(14):4385-4390
    [115] Hopf H, Jones P G, Bubenitschek P, et al. para- and ortho-Quinodimethane intermediates with cumulative double bonds. Angew. Chem. Int. Ed., 1995, 34(21): 2367-2368
    [116] Haley M M, Langsdorf B L. Cyclophyne chemistry: synthesis and study of an octacobalt complex of [8.8]paracyclophaneoctayne. Chem. Commun., 1997, (12): 1121-1122
    [117] Tobe Y, Furukawa R, Sonoda M, et al. [12.12]Paracyclophanedodecaynes C36H8 and C36Cl8: the smallest paracyclophynes and their transformation into the carbon cluster ion C36?. Angew. Chem. Int. Ed., 2001, 40(21): 4072-4074
    [118] Ensley H E, Mahadevan S, Mague J. Multiply bridged acetylenic thiacyclophanes. Tetrahedron Lett., 1996, 37(35): 6255-6258
    [119] Collins S K, Yap G P A, Fallis A G. A novel strained undecadiyne cyclophane with interesting dienophilic character. Org. Lett., 2002, 4(1): 11-14
    [120] Tobe Y, Kishi J, Ohki I, et al. Facile intramolecular cyclization in oxidative coupling of acetylenes linked to 1,3-positions of benzene: strained
    [12]metacyclophanedienetetrayne system. J. Org. Chem., 2003, 68(8): 3330-3332
    [121] Tobe Y, Nakanishi H, Sonoda M, et al. Pyridine analogue of macrocyclic polyyne C58H4N2 as a precursor to diazafullerene C58N2. Chem. Commun., 1999, (17): 1625-1626
    [122] Wu Z, Lee S, Moore J S. Synthesis of three-dimensional nanoscaffolding. J.Am. Chem. Soc., 1992, 114(22): 8730-8732
    [123] Wu Z, Moore J S. A freely hinged macrotricycle with a molecular cavity. Angew. Chem. Int. Ed., 1996, 35(3): 297-299
    [124] Zhang J, Moore J S. Aggregation of hexa(phenylacetylene) macrocycles in solution: a model system for studying π?π interactions. J. Am. Chem. Soc., 1992, 114(24): 9701-9702
    [125] Shetty A S, Zhang J, Moore J S. Aromatic π-stacking in solution as revealed through the aggregation of phenylacetylene macrocycles. J. Am. Chem. Soc., 1996, 118(5): 1019-1027
    [126] Lahiri S, Thompson J L, Moore J S. Solvophobically driven π-stacking of phenylene ethynylene macrocycles and oligomers. J. Am. Chem. Soc., 2000, 122(46): 11315-11319
    [127] Zhao D, Moore J S. Synthesis and self-association of an imine-containing m-phenylene ethynylene macrocycle. J. Org. Chem., 2002, 67(11): 3548-3554
    [128] Zhang J, Moore J S. Liquid crystals based on shape-persistent macrocyclic mesogens. J. Am. Chem. Soc., 1994, 116(6): 2655-2656
    [129] Mindyuk O Y, Stetzer M R, Heiney P A, et al. High resolution X-ray diffraction study of a tubular liquid crystal. Adv. Mater., 1998, 10(16): 1363-1366
    [130] Venkataraman D, Lee S, Zhang J, et al. An organic solid with wide channels based on hydrogen bonding between macrocycles. Nature, 1994, 371(6498): 591-593
    [131] Shetty A S, Fischer P R, Stork K F, et al. Assembly of amphiphilic phenylacetylene macrocycles at the air-water interface and on solid surfaces. J. Am. Chem. Soc., 1996, 118(39): 9409-9414
    [132] Mindyuk O Y, Stetzer M R, Gidalevitz D, et al. Structure of a phenylacetylene macrocycle at the air-water interface. Langmuir, 1999, 15(20): 6897-6900
    [133] Hosokawa Y, Kawase T, Oda M, 8,16,24,32,40,48-Hexamethoxy [2.6]metacyclophane-1,9,17,25,33,41-hexayne: a novel near-planar ammonium-selective ionophore. Chem. Commun., 2001, (19): 1948-1949
    [134] Tobe Y, Utsumi N, Kawabata K, et al. Synthesis and self-association properties of diethynylbenzene macrocycles. Tetrahedron Lett., 1996, 37(52): 9325-9328
    [135] Tobe Y, Utsumi N, Nagano A, et al. Synthesis and association behavior of [4.4.4.4.4.4]metacyclophanedodecayne derivatives with interior bindinggroups. Angew. Chem. Int. Ed., 1998, 37(9): 1285-1287
    [136] Tobe Y, Utsumi N, Nagano A, et al. Synthesis of butadiyne-bridged [4n] metacyclophanes having exo-annular t-butyl groups. Tetrahedron, 2001, 57(38): 8075-8083
    [137] Tobe Y, Utsumi N, Kawabata K, et al. m-Diethynylbenzene macrocycles: synthesis and self-association behavior in solution. J. Am. Chem. Soc., 2002, 124(19): 5350-5364
    [138] Tobe Y, Nagano A, Kawabata K, et al. Synthesis and association behavior of butadiyne-bridged [44](2,6)pyridinophane and [46](2,6)pyridinophane derivatives. Org. Lett., 2000, 2(21): 3265-3268
    [139] Lin C H, Tour J. Hydrogen-bond-assisted π-stacking of shape-persistent cyclophanes. J. Org. Chem., 2002, 67(22): 7761-7768
    [140] Moore J S, Zhang J. Efficient synthesis of nanoscale macrocyclic hydrocarbons. Angew. Chem. Int. Ed., 1992, 31(7): 922-924
    [141] Zhang J, Pesak D J, Ludwick J L, et al. Geometrically-controlled and site-specifically-functionalized phenylacetylene macrocycles. J. Am. Chem. Soc., 1994, 116(10): 4227-4239
    [142] Shortell D B, Palmer L C, Tour J M. Solid-phase approaches toward cyclic oligomers. Tetrahedron, 2001, 57(44): 9055-9065
    [143] Ge P H, Fu W, Herrmann W A, et al. Structural characterization of a cyclohexameric meta-phenyleneethynylene made by alkyne metathesis with in situ catalysts. Angew. Chem. Int. Ed., 2000, 39(20): 3607-3610
    [144] Vidal-Ferran A, Müller C M, Sanders J K M. A convergent approach to unsymmetrical porphyrin oligomers. J. Chem. Soc., Chem. Commun., 1994, (23): 2657-2658
    [145] Anderson S, Anderson H L, Sanders J K M. Template-directed synthesis of linear and cyclic butadiyne-linked porphyrin oligomers up to a linear octamer. J. Chem. Soc. Perkin Trans. 1 1995, (18): 2247-2254
    [146] Anderson S, Anderson H L, Sanders J K M. The roles of templates in the syntheses of porphyrin oligomers. J. Chem. Soc. Perkin Trans. 1 1995, (18), 2255-2267
    [147] Anderson S, Anderson H L, Sanders J K M. Expanding roles for templates in synthesis. Acc. Chem. Res., 1993, 26(9): 469-475
    [148] Li J, Ambroise A, Yang S I, et al. Template-directed synthesis, excited-state photodynamics, and electronic communication in a hexameric wheel ofporphyrins. J. Am. Chem. Soc., 1999, 121(38): 8927-8940
    [149] Rucareanu S, Mongin O, Schuwey A, et al. Supramolecular assemblies between macrocyclic porphyrin hexamers and star-shaped porphyrin arrays. J. Org. Chem., 2001, 66(15): 4973-4988
    [150] Kr?mer J, Rios-Carreras I, Fuhrmann G, et al. Synthesis of the first fully α-conjugated macrocyclic oligothiophenes: cyclo[n]thiophenes with tunable cavities in the nanometer regime. Angew. Chem. Int. Ed., 2000, 39(19): 3481-3486
    [151] Fuhrmann G, Debaerdemaeker T, B?uerle P. C–C bond formation through oxidatively induced elimination of platinum complexes-a novel approach towards conjugated macrocycles. Chem. Commun., 2003, (8): 948-949
    [152] Henze O, Lentz D, Schlüter A D. Synthesis and an X-ray structure of soluble phenylacetylene macrocycles with two opposing bipyridine donor sites. Chem. Eur. J., 2000, 6(13): 2362-2367
    [153] Henze O, Lentz D, Sch?fer A, et al. Phenylacetylene macrocycles with two opposing bipyridine donor sites: syntheses, X-ray structure determinations, and Ru complexation. Chem. Eur. J., 2002, 8(2): 357-365
    [154] Grave C, Lentz D, Sch?fer A, et al. Shape-persistant macrocycles with terpyridine units: synthesis, characterization, and structure in the crystal. J. Am. Chem. Soc., 2003, 125(23): 6907-6918
    [155] Kobayashi S, Yamaguchi Y, Wakamiya T, et al. Shape-persistent cyclyne-type azamacrocycles: synthesis, unusual light-emitting characteristics, and specific recognition of the Sb(V) ion. Tetrahedron Lett., 2003, 44(7): 1469-1472
    [156] Yamaguchi Y, Kobayashi S, Amita N, et al. Creation of nanoscale oxaarenecyclynes and their C60 complexes. Tetrahedron Lett., 2002, 43(18): 3277-3280
    [157] Sun S S, Lees A J. Synthesis and photophysical properties of dinuclear organometallic rhenium(I) diimine complexes linked by pyridine-containing macrocyclic phenylacetylene ligands. Organometallics, 2001, 20(11): 2353-2358
    [158] Campbell K, McDonald R, Branda N R, et al. Rigid, cross-conjugated macrocycles: a cyclic alternative to 44-bipyridines in supramolecular chemistry. Org. Lett., 2001, 3(7): 1045-1048
    [159] Campbell K, McDonald R, Tykwinski R R. Functionalized macrocyclic ligands for use in supramolecular chemistry. J. Org. Chem., 2002, 67(4): 1133-1140
    [160] Campbell K, Kuehl C J, Ferguson M J, et al. Coordination-driven self-assembly: solids with bidirectional porosity. J. Am. Chem. Soc., 2002, 124(25): 7266-7267
    [161] Schmittel M, Ammon H. Preparation of a rigid macrocycle with two exotopic phenanthroline binding sites. Synlett, 1999, 1999(6): 750-752
    [162] Schmittel M, Ammon H, Kalsani V, et al. Quantitative formation and clean metal exchange processes of large void (>5000 ?3) nanobox structures. Chem. Commun., 2002, (21): 2566-2567
    [163] Mayor M, Lehn J M. Reducible nanosize macrocycles. J. Am. Chem. Soc., 1999, 121(48): 11231-11232
    [164] Maruyama S, Hokari H, Wada T, et al. Syntheses of novel carbazolylacetylene- derived macrocycles. Synthesis, 2001, 2001(12): 1794-1799
    [165] Rubin Y, Parker T C, Khan S I, et al. Precursors to endohedral metal fullerene complexes: synthesis and X-ray structure of a flexible acetylenic cyclophane C60H18. J. Am. Chem. Soc., 1996, 118(22): 5308-5309
    [166] Rubin Y. Organic approaches to endohedral metallofullerenes: cracking open or zipping up carbon shells? Chem. Eur. J., 1997, 3(7): 1009-1016
    [167] Rubin Y, Parker T C, Pastor S J, et al. Acetylenic cyclophanes as fullerene precursors: formation of C60H6 and C60 by laser desorption mass spectrometry of C60H6(CO)12. Angew. Chem. Int. Ed., 1998, 37(9): 1226-1229
    [168] Tobe Y, Nakagawa N, Naemura K, et al. [16.16.16](1,3,5)Cyclo- phanetetracosayne (C60H6): a precursor to C60 fullerene. J. Am. Chem. Soc., 1998, 120(18): 4544-4545
    [169] Tobe Y, Nakagawa N, Kishi J, et al. Polyyne cyclization to form carbon cages: [16.16.16](1,3,5)cyclophanetetracosayne derivatives C60H6 and C60Cl6 as precursors to C60 fullerene. Tetrahedron, 2001, 57(17): 3629-3636
    [170] Manini P, Amrein W, Gramlich V, et al. Expanded cubane: synthesis of a cage compound with a C56 core by acetylenic scaffolding and gas-phase transformations into fullerenes. Angew. Chem. Int. Ed., 2002, 41(22): 4339-4343
    [171] Orita A, An D L, Nakano T, et al. Sulfoximine version of double elimination protocol for synthesis of chiral acetylenic cyclophanes. Chem. Eur. J., 2002, 8(9): 2005-2010
    [172] Anderson S, Neidlein U, Gramlich V, et al. A new family of chiral binaphthyl-derived cyclophane receptors: complexation of pyranosides. Angew.Chem. Int. Ed., 1995, 34(15): 1596-1600
    [173] Lee S J, Hu A, Lin W. The first chiral organometallic triangle for asymmetric catalysis. J. Am. Chem. Soc., 2002, 124(44): 12948-12949
    [174] Sonogashira K, Yatake T, Tohda Y, et al. Novel preparation of σ-alkynyl complexes of transition metals by copper(I) iodide-catalysed dehydrohalogenation. J. Chem. Soc., Chem. Commun., 1977, (9): 291-292
    [175] Zhang L, Niu Y H, Jen A K Y, et al. A highly electroluminescent molecular square. Chem. Commun., 2005, (8): 1002-1004
    [176] Jiang H, Hu A, Lin W. A chiral metallacyclophane for asymmetric catalysis. Chem. Commun., 2003, (1): 96-97
    [177] Hua J, Lin W. Chiral metallacyclophanes: self-assembly, characterization, and application in asymmetric catalysis. Org. Lett., 2004, 6(6): 861-864
    [178] Jiang H, Lin W. Self-assembly of chiral molecular polygons. J. Am. Chem. Soc., 2003, 125(27): 8084-8085
    [179] Jiang H, Lin W. Expeditious assembly of mesoscopic metallocycles. J. Am. Chem. Soc., 2004, 126(24): 7426-7427
    [180] Cahn R S, Ingold C, Prelog V. Specification of molecular chirality. Angew. Chem. Int. Ed., 1966, 5(4): 385-415
    [181] a) Han S, Bond A D, Disch R L, et al. Total syntheses and structures of angular
    [6]- and [7]phenylene: the first helical phenylenes (heliphenes). Angew. Chem. Int. Ed., 2002, 41(17): 3223-3227; b) Han S, Anderson D R, Bond A D, et al. Total syntheses of angular [7]-, [8]-, and [9]phenylene by triple cobalt-catalyzed cycloisomerization: remarkably flexible heliphenes. Angew. Chem. Int. Ed., 2002, 41(17): 3227-3230
    [182] Katz T J, Liu L, Willmore N D, et al. An efficient synthesis of functionalized helicenes. J. Am. Chem. Soc., 1997, 119(42): 10054-10063
    [183] Rajca A, Wang H, Pink M, et al. Annelated Heptathiophene: A Fragment of a Carbon-Sulfer Helix. Angew. Chem. Int. Ed., 2000, 39(24): 4481-4483
    [184] Meng Y, Williams T, Slaven V, et al. Stepwise synthesis and characterization of oligomers based on 1,1’-binaphthol with 3,3’-acetylene spacer. Tetrahedron: Asymmetry, 1998, 9(20): 3693-3707
    [185] Zarges W, Hall J, Lehn J M. Helicity induction in helicate self-organisaton from chiral tris(bipyridine) ligand strands. Helv. Chim. Acta, 1991, 74(8): 1843-1852
    [186] Mizutani T, Yagi S, Morinaga T, et al. Helical chirality induction by pointchirality at helix terminal. J. Am. Chem. Soc., 1999, 121(4): 754-759
    [187] Yang K, Campbell B, Birch G, et al. Induction of a ferroelectric SC* liquid crystal phase by an atropisomeric dopant derived from 4,4-dihydroxy-2,2’- dimethyl-6,6’-dinitrobiphenyl. J. Am. Chem. Soc., 1996, 118(40): 9557-9561
    [188] Goodby J W, Chin E. Helical twist and spontaneous polarization direction in ferroelectric smectic liquid crystals. 2. J. Am. Chem. Soc., 1986, 108(16): 4736-4742
    [189] Goodby J W, Chin E, Leslie T M, et al. Helical twist sense and spontaneous polarization direction in ferroelectric smectic liquid crystals. 1. J. Am. Chem. Soc., 1986, 108(16): 4729-4735
    [190] Fox J M, Lin D, Itagaki Y, et al. Synthesis of conjugated helical acetylene-bridged polymers and cyclophanes. J. Org. Chem., 1998, 63(6): 2031-2038
    [191] Marsella M J, Kim I T, Tham F. Toward conjugated double helical ladder polymers: cyclooctatetrathiophene as a highly versatile double helical scaffold. J. Am. Chem. Soc., 2000, 122(5): 974-975
    [192] An D L, Nakano T, Orita A, et al. Enantiopure double-helical alkynyl cyclophanes. Angew. Chem. Int. Ed., 2002, 41(1): 171-173
    [193] 安德烈,罗蜂,彭志鸿.光学活性的 2,2'-二取代 1,1'-联萘和间吡啶桥构筑的分子内双螺旋化合物的合成.湖南大学学报(自然科学版),2002,29(3):34-39
    [194] Orita A, Nakano T, An D L, et al. Metal-assisted assembly of pyridine-containing arylene ethynylene strands to enantiopure double helicates. J. Am. Chem. Soc., 2004, 126(33): 10389-10396
    [195] Saiki Y, Nakamura K, Nigorikawa Y, et al. [3+3]Cycloalkyne oligomers: linking groups control intra- and intermolecular aggregation by π-π interactions. Angew. Chem. Int. Ed., 2003, 42(4): 5190-5192
    [196] Saiki Y, Sugiura H, Nakamura K, et al. [3+3]Cycloalkyne dimers linked by an azo group: a stable cis-azo compound forms polymeric aggregates by nonplanar π-π interactions. J. Am. Chem. Soc., 2003, 125(31): 9268-9269
    [197] Lukin O, Recker J, B?hmer A, et al. A topologically chiral molecular dumbbell. Angew. Chem. Int. Ed., 2003, 42(4): 442-445
    [198] Kern J M, Sauvage J P, Bidan G, et al. Transition metal templated synthesis of rotaxanes and catenanes: from small molecules to polymers. J. Polym. Sci.: Part A: Polym. Chem., 2003, 41(22): 3470-3477
    [199] Sanders J K M, Raehm L, Hamilton D G. From kinetic to thermodynamic assembly of catenanes: error checking, supermolecular protection and oligocatenanes. Synlett, 2002, 2002(11): 1743-1761
    [200] Amabilino D B, Ashton P R, Reder A S, et al. Olympiadane. Angew. Chem. Int. Ed., 1994, 33(12): 1286-1290
    [201] Amabilino D B, Ashton P R, Balzani V, et al. Self-assembly of [n]rotaxanes bearing dendritic stoppers. J. Am. Chem. Soc. 1996, 118(48): 12012-12020
    [202] Hunter C A. Synthesis and structure elucidation of a new [2]-catenane. J. Am. Chem. Soc., 1992, 114(13): 5303-5311
    [203] Johnston A G, Leigh D A, Pritchard R J, et al. Facile synthesis and solid-state structure of a benzylic amide [2]catenane. Angew. Chem. Int. Ed., 1995, 34(11): 1209-1212
    [204] Reuter C, Schmieder R, V?gtle F. From rotaxanes to knots. Templating, hydrogen bond patterns, and cyclochirality. Pure and Applied Chemistry, 2000, 72(12): 2233-2241
    [205] Lukin O, Müller W M, Müller U, et al. Covalent chemistry and conformational dynamics of topologically chical amide-based molecular knots. Chem. Eur. J., 2003, 9(15): 3507-3517
    [206] Busch D H, Hubin T J. Template routes to interlocked molecular structures and orderly molecular entanglements. Coordination Chemistry Reviews, 2000, 200-202: 5-52
    [207] 曲大辉,田禾,王巧纯.具有双荧光波长识别的光驱动分子算盘.化学通报,2004,67(w81):1-5
    [208] Noyori R, Takaya H. BINAP: an efficient chiral element for asymmetric catalysis. Acc. Chem. Res., 1990, 23(10): 345-350
    [209] 殷元骐,蒋耀忠.不对称催化反应进展.第一版.北京:科学出版社,2000, 36-37
    [210] Cooke A S, Harris M M. Ground-state strain and other factors influencing optical stability in the 1,1’-binaphthyl series. J. Chem. Soc., 1963, 2365-2373
    [211] Pincock R E, Perkins R R, Ma A S, et al. Probability distribution of enantiomorphous forms in spontaneous generation of optically active substances. Science, 1971, 174(4013): 1018-1020
    [212] Hall D M, Turner E E. 9:10-Dihydrophenanthrenes. 3. Optically active 9:10-dihydro-3:4-5:6-dibenzophenanthrene. J. Chem. Soc., 1955, 1242-1251
    [213] Akimoto H, Shioiri T, Iitaka Y, et al. Determination of the absoluteconfiguration of 1,1′-binaphthyl and its derivatives by x-ray diffraction. Tetrahedron Lett., 1968, 9(1): 97-102
    [214] Graaff R A G, GorterS, Sondheimer F. Crystal structure of 5,6-didehydrodibenzo[a,e] cyclo-octene. J. Chem. Soc Perkin Trans. II., 1981, (3): 478-480
    [215] Rekharsky M V, Inoue Y. Complexation thermodynamics of cyclodextrins. Chem. Rev., 1998, 98(5): 1875-1918
    [216] Nepogodiev S A, Stoddart J F. Cyclodextrin-based catenanes and rotaxanes. Chem. Rev., 1998, 98(5): 1959-1976
    [217] Gutsche C D. Calixarenes. Acc. Chem. Res., 1983, 16(5): 161-170
    [218] Ikeda A, Shinkai S. Novel cavity design using calix[n]arene skeletons: toward molecular recognition and metal binding. Chem. Rev., 1997, 97(5): 1713-1734
    [219] Castellano R K, Rudkevich D M, Rebek J Jr. Tetramethoxy calix[4]arenes revisited: conformational control through self-assembly. J. Am. Chem. Soc., 1996, 118(41): 10002-10003
    [220] Hamann B C, Shimizu K D, Rebek J Jr. Reversible encapsulation of guest molecules in a calixarene dimer. Angew. Chem. Int. Ed., 1996, 35(12): 1326-1329
    [221] Cho Y L, Rudkevich D M, Rebek J Jr. Expanded calyx[4]arene tetraurea capsules. J. Am. Chem. Soc., 2000, 122(40): 9868-9869
    [222] Rowan A E, Elemans J A A W, Nolte, R J M. Molecular and supramolecular objects from glycoluril. Acc. Chem. Res., 1999, 32(12): 995-1006
    [223] Reek J N H, Priem A H, Engelkamp H, et al. Binding features of molecular clips. Separation of the effects of hydrogen bonding and π?π interactions. J. Am. Chem. Soc., 1997, 119(42): 9956-9964
    [224] Ikeda A, Yoshimura M, Tani F, et al. Construction of a homooxacalix[3]arene- based dimeric capsule cross-linked by a Pd(II)-pyridine interaction. Chem. Lett., 1998, 27(7): 587-588
    [225] Ikeda A, Yoshimura M, Udzu H, et al. Inclusion of [60]fullerene in a homooxacalix[3]arene-based dimeric capsule cross-linked by a PdII-pyridine interaction. J. Am. Chem. Soc., 1999, 121(17): 4296-4297
    [226] Ikeda A, Udzu H, Yoshimura M, et al. Inclusion of [60]fullerene in a self-assembled homooxacalix[3]arene-based dimeric capsule constructed by a PdII–pyridine interaction. The Li+-binding to the lower rims can improve the inclusion ability. Tetrahedron, 2000, 56(13): 1825-1832
    [227] Lehn J M. Supramolecular chemistry - scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Int. Ed., 1988, 27(1): 89-112
    [228] Lehn J M. Perspectives in supramolecular chemistry - from molecular recognition towards molecular information processing and self-organization. Angew. Chem. Int. Ed., 1990, 29(11): 1304-1319
    [229] Hill D J, Mio M J, Prince R B, et al. A field guide to foldamers. Chem. Rev., 2001, 101(12): 3893-4012
    [230] Albrecht M. How do they know? Influencing the relative stereochemistry of the complex units of dinuclear triple-stranded helicate-type complexes. Chem. Eur. J., 2000, 6(19): 3485-3489
    [231] Holliday B J, Mirkin C A. Strategies for the construction of supramolecular compounds through coordination chemistry. Angew. Chem. Int. Ed., 2001, 40(11): 2022-2043
    [232] Lehn J M, Rigault A. Helicates: tetra- and pentanuclear double helix complexes of CuI and poly(bipyridine) strands. Angew. Chem. Int. Ed., 1988, 27(8): 1095-1097
    [233] Hasenknopf B, Lehn J M. Trinuclear double helicates of iron(II) and nickel(II): self-assembly and resolution into helical enantiomers. Helv. Chim. Acta, 1996, 79(6): 1643-1650
    [234] Horn C J, Blake A J, Champness N R, et al. Helical templating of polyiodide networks at a binuclear metallo complex. Chem. Commun., 2003, (3): 312-313
    [235] Libman J, Tor Y, Shanzer A. Helical ferric ion binders. J. Am. Chem. Soc.,1987, 109(19): 5880-5881
    [236] Stahl J, Bohling J C, Bauer E B, et al. sp Carbon chains surrounded by sp3 carbon double helices: a class of molecules that are accessible by self-assembly and models for “insulated” molecular-scale devices. Angew. Chem. Int. Ed., 2002, 41(11): 1871-1876
    [237] 安德烈,张志扬,杨少辉等.以手征性联萘为模板合成一种新的螺旋环芳分子.化学学报,2005,63(9):861-865
    [238] Krascsenicsová K, Kappe C O, Putala M, et al. Stereoconservative Negishi arylation and alkynylation as an efficient approach to enantipure 2,2’-diarylated 1,1’-binaphthyls. Chem. Commun., 2004, (22): 2606-2607
    [239] 麻生明.金属参与的现代有机合成反应.第一版.广州:广东科技出版社,2001,41-42
    [240] Sengupta S, Leite M, Raslan D S, et al. Nickel(0)-catalyzed cross coupling of aryl O-carbamates and aryl triflates with Grignard reagents. Directed ortho metalation-aligned synthetic methods for polysubstituted aromatics via a 1,2-dipole equivalent. J. Org. Chem., 1992, 57(15): 4066-4068
    [241] 李明威,樊能廷.偕二溴化物水解制备芳香多醛.化学世界,1985,(5):9-11
    [242] Matsumoto M, Kuroda K. A convenient synthesis of 1-bromoolefins and acetylenes by a chain extension of aldehydes. Tetrahedron Lett., 1980, 21(41): 4021-4024
    [243] Shibasaki M, Sasai H, Arai T. Asymmetric catalysis with heterobimetallic compounds. Angew. Chem. Int. Ed., 1997, 36(12): 1236-1256
    [244] Pu L. 1,1’-Binaphthyl dimers, oligomers, and polymers: molecular recognition, asymmetric catalysis, and new materials. Chem. Rev., 1998, 98(7): 2405-2494
    [245] Neidlein U, Diederich F. Selective complexation of disaccharides by a novel D2-symmetrical receptor in protic solvent mixtures. Chem. Commun., 1996, (13): 1493-1494
    [246] Greene T W, Wuts P G M. Protective groups in organic dynthesis, third edition. John Wiley & Sons, Inc. 1999, 654-656
    [247] Diederich F, Stang P J. Metal-catalized cross-coupling reactions[1]. Weinheim: wiley, 1998, 214-214
    [248] Diercks R, Armstrong J C, Boese R, et al. Hexaethynylbenzene. Angew. Chem. Int. Ed., 1986, 25(3): 268-269
    [249] Siemsen P, Livingston R C, Diederich F. Acetylenic coupling: a powerful tool in molecular construction. Angew. Chem. Int. Ed., 2000, 39(15): 2632-2657
    [250] Kawase T, Tanaka K, Fujiwara N, et al. Complexation of a Carbon Nanoring with Fullerenes. Angew. Chem. Int. Ed., 2003, 42(38): 1624-1628
    [251] Watson J D, Crick F H C. Molecular structure of nucleic acids – a structure for deoxyribose nucleic acid. Nature, 1953, 171(4356): 737-738
    [252] Franklin R E, Gosling R G. Evidence for 2-chain helix in crystalline structure of sodium deoxyribonucleate. Nature, 1953, 172(4369): 156-157
    [253] Eliel E L, Wilen S H. Stereochemistry qf organic compounds, Wiley. New York, 1994, Chapter 14
    [254] Wallis J D, Karrer A, Dunitz J D. Chiral metals – a chiral substrate for organic conductors and superconductors. Helv. Chim. Acta, 1986, 69(1): 69-70
    [255] Langeveld-Voss B M W, Janssen R A J, Christiaans M P T, et al. Circulardichroism and circular polarization of photoluminescence of highly ordered poly{3,4-di[(S)-2-methylbutoxy]thiophene}. J. Am. Chem. Soc., 1996, 118(20): 4908-4909
    [256] Miyamoto Y, Louie S G, Cohen M L. Chiral conductivities of nanotubes. Phys. Rev. Lett., 1996, 76(12): 2121-2124
    [257] Tour J M. Conjugated macromolecules of precise length and constitution. Organic synthesis for the construction of nanoarchitectures. Chem. Rev., 1996, 96(1): 537-554
    [258] Katz T J. Syntheses of functionalized and aggregating helical conjugated molecules. Angew. Chem. Int. Ed., 2000, 39(11): 1921-1923
    [259] Judice J K, Keipert S J, Cram D J. A strongly binding, helically chiral ligand system. J. Chem. Soc., Chem. Commun., 1993, (17): 1323-1325
    [260] Guo L, Bradshaw J D, Tessier C A, et al. Synthesis and crystal structure of 1,2:7,8 : 13,14:19,20-tetrabenzocyclotetracosa-1,7,13,19-tetraene-3,5,9,11,15, 17,21,23-octayne. J. Chem. Soc., Chem. Commun., 1994, (3): 243-244
    [261] Rajca A, Safronov A, Rajca S, et al. Double helical octaphenylene. Angew. Chem. Int. Ed., 1997, 36(5): 488-491
    [262] Lewis C A, Tykwinski R R. Chiral, cross-conjugated isopolydiacetylenes. Chem. Commun., 2006, (34): 3625-3627
    [263] Moore J S, Weinstein E J, Wu Z. A convenient masking group for aryl iodides Tetrahedron Lett., 1991, 32(22): 2465-2466
    [264] Scott L T, Cooney M J, Johnels D. Homoconjugated cyclic poly(diacetylene)s. J. Am. Chem. Soc., 1990, 112(10): 4054-4055
    [265] Lu Y F, Fallis A G. An intramolecular diels-alder approach to tricyclic taxoid skeletons. Tetrahedron Lett., 1993, 34(21): 3367-3370
    [266] Jones L, Schumn J S, Tour J M. Rapid solution and solid phase syntheses of oligo(1,4-phenylene ethynylene)s with thioester termini: molecular scale wires with alligator clips. Derivation of iterative reaction efficiencies on a polymer support. J. Org. Chem., 1997, 62(5): 1388-1410
    [267] Wang Y, Kempa K, Kimball B, et al. Receiving and transmitting light-like radio waves: Antenna effect in arrays of aligned carbon nanotubes. Applied Physics Letters, 2004, 85(13): 2607-2609
    [268] H?ger S, Meckenstock A D, Müller S. Synthesis and properties of shape-persistent macrocyclic amphiphiles with switchable amphiphilic portions. Chem. Eur. J., 1998, 4(12): 2423-2434

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700