碳纳米管的功能化及聚氨酯复合材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚氨酯是由聚酯或聚醚多元醇与氨基甲酸酯重复单元形成的嵌段共聚物。作为一类重要的多用途聚合物材料,它不仅拥有优良的耐磨性能、耐疲劳性、耐化学腐蚀性及高抗冲性、优异的柔顺性和极好的阻尼性,并且具有很好的生物相容性。这些优异的性能使它不断受到重视,并且日益广泛的得到应用。但传统的聚氨酯由于耐热性不足等缺点限制了它在更广阔领域的应用。碳纳米管作为21世纪的新型材料,具有奇异的结构和独特的物理性能,被认为是制备高性能聚合物复合材料最理想的候选填料之一。本文利用碳纳米管优越的热学性能来改善聚氨酯的耐热性,制备聚氨酯/碳纳米管复合材料。
     随着石油危机日趋加剧以及以石油为原料的高分子对环境造成的影响日益严重,以可再生资源为原料制备环境友好的聚合物越来越成为关注的焦点。聚乳酸来源于可再生的玉米和甜菜等,在环境中可降解为二氧化碳和水,具有优良的生物相容性和生物降解能力。因此本论文以端羟基的聚乳酸为软段来制备环境友好的聚氨酯。
     碳纳米管在聚合物添加材料应用中的关键问题是解决碳纳米管的分散问题,为了得到一致的分散,提高碳纳米管与聚合物基体的相容性,提高填料和基体之间的相互作用力,本文用原位缩聚的方法将聚乳酸共价键接枝在碳纳米管的表面,并制备端羟基的聚乳酸/碳纳米管预聚物,用脂肪族的二异氰酸酯进行扩链来制备环境友好、性能优越的聚氨酯/碳纳米管复合材料。为了对比不同结构的碳纳米管的接枝情况,本文在相同的条件下对不同结构的碳纳米管进行接枝,研究其接枝前后结构和形貌的变化等。具体研究内容如下:
     1.不同结构碳纳米管的功能化
     在相同的条件下,用“grafted to”的方法,将分子量为1000的聚丙二醇分子分别接枝在单壁、双壁、直径为10-20nm和20-30nm的碳纳米管的表面,研究不同结构的碳纳米管在接枝前后结构和形貌的变化。
     结果表明通过“grafted to”方法成功将聚丙二醇分子接枝在单壁、双壁、直径为10-20nm的多壁碳纳米管和直径为20-30nm的多壁碳纳米管的表面。Raman光谱和透射电镜的分析表明单壁和双壁的碳纳米管由于表面结构比较完善,其表面接枝的聚合物分布不均匀,且厚度均不到1nm,而多壁碳纳米管由于表面缺陷比较多,从而能够更加充分的被羧基化,使其表面比较均匀的接枝上了聚合物,其厚度在5nm左右。通过热失重表征和计算可得,单位质量的单壁碳纳米管上接枝的聚合物质量最高,而直径为20-30nm的多壁碳纳米管,其单位质量上接枝的聚合物质量最低;而对于单位面积碳纳米管上接枝的的聚合物摩尔数来说,直径为20-30nm的多壁碳纳米管的最高,而单壁碳纳米管的最低。
     2.乳酸原位缩聚功能化碳纳米管
     以羧基化的碳纳米管、乳酸为原料,在催化剂的作用下,通过原位缩聚的方法,一步法将聚乳酸接枝到碳纳米管的表面。
     通过红外光谱和热失重分析,接枝聚乳酸的分子量随着缩聚反应时间的增加而增加。当缩聚反应时间由5小时增加到23小时后到达平衡,接枝的聚合物的分子量从400增加到2500左右。通过紫外可见光谱分析可知,制备的聚乳酸功能化的碳纳米管之间没有形成团聚,可以在溶剂氯仿中形成均匀的分散。透射电镜的分析结果表明,不同的缩聚反应时间下制备的样品,碳纳米管的管壁和端口都均匀的包覆了聚合物,而且所包覆的聚合物的厚度随着缩聚反应时间的增加而增加。
     3.端羟基的聚乳酸/碳纳米管复合物制备及研究
     分别以初始碳纳米管和羧基化的碳纳米管及乳酸、1,4丁二醇为原料,用原位缩聚的方法制备了不同结构和性能的端羟基聚乳酸/碳纳米管复合物。作为平行实验,同时制备了不加碳纳米管的纯端羟基聚乳酸。TGA的分析表明,与纯的聚乳酸相比,碳纳米管的加入显著提高了端羟基聚乳酸的初始分解温度,其中以加入羧基化碳纳米管的聚乳酸初始分解温度最高。DSC的分析表明以Sn(Oct)2和浓硫酸为催化剂可以分别制备无定形的与结晶的聚乳酸/碳纳米管复合物。碳纳米管的加入使结晶变得容易,起了成核剂的作用,但POM的表征结果表明碳纳米管并没有改变聚乳酸的结晶形貌。FESEM和HRTEM的图片分析说明共价键功能化的碳纳米管能均匀的分散在聚乳酸基体中,这对进一步研究聚乳酸/碳纳米管复合物的性能和应用至关重要,也为进一步研究以聚乳酸为嵌段的环境友好的碳纳米管纳米复合材料提供了理论和技术基础。
     4.聚氨酯/碳纳米管复合材料制备及研究
     以端羟基聚乳酸功能化的碳纳米管为交联剂,原位交联制备了聚氨酯/碳纳米管复合材料。与纯的聚氨酯和初始碳纳米管与聚氨酯形成的共混复合物相比,因为碳纳米管的加入和在基体中的均匀分散,使其具有更高的热稳定性。基于聚乳酸制备的聚氨酯嵌段共聚物,由于聚乳酸的绿色特性,不仅使制得的聚氨酯环境友好,更好的生物相容等,还有望使聚氨酯应用在更宽广的领域,尤其是生物医药领域等。
Polyurethane is a kind of block copolymer consisting of polyester or polyether softsegments and urethane hard segments. As an important and versatile class of polymermaterial, polyurethane has been receiving increasing attention and has various end usepurposes in a broading area due to its high abrasion resistance, wearability, chemicalresistance, high impact strength, excellent flexibility and outstanding damping ability.However, conventional polyurethane has exhibited poor thermal stability, which limited itsvarious applications. Carbon nanotube(CNT), as a novel material in twenty-first century,was considered to be the most promising candidate as ideal filler owing to its uniquestructure and particular physical properties. In this paper, carbon nanotube was used tomodify polyurethane due to its high thermal stability and to prepare thepolyurethane/carbon nanotube composite.
     Due to intensifying crisis of oil and enviormental influence of petroleum-basedpolymer, the study on the enviormental benign polymer has been paid increasing attention.Poly(lactic acid) comes from renewable corn or sugar beet etc. and could convent intocarbon dioxide and water after degradation; what’s more, it had good biocompatible andbiodegradable properties. In this paper, poly(lactic acid) was used as soft segment toprepare the enviormental benign polyurethane.
     Dispersion is the key problem about the application of carbon nanotube in polymercomposite. In order to obtain the homogeneous dispersion of carbon nanotube in thepolyurethane matrix and to increase the compatibility with the matrix and force ofinteraction, carbon nanotube was functionalized with poly(lactic acid) based on in situ polycondensation of lactic acid and carbon nanotube. To prepare for the polyurethane,prepolymer composite was also prepared. Finally the enviormental benignpolyurethane/carbon nanotube was prepared based on the chain extention reaction ofaliphatic diisocyanate and the hydroxyl termintated poly(lactic acid)/carbon nanotubeprepolymer and in situ cross linking of the functionalized carbon nanotube.
     In order to investigate the functionalization of different kinds carbon nanotubes, thegrafting of different kinds of carbon nanotubes were given under same condition. Thedetails about the studies were shown as following:
     1. The functionalization of different kinds carbon nanotubes
     In order to investigate the variation before and after functionalization of carbonnanotubes, polypropylene glycol of molecular weight of 1000 was grafted on thesingle-walled carbon nanotube, double-walled carbon nanotube and different diametermulti-walled carbon nanotubes.
     The result showed that polypropylene glycol with molecular weight of 1000 wassuccessfully grafted on the single-walled carbon nanotube, double-walled carbon nanotubeand different diameter multi-walled carbon nanotubes. Raman spectra and TEM analysisdemonstrated that grafted polymer on single-walled carbon nanotube and double-walledcarbon nanotube was not uniform and the thickness was less than 1nm due to the moreperfect structure. Meanwhile different diameter multi-walled carbon nanotubes wereuniform coated with 5nm thickness polymer due to the less perfect structure. The TGAanalysis and calculation of grafting samples indicated that per unit area of single-walledcarbon nanotube achieved the highest quantity of grafting polymer while the per unit massof multiwalled carbon nanotube contain the highest quantity of grafting polymer comparedwith the other kinds of carbon nanotubes.
     2. The functionalization of carbon nanotube with poly(lactic acid) based on in situpolycondensation
     The carbon nanotube was functionalized with poly(lactic acid) based on in situ polycondensantion of carboxlyic carbon nanotube and lactic acid in one step.
     FTIR and TGA analysis indicated that the molecular weight of grafting polymerswere increased from ca. 400 to 2500 as polycondensation time increased from 5 hours to23 hours equilibrium. UV-Vis spectra showed that the prepared poly(lactic acid)functionalized carbon nanotube dispersed uniform in the solution chloroform without anyaggregation.
     HRTEM images showed that the grafting polymer were coated uniform on thecircumference and ended parts of carbon nanotubes; what’s more, the thickness of thegrafting polymer increased with the polycondensation time.
     3. The preparation and study of hydroxyl terminated poly(lactic acid)/carbonnanotube composite
     The hydroxyl terminated poly(lactic acid) prepolymers incorporating pristine CNTsand CNT-COOH respectively were prepared based on in situ polycondensation of lacticacid and 1,4-butanediol. As parallel samples, the pure PLA diol prepolymers weresynthesized at the absence of CNTs. TGA analysis indicated that the initial decompositiontemperature of the prepolymer incorporating CNT-COOH was a little higher than thatincorperating with the pristine and both of them were pronounced higher than pureprepolymer. DSC measurements proved that the amorphous and crystalline prepolymerswere obtained catalyzed by stannous octoate and sulfric acid respectively. The addition ofCNTs made it easy for the polymer to crystallize, however it didn’t change the spheruliticcrystalline morphology from the POM images. FESEM images showed that covalentlyfunctionalization of CNT-COOH contributed the homogeneous dispersion in the polymermatrix, which was essential for the further application. The work was suggested to pavethe way toward carbon nanotube-improved-PLA-based environmental benign blockcopolymer nanocomposites for various end-use purposes.
     4.The preparation and study of polyurethane/carbon nanotube composite base onin situ cross linking
     The hydroxyl terminated poly(lactic acid)-functionalized-CNTs were used ascross-linker to form the polyurethane/CNTs composite. Compared with the purepolyurethane and pristine CNTs blend polyurethane composite, such polyurethane/CNTscomposite based on in situ cross-linking of CNTs achieved better thermal properties due tothe uniform dispersion of CNTs. Due to the“green”feature of poly (lactic acid), theas-prepared improved PU composite was environmental benign and may have a broaderpotential application, especial in biology and medicine.
引文
[1] Iijima S. Helical Microtubules of Griphitic Carbon. Nature 1991;354 (6348):56-58.
    [2] Iijima S, I. T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993;363(6430):603-05.
    [3] Wang J. Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis 2005;17(1):7-14.
    [4] Kaushik BK, Goel S, Rauthan G. Future VLSI interconnects: optical fiber or carbon nanotube - a review. Microelectronics International 2007;24(2):53-63.
    [5] White AA, Best SM, Kinloch IA. Hydroxyapatite-carbon nanotube composites for biomedical applications: A review. International Journal of Applied Ceramic Technology 2007;4(1):1-13.
    [6] Coleman JN, Khan U, Blau WJ, Gun'ko YK. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon 2006;44(9):1624-52.
    [7] Breuer O, Sundararaj U. Big returns from small fibers: A review of polymer/carbon nanotube composites. Polymer Composites 2004;25(6):630-45.
    [8] Bokobza L. Multiwall carbon nanotube elastomeric composites: A review. Polymer 2007;48(17):4907-20.
    [9] Shimizu T, Abe H, Ando A, Tokumoto H. Electric transport measurement of a multi-walled carbon nanotube in scanning transmission electron microscope. Physica E-Low-Dimensional Systems & Nanostructures 2004;24(1-2):37-41.
    [10] Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Critical Reviews in Toxicology 2006;36(3):189-217.
    [11] O'Flaherty SA, Murphy R, Hold SV, Cadek M, Coleman JN, Blau WJ. Material investigation and optical limiting properties of carbon nanotube and nanoparticle dispersions. Journal of Physical Chemistry B 2003;107(4):958-64.
    [12] Sun ZY, Yuan HQ, Liu ZM, Han BX, Zhang XR. A highly efficient chemical sensor material for H2S: alpha-Fe2O3 nanotubes fabricated using carbon nanotube templates. Advanced Materials 2005;17(24):2993-+.
    [13] Xue YQ, Datta S. Fermi-level alignment at metal-carbon nanotube interfaces: Application to scanning tunneling spectroscopy. Physical Review Letters 1999;83(23):4844-47.
    [14] Cheung CL, Hafner JH, Lieber CM. Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging. Proceedings of the National Academy of Sciences of the United States of America 2000;97(8):3809-13.
    [15] Zhou G, Kawazoe Y. Application of single-walled carbon nanotube body to unique emitter: a first-principles study. Chemical Physics Letters 2001;350(5-6):386-92.
    [16] Zhao G, Liu KZ, Lin S, Liang J, Guo XY, Zhang ZJ. Application of a carbon nanotube modified electrode in anodic stripping voltammetry for determination of trace amounts of 6-benzylaminopurine. Microchimica Acta 2003;143(4):255-60.
    [17] Nishimura K, Kato M. Production and application development of carbon nanotube. Sen-I Gakkaishi 2003;59(12):P417-P20.
    [18] Choi JH, Nguyen FT, Barone PW, Heller DA, Moll AE, Patel D, et al. Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. Nano Letters 2007;7(4):861-67.
    [19] Du N, Zhang H, Chen B, Wu JB, Ma XY, Liu ZH, et al. Porous Co3O4 nanotubes derived from Co-4(CO)(12) clusters on carbon nanotube templates: A highly efficient material for Li-battery applications. Advanced Materials 2007;19(24):4505-+.
    [20] Jeykumari DRS, Kumar SS, Narayanan SS. Immobilization of redox mediators on functionalized carbon nanotube: A material for chemical sensor fabrication and amperometric determination of hydrogen peroxide. Pramana-Journal of Physics 2005;65(4):731-38.
    [21] Shvedova AA, Murray AR, Kisin ER, Schwegler-Berry D, Kagan VE, Gandelsman VZ, et al. Exposure to carbon nanotube material: Evidence of exposure-induced oxidant stress in human keratinocyte and bronchial epithelial cells. Free Radical Research 2003;37:97-97.
    [22] Anson A, Benham M, Jagiello J, Callejas MA, Benito AM, Maser WK, et al. Hydrogen adsorption on a single-walled carbon nanotube material: a comparative study of three different adsorption techniques. Nanotechnology 2004;15(11):1503-08.
    [23] Hirata T, Takagi K, Akiya M. Development of a taste sensor based on a carbon nanotube-polymer composite material (vol 46, pg L314, 2007). Japanese Journal of Applied Physics Part 2-Letters & Express Letters 2007;46(25-28):L657-L57.
    [24] Johnson RR, Johnson ATC, Klein ML. Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics. Nano Letters 2008;8(1):69-75.
    [25] Li QW, Li Y, Zhang XF, Chikkannanavar SB, Zhao YH, Dangelewicz AM, et al. Structure-dependent electrical properties of carbon nanotube fibers. Advanced Materials 2007;19(20):3358-+.
    [26] Liu K, Sun YH, Chen L, Feng C, Feng XF, Jiang KL, et al. Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Letters 2008;8(2):700-05.
    [27] Oncel C, Yurum Y. Carbon nanotube synthesis via the catalytic CVD method: A review on the effect of reaction parameters. Fullerenes Nanotubes and Carbon Nanostructures 2006;14(1):17-37.
    [28] Shin YS, Yang JH, Park CY, Kwon MH, Yoo JB, Yang CW. Synthesis of crystalline carbon nanotube arrays on anodic aluminum oxide using catalyst reduction with low pressure thermal chemical vapor deposition. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 2006;45(3A):1869-72.
    [29] Turano SP, Ready J. Chemical vapor deposition synthesis of self-aligned carbon nanotube arrays. Journal of Electronic Materials 2006;35(2):192-94.
    [30] Malhotra SV. Synthesis of carbon nanotube gels with Ionic liquids. Abstracts of Papers of the American Chemical Society 2005;230:U2208-U09.
    [31] Chuang CC, Liu WL, Chen WJ, Huang JH. The role of Ti interlayer in carbon nanotube growth. Surface & Coatings Technology 2008;202(10):2121-25.
    [32] Chen J, Minett AI, Liu Y, Lynam C, Sherrell P, Wang C, et al. Direct growth of flexible carbon nanotube electrodes. Advanced Materials 2008;20(3):566-+.
    [33] Pal SK, Talapatra S, Kar S, Ci L, Vajtai R, Borca-Tasciuc T, et al. Time and temperature dependenceof multi-walled carbon nanotube growth on Inconel 600. Nanotechnology 2008;19(4):-.
    [34] Yang Z, Chen XH, Nie HG, Zhang K, Li WH, Yi B, et al. Direct synthesis of ultralong carbon nanotube bundles by spray pyrolysis and investigation of growth mechanism. Nanotechnology 2008;19(8):-.
    [35] Eceiza A, Martin MD, de la Caba K, Kortaberria G, Gabilondo N, Corcuera MA, et al. Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: Mechanical and thermal properties. Polymer Engineering and Science 2008;48(2):297-306.
    [36] Wu J, Huang QW, Ma YF, Huang Y, Liu ZF, Yang XY, et al. Distortion of carbon nanotube array and its influence on carbon nanotube growth and termination. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2008;313:13-17.
    [37] Ding F, Bolton K, Rosen A. Structure and thermal properties of supported catalyst clusters for single-walled carbon nanotube growth. Applied Surface Science 2006;252(15):5254-58.
    [38] Lange H, Bystrzejewski M, Huczko A. Influence of carbon structure on carbon nanotube formation and carbon arc plasma. Diamond and Related Materials 2006;15(4-8):1113-16.
    [39] Brodka A, Koloczek J, Burian A, Dore JC, Hannon AC, Fonseca A. Molecular dynamics simulation of carbon nanotube structure. Journal of Molecular Structure 2006;792:78-81.
    [40] Yang CW, Wang DL, Hu XG, Dai CS, Zhang L. Preparation and characterization of multi-walled carbon nanotube (MWCNTs)-supported Pt-Ru catalyst for methanol electrooxidation. Journal of Alloys and Compounds 2008;448(1-2):109-15.
    [41] Nayak RR, Lee KY, Shanrnugharaj AM, Ryu SH. Synthesis and characterization of styrene grafted carbon nanotube and its polystyrene nanocomposite. European Polymer Journal 2007;43(12):4916-23.
    [42] Bakshi SR, Tercero JE, Agarwal A. Synthesis and characterization of multiwalled carbon nanotube reinforced ultra high molecular weight polyethylene composite by electrostatic spraying technique. Composites Part a-Applied Science and Manufacturing 2007;38(12):2493-99.
    [43] Sun S, Yang D, Zhang G, Sacher E, Dodelet JP. Synthesis and characterization of platinum nanowire-carbon nanotube heterostructures. Chemistry of Materials 2007;19(26):6376-78.
    [44] Arai M, Kanamaru M, Matsumura T, Hattori Y, Utsumi S, Ohba T, et al. Pore characterization of assembly-structure controlled single wall carbon nanotube. Adsorption-Journal of the International Adsorption Society 2007;13(5-6):509-14.
    [45] Xie XF, Gao L. Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method. Carbon 2007;45(12):2365-73.
    [46] Viry L, Derre A, Garrigue P, Sojic N, Poulin P, Kuhn A. Carbon nanotube fiber microelectrodes: Design, characterization, and optimization. Journal of Nanoscience and Nanotechnology 2007;7(10):3373-77.
    [47] Aalaie J, Rahmatpour A, Maghami S. Preparation and characterization of linear low density polyethylene/carbon nanotube nanocomposites. Journal of Macromolecular Science Part B-Physics 2007;46(5):877-89.
    [48] Kim HS, Park BH, Yoon JS, Jin HJ. Preparation and characterization of poly[(butylene succinate)-co-(butylene adipate)]/carbon nanotube-coated silk fiber composites. Polymer International 2007;56(8):1035-39.
    [49] Tsai YC, Chen SY, Liaw HW. Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitos anhanocompo site for application to lactate biosensors. Sensors and Actuators B-Chemical 2007;125(2):474-81.
    [50] Kim BS, Bae SH, Park YH, Kim JH. Preparation and characterization of polyimide/carbon-nanotube composites. Macromolecular Research 2007;15(4):357-62.
    [51] Souza AG, Jorio A, Hafner JH, Lieber CM, Saito R, Pimenta MA, et al. Electronic transition energy E-ii for an isolated (n,m) single-wall carbon nanotube obtained by anti-Stokes/Stokes resonant Raman intensity ratio. Physical Review B 2001;6324(24):-.
    [52] Coluci VR, Galvao DS, Jorio A. Geometric and electronic structure of carbon nanotube networks: 'super'-carbon nanotubes. Nanotechnology 2006;17(3):617-21.
    [53] Endo M, Hayashi T, Kim YA, Terrones M, Dresselhaus MS. History and structure in carbon nanotube. Chimica Oggi-Chemistry Today 2005;23(2):29-32.
    [54] Lee RS, Kim HJ, Fischer JE, Thess A, Smalley RE. Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature 1997;388(6639):255-57.
    [55] Zahab A, Spina L, Poncharal P, Marliere C. Water-vapor effect on the electrical conductivity of a single-walled carbon nanotube mat. Physical Review B 2000;62(15):10000-03.
    [56] Chen B, Harmon JP. Raman study of carbon nanotube composites conductivity. Abstracts of Papers of the American Chemical Society 2002;224:U438-U38.
    [57] Day TM, Wilson NR, Macpherson JV. Electrochemical and conductivity measurements of single-wall carbon nanotube network electrodes. Journal of the American Chemical Society 2004;126(51):16724-25.
    [58] Liu H. The influence of defect on quantum conductivity in three-terminated Y-(or T-)junction single-walled carbon nanotube. Physics Letters A 2005;339(3-5):378-86.
    [59] Tobias D, Ishigami M, Tselev A, Barbara P, Williams ED, Lobb CJ, et al. Origins of 1/f noise in individual semiconducting carbon nanotube field-effect transistors. Physical Review B 2008;77(3):-.
    [60] Sinha N, Mahapatra DR, Sun Y, Yeow JTW, Melnik RVN, Jaffray DA. Electromechanical interactions in a carbon nanotube based thin film field emitting diode. Nanotechnology 2008;19(2):-.
    [61] Nishio T, Miyato Y, Kobayashi K, Ishida K, Matsushige K, Yamada H. The effect of local polarized domains of ferroelectric P(VDF/TrFE) copolymer thin film on a carbon nanotube field-effect transistor. Nanotechnology 2008;19(3):-.
    [62] Seelaboyina R, Boddepalli S, Noh K, Jeon M, Choi A. Enhanced field emission from aligned multistage carbon nanotube emitter arrays. Nanotechnology 2008;19(6):-.
    [63] Sanchez JA, Menguc MP. Geometry dependence of the electrostatic and thermal response of a carbon nanotube during field emission. Nanotechnology 2008;19(7):-.
    [64] Chiu PW, Roth S. Transition from direct tunneling to field emission in carbon nanotube intramolecular junctions. Applied Physics Letters 2008;92(4):-.
    [65] Lee YH, Lee JH, Noh JY. One-step grown suspended n-type semiconducting single wall carbon nanotube field effect transistors with carbon nanotube electrodes. Applied Physics Letters 2008;92(4):-.
    [66] Chen ZH, Farmer D, Xu S, Gordon R, Avouris P, Appenzeller J. Externally assembled gate-all-around carbon nanotube field-effect transistor. Ieee Electron Device Letters 2008;29(2):183-85.
    [67] Asaka K, Nakahara H, Saito Y. Nanowelding of a multiwalled carbon nanotube to metal surface and itselectron field emission properties. Applied Physics Letters 2008;92(2):-.
    [68] Dean KA, Coll BF, Howard E, Johnson MR, Li H, Marshbanks L, et al. A carbon-nanotube field-emission display with simple electron-beam trajectory control. Journal of the Society for Information Display 2007;15(12):1047-56.
    [69] Li H, Zhang C, Marzari N. Unique carbon-nanotube field-effect transistors with asymmetric source and drain contacts. Nano Letters 2008;8(1):64-68.
    [70] Darsono N, Kwon SW, Yoon DH, Kim J, Moon H, Park SU. Field emission properties of carbon nanotube pastes examined using design of experiments. Journal of Materials Science-Materials in Electronics 2008;19(1):17-23.
    [71] Taeger S, Mertig M. Self-assembly of high-performance multi-tube carbon nanotube field-effect transistors by ac dielectrophoresis. International Journal of Materials Research 2007;98(8):742-48.
    [72] Pourfath M, Kosina H. The effect of phonon scattering on the switching response of carbon nanotube field-effect transistors. Nanotechnology 2007;18(42):-.
    [73] Siegal MP, Miller PA, Provencio PP, Tallant DR. Controlled growth of carbon nanotube films for high-current field emission. Diamond and Related Materials 2007;16(10):1793-98.
    [74] Krompiewski S. Modeling a Schottky-barrier carbon nanotube field-effect transistor with ferromagnetic contacts. Nanotechnology 2007;18(48):-.
    [75] Noya EG, Srivastava D, Chernozatonskii LA, Menon M. Thermal conductivity of carbon nanotube peapods. Physical Review B 2004;70(11):-.
    [76] Nan CW, Liu G, Lin YH, Li M. Interface effect on thermal conductivity of carbon nanotube composites. Applied Physics Letters 2004;85(16):3549-51.
    [77] Foygel M, Morris RD, Anez D, French S, Sobolev VL. Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity. Physical Review B 2005;71(10):-.
    [78] Fujii M, Zhang X, Xie HQ, Ago H, Takahashi K, Ikuta T, et al. Measuring the thermal conductivity of a single carbon nanotube. Physical Review Letters 2005;95(6):-.
    [79] Dumitrica T, Belytschko T, Yakobson BI. Bond-breaking bifurcation states in carbon nanotube fracture. Journal of Chemical Physics 2003;118(21):9485-88.
    [80] Dumitrica T, Belytschko T, Yakobson BI. Bond-breaking bifurcation states in carbon nanotube fracture (vol 118, pg 9485, 2003). Journal of Chemical Physics 2003;119(2):1281-81.
    [81] Boussaad S, Tao NJ, Zhang R, Hopson T, Nagahara LA. In situ detection of cytochrome c adsorption with single walled carbon nanotube device. Chemical Communications 2003(13):1502-03.
    [82] Nojeh A, Lakatos GW, Peng S, Cho K, Pease RFW. A carbon nanotube cross structure as a nanoscale quantum device (vol 3, pg 1190, 2003). Nano Letters 2003;3(10):1469-69.
    [83] Biswas SK, Vajtai R, Wei BQ, Meng GW, Schowalter LJ, Ajayan PM. Vertically aligned conductive carbon nanotube junctions and arrays for device applications. Applied Physics Letters 2004;84(15):2889-91.
    [84] Yu W, Cho YS, Choi GS, Kim DJ, Song YH, Lee JH. A stable high power carbon nanotube field-emitter device. Diamond and Related Materials 2004;13(4-8):1017-21.
    [85] Wei YD, Wang J, Guo H, Roland C. Carbon nanotube parametric electron pump: A molecular device. Physical Review B 2001;6411(11):-.
    [86] Sun ZY, Zhang XR, Na N, Liu ZM, Han BX, An GM. Synthesis of ZrO2-carbon nanotube composites and their application as chemiluminescent sensor material for ethanol. Journal of Physical Chemistry B 2006;110(27):13410-14.
    [87] Reddy KR, Lee KP, Gopalan AI, Kim MS, Showkat AM, Nho YC. Synthesis of metal (Fe or Pd)/alloy (Fe-Pd)-nanoparticles-embedded multiwall carbon nanotube/sulfonated polyaniline composites by gamma irradiation. Journal of Polymer Science Part a-Polymer Chemistry 2006;44(10):3355-64.
    [88] Chiang WH, Sankaran RM. Microplasma synthesis of metal nanoparticles for gas-phase studies of catalyzed carbon nanotube growth. Applied Physics Letters 2007;91(12):-.
    [89] Moradian R, Azadi S. Boron and nitrogen-doped single-walled carbon nanotube. Physica E-Low-Dimensional Systems & Nanostructures 2006;35(1):157-60.
    [90] deHeer WA, Bonard JM, Fauth K, Chatelain A, Forro L, Ugarte D. Electron field emitters based on carbon nanotube films. Advanced Materials 1997;9(1):87-&.
    [91] Collins PG, Zettl A. Unique characteristics of cold cathode carbon-nanotube-matrix field emitters. Physical Review B 1997;55(15):9391-99.
    [92] Saito Y, Uemura S, Hamaguchi K. Cathode ray tube lighting elements with carbon nanotube field emitters. Japanese Journal of Applied Physics Part 2-Letters & Express Letters 1998;37(3B):L346-L48.
    [93] Wang XF, Wang DZ, Liang D. Carbon nanotube capacitor materials loaded with different amounts of ruthenium oxide. Acta Physico-Chimica Sinica 2003;19(6):509-13.
    [94] Snow ES, Perkins FK, Houser EJ, Badescu SC, Reinecke TL. Chemical detection with a single-walled carbon nanotube capacitor. Science 2005;307(5717):1942-45.
    [95] Arepalli S, Fireman H, Huffman C, Moloney P, Nikolaev P, Yowell L, et al. Carbon-nanotube-based electrochemical double-layer capacitor technologies for spaceflight applications. Jom 2005;57(12):26-31.
    [96] Uchida K, Okada S, Shiraishi K, Oshiyama A. Quantum effects in a cylindrical carbon-nanotube capacitor. Journal of Physics-Condensed Matter 2007;19(36):-.
    [97] Ren JW, Liao SJ, Liu JM. MNi4.8Sn0.2(M=La, Nd)-supported multi-walled carbon nanotube composites as hydrogen storage materials. Chinese Science Bulletin 2007;52(12):1616-22.
    [98] Cao DP, Wang WC. Storage of hydrogen in single-walled carbon nanotube bundles with optimized parameters: Effect of external surfaces. International Journal of Hydrogen Energy 2007;32(12):1939-42.
    [99] Hsieh CT, Chu YW, Lin JY. Fabrication and electrochemical activity of Ni-attached carbon nanotube electrodes for hydrogen storage in alkali electrolyte. International Journal of Hydrogen Energy 2007;32(15):3457-64.
    [100] Reddy ALM, Ramaprabhu S. Design and fabrication of carbon nanotube-based microfuel cell and fuel cell stack coupled with hydrogen storage device. International Journal of Hydrogen Energy 2007;32(17):4272-78.
    [101] Tang JM, Jensen K, Waje M, Li W, Larsen P, Pauley K, et al. High performance hydrogen fuel cells with ultralow Pt loading carbon nanotube thin film catalysts. Journal of Physical Chemistry C 2007;111(48):17901-04.
    [102] Pugno NM. On the strength of the carbon nanotube-based space elevator cable: from nanomechanics to megamechanics. Journal of Physics-Condensed Matter 2006;18(33):S1971-S90.
    [103] Goyal A, Wiegand DA, Owens FJ, Iqbal Z. Synthesis of carbide-free, high strength iron-carbonnanotube composite by in situ nanotube growth. Chemical Physics Letters 2007;442(4-6):365-71.
    [104] Sun Y, Sun JR, Liu M, Chen QF. Mechanical strength of carbon nanotube-nickel nanocomposites. Nanotechnology 2007;18(50):-.
    [105] Ajayan PM, Schadler LS, Giannaris C, Rubio A. Single-walled carbon nanotube-polymer composites: Strength and weakness. Advanced Materials 2000;12(10):750-+.
    [106] Barber AH, Cohen SR, Wagner HD. Measurement of carbon nanotube-polymer interfacial strength. Applied Physics Letters 2003;82(23):4140-42.
    [107] Spinks GM, Mottaghitalab V, Bahrami-Saniani M, Whitten PG, Wallace GG. Carbon-nanotube-reinforced polyaniline fibers for high-strength artificial muscles. Advanced Materials 2006;18(5):637-+.
    [108] McIntosh D, Khabashesku VN, Barrera EV. Benzoyl peroxide initiated in situ functionalization, processing, and mechanical properties of single-walled carbon nanotube-polypropylene composite fibers. Journal of Physical Chemistry C 2007;111(4):1592-600.
    [109] Xu GD, Zhu B, Han Y, Bo ZS. Covalent functionalization of multi-walled carbon nanotube surfaces by conjugated polyfluorenes. Polymer 2007;48(26):7510-15.
    [110] Dang ZM, Wang L, Zhang LP. Surface functionalization of multiwalled carbon nanotube with trifluorophenyl. Journal of Nanomaterials 2006:-.
    [111] Ma PC, Kim JK, Tang BZ. Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Composites Science and Technology 2007;67(14):2965-72.
    [112] Yu P, Yan J, Zhao H, Su L, Zhang J, Mao LQ. Rational functionalization of carbon nanotube/ionic liquid bucky gel with dual tailor-made electrocatalysts for four-electron reduction of oxygen. Journal of Physical Chemistry C 2008;112(6):2177-82.
    [113] Kurppa K, Jiang H, Szilvay GR, Nasibulin AG, Kauppinen EL, Linder MB. Controlled hybrid nanostructures through protein-mediated noncovalent functionalization of carbon nanotube. Angewandte Chemie-International Edition 2007;46(34):6446-49.
    [114] Parekh BB, Fanchini G, Eda G, Chhowalla M. Improved conductivity of transparent single-wall carbon nanotube thin films via stable postdeposition functionalization. Applied Physics Letters 2007;90(12):-.
    [115] Grujicic M, Sun YP, Koudela KL. The effect of covalent functionalization of carbon nanotube reinforcements on the atomic-level mechanical properties of poly-vinyl-ester-epoxy. Applied Surface Science 2007;253(6):3009-21.
    [116] Kitano H, Tachimoto K, Anraku Y. Functionalization of single-walled carbon nanotube by the covalent modification with polymer chains. Journal of Colloid and Interface Science 2007;306(1):28-33.
    [117] Lee HJ, Oh SJ, Choi JY, Tan LS, Baek JB. Functionalization of multi-wall carbon nanotube as functions of reacting groups and substituents. Abstracts of Papers of the American Chemical Society 2006;231:-.
    [118] Yang CH, Tan ZA, Fan BH, Sun QJ, Li YF, Zhou XH, et al. An electrogenerated chemical-oxidation-driving nonvolatile plastic memory device with the conjugated Polymer/Carbon nanotube blend. Electrochemical and Solid State Letters 2007;10(8):P19-P22.
    [119] Goh HW, Goh SH, Xu GQ, Lee KY, Yang GY, Lee YW, et al. Optical limiting properties ofdouble-C-60-end-capped poly(ethylene oxide), double-C-60-end-capped poly(ethylene oxide)/poly(ethylene oxide) blend, and double-C-60-end-capped poly(ethylene oxide)/multiwalled carbon nanotube composite. Journal of Physical Chemistry B 2003;107(25):6056-62.
    [120] Hanasaki I, Nakamura A, Yonebayashi T, Kawano S. Structure and stability of water chain in a carbon nanotube. Journal of Physics-Condensed Matter 2008;20(1):-.
    [121] Christofilos D, Arvanitidis J, Efthimiopoulos E, Zha X, Ando Y, Takenobu T, et al. Tube encapsulation effects in various carbon nanotube systems. Physica Status Solidi B-Basic Solid State Physics 2007;244(11):4082-85.
    [122] Ding F, Rosen A, Campbell EEB, Falk LKL, Bolton K. Graphitic encapsulation of catalyst particles in carbon nanotube production. Journal of Physical Chemistry B 2006;110(15):7666-70.
    [123] Kim G, Kim Y, Ihm J. Encapsulation and polymerization of acetylene molecules inside a carbon nanotube. Chemical Physics Letters 2005;416(4-6):279-82.
    [124] Ma YC, Xia YY, Zhao MW, Ying M, Liu XD, Liu PJ. Collisions of deuterium and tritium atoms with single-wall carbon nanotube: adsorption, encapsulation, and healing. Physics Letters A 2001;288(3-4):207-13.
    [125] Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chemical Reviews 2006;106(3):1105-36.
    [126] Einarsson E, Shiozawa H, Kramberger C, Rummeli MH, Gruneis A, Pichler T, et al. Revealing the small-bundle internal structure of vertically aligned single-walled carbon nanotube films. Journal of Physical Chemistry C 2007;111(48):17861-64.
    [127] Andrei N K, David A B, Andrew D B. Molecules in carbon nanotubes. Acc Chem Res 2005;38(12):901-09.
    [128] Baowan D, Thamwattana N, Hill JM. Encapsulation of C-60 fullerenes into single-walled carbon nanotubes: Fundamental mechanical principles and conventional applied mathematical modeling. Physical Review B 2007;76(15):-.
    [129] Kaneko T, Okada T, Hatakeyama R. DNA encapsulation inside carbon nanotubes using micro electrolyte plasmas. Contributions to Plasma Physics 2007;47(1-2):57-63.
    [130] Christ KV, Sadeghpour HR. Energy dispersion in graphene and carbon nanotubes and molecular encapsulation in nanotubes. Physical Review B 2007;75(19):-.
    [131] Zhou L, Zhu BE, Pan ZY, Xwang Y, Zhu J. Reduction of the buckling strength of carbon nanotubes resulting from encapsulation of C-60 fullerenes. Nanotechnology 2007;18(27):-.
    [132] Casado RA, Lovell PA, Navabpour P, Stanford JL. Polymer encapsulation of surface-modified carbon blacks using surfactant-free emulsion polymerisation. Polymer 2007;48(9):2554-63.
    [133] Simon F. Studying single-wall carbon nanotubes through encapsulation: From optical methods till magnetic resonance. Journal of Nanoscience and Nanotechnology 2007;7(4-5):1197-220.
    [134] Yang JH, Lee DH, Yum MH, Shin YS, Kim EJ, Park CY, et al. Encapsulation mechanism of N-2 molecules into the central hollow of carbon nitride multiwalled nanofibers. Carbon 2006;44(11):2219-23.
    [135] Jiang JW, Sandler SI, Smit B. Capillary phase transitions of n-alkanes in a carbon nanotube. Nano Letters 2004;4(2):241-44.
    [136] Yeo LY, Friend JR. Electrospinning carbon nanotube polymer composite nanofibers. Journal ofExperimental Nanoscience 2006;1(2):177-209.
    [137] Peng K, Zhang QT, Chen GQ, Zhou GM, Lin HQ, Qu MZ. Carbon nanotube/mica composite powder prepared by substrate-induced method. Journal of Inorganic Materials 2007;22(6):1131-34.
    [138] Cho J, Schaab S, Roether JA, Boccaccini AR. Nanostructured carbon nanotube/TiO2 composite coatings using electrophoretic deposition (EPD). Journal of Nanoparticle Research 2008;10(1):99-105.
    [139] Xu JJ, Zhang HY, Chen G. Carbon nanotube/polystyrene composite electrode for microchip electrophoretic determination of rutin and quercetin in Flos Sophorae Immaturus. Talanta 2007;73(5):932-37.
    [140] Ji LJ, Ye C, Liang J. Preparation and adsorption property of multi-walled carbon nanotube-carbon composite foam. Chinese Journal of Inorganic Chemistry 2007;23(12):2007-12.
    [141] Kong H, Li WW, Gao C, Yan DY, Jin YZ, Walton DRM, et al. Poly(N-isopropylacrylamide)-coated carbon nanotubes: Temperature-sensitive molecular nanohybrids in water. Macromolecules 2004;37(18):6683-86.
    [142] Andrews R, Weisenberger MC. Carbon nanotube polymer composites. Current Opinion in Solid State & Materials Science 2004;8(1):31-37.
    [143] Berkovich AJ, Andrews R, Jacques D, Grinter CW. Isotropic pitch-carbon nanotube fiber composites. Abstracts of Papers of the American Chemical Society 2001;222:U524-U24.
    [144] Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 2003;44(19):5893-99.
    [145] Martin CA, Sandler JKW, Shaffer MSP, Schwarz MK, Bauhofer W, Schulte K, et al. Formation of percolating networks in multi-wall carbon-nanotube-epoxy composites. Composites Science and Technology 2004;64(15):2309-16.
    [146] Xia JQ, Rizvi M, Czerw R, Carroll D, Foulger SH. Electrical percolation behavior and morphology study of HDPE-carbon nanotube composites. Abstracts of Papers of the American Chemical Society 2006;231:-.
    [147] Yao X, Wu HX, Wang J, Qu S, Chen G. Carbon nanotube/poly(methyl methacrylate) (CNT/PMMA) composite electrode fabricated by in situ polymerization for microchip capillary electrophoresis. Chemistry-a European Journal 2007;13(3):846-53.
    [148] Kashiwagi T, Du FM, Winey KI, Groth KM, Shields JR, Harris RH, et al. Flammability properties of PMMA-single walled carbon nanotube nanocomposites. Abstracts of Papers of the American Chemical Society 2004;228:U423-U23.
    [149] Abraham JK, Philip B, Witchurch A, Varadan VK, Reddy CC. A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor. Smart Materials & Structures 2004;13(5):1045-49.
    [150] Qian D, Dickey EC, Andrews R, Rantell T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied Physics Letters 2000;76(20):2868-70.
    [151] Sen R, Zhao B, Perea D, Itkis ME, Hu H, Love J, et al. Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Letters 2004;4(3):459-64.
    [152] Wu TM, Lin SH. Synthesis, characterization, and electrical properties of polypyrrole/multiwalled carbon nanotube composites. Journal of Polymer Science Part a-Polymer Chemistry 2006;44(21):6449-57.
    [153] Wu TM, Lin SH. Characterization and electrical properties of polypyrrole/multiwalled carbon nanotube composites synthesized by in situ chemical oxidative polymerization. Journal of Polymer Science Part B-Polymer Physics 2006;44(10):1413-18.
    [154] You YZ, Hong CY, Pan CY. Covalently immobilizing a biological molecule onto a carbon nanotube via a stimuli-sensitive bond. Journal of Physical Chemistry C 2007;111(44):16161-66.
    [155] Bertoncello P, Notargiacomo A, Erokhin V, Nicolini C. Functionalization and photoelectrochemical characterization of poly [3-3 '(vinylcarbazole)] multi-walled carbon nanotube (PVK-MWNT) Langmuir-Schaefer films. Nanotechnology 2006;17(3):699-705.
    [156] Shim M, Javey A, Kam NWS, Dai HJ. Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. Journal of the American Chemical Society 2001;123(46):11512-13.
    [157] Kong H, Gao C, Yan DY. Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and defunctionalization of the products. Macromolecules 2004;37(11):4022-30.
    [158] Kong H, Gao C, Yan DY. Constructing amphiphilic polymer brushes on the convex surfaces of multi-walled carbon nanotubes by in situ atom transfer radical polymerization. Journal of Materials Chemistry 2004;14(9):1401-05.
    [159] Kong H, Gao C, Yan DY. Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. Journal of the American Chemical Society 2004;126(2):412-13.
    [160] Chen GX, Kim HS, Park BH, Yoon JS. Controlled functionalization of multiwalled carbon nanotubes with various molecular-weight poly(L-lactic acid). Journal of Physical Chemistry B 2005;109(47):22237-43.
    [161] Mahar B, Laslau C, Yip R, Sun Y. Development of carbon nanotube-based sensors - A review. Ieee Sensors Journal 2007;7(1-2):266-84.
    [162] Ishida M, Yoshinaga K, Horii F. Solid-state C-13 NMR analyses of the microphase-separated structure of polyurethane elastomer. Macromolecules 1996;29(27):8824-29.
    [163] Velankar S, Cooper SL. Microphase separation and rheological properties of polyurethane melts. 1. Effect of block length. Macromolecules 1998;31(26):9181-92.
    [164] Velankar S, Cooper SL. Microphase separation and rheological properties of polyurethane melts. 3. Effect of block incompatibility on the viscoelastic properties. Macromolecules 2000;33(2):395-403.
    [165] Velankar S, Cooper SL. Microphase separation and rheological properties of polyurethane melts. 2. Effect of block incompatibility on the microstructure. Macromolecules 2000;33(2):382-94.
    [166] Kojio K, Nonaka Y, Masubuchi T, Furukawa M. Effect of the composition ratio of copolymerized poly(carbonate) glycol on the microphase-separated structures and mechanical properties of polyurethane elastomers. Journal of Polymer Science Part B-Polymer Physics 2004;42(24):4448-58.
    [167] Furukawa M, Mitsui Y, Fukumaru T, Kojio K. Microphase-separated structure and mechanical properties of novel polyurethane elastomers prepared with ether based diisocyanate. Polymer 2005;46(24):10817-22.
    [168] Chen SJ, Cao Q, Jing B, Cai YL, Liu PS, Hu JL. Effect of microphase-separation promoters on the shape-memory behavior of polyurethane. Journal of Applied Polymer Science 2006;102(6):5224-31.
    [169] Xia HS, Song M, Zhang ZY, Richardson M. Microphase separation, stress relaxation, and creep behavior of polyurethane nanocomposites. Journal of Applied Polymer Science 2007;103(5):2992-3002.
    [170] Tsai HC, Hong PD, Yen MS. Preparation and physical properties of MDEA-based polyurethane cationomers and their application to textile coatings. Textile Research Journal 2007;77(9):710-20.
    [171] Indesteege J, Camargo RE, Mackey PW, Bagaglio G, Dent A. Considerations on the selection of polyurethane systems for midsole wedges in athletic footwear application (Reprinted from Polyurethanes World Congress 97, Sept 29 Oct 1, 1997). Journal of Cellular Plastics 1998;34(4):329-+.
    [172] Karger-Kocsis J, Gremmels J, Mousa A, Ishiaku US, Ishak ZAM. Application of hygrothermally decomposed polyurethane in rubber recipes part 1: Natural rubber (NR) and nitrile rubber (NBR) stocks. Kautschuk Gummi Kunststoffe 2000;53(9):528-33.
    [173] Chew MYL, Zhou X, Tay YM. Application of ATR in characterizing aging conditions of polyurethane sealants. Polymer Testing 2001;20(1):87-92.
    [174] Furtado CA, de Souza PP, Silva GG, Matencio T, Pernaut JM. Electrochemical behavior of polyurethane ether electrolytes/carbon black composites and application to double layer capacitor. Electrochimica Acta 2001;46(10-11):1629-34.
    [175] Murphy JG, Rogerson GA. A method to model simple tension experiments using finite elasticity theory with an application to some polyurethane foams. International Journal of Engineering Science 2002;40(5):499-510.
    [176] Cho YS, Lee JW, Lee JS, Lee JH, Yoon TR, Kuroyanagi Y, et al. Hyaluronic acid and silver sulfadiazine-impregnated polyurethane foams for wound dressing application. Journal of Materials Science-Materials in Medicine 2002;13(9):861-65.
    [177] Dmitrienko SG, Pyatkova LN, Zolotov YA. Sorption of ion associates on polyurethane foams and its application to sorption-spectroscopic and test methods of analysis. Journal of Analytical Chemistry 2002;57(10):875-81.
    [178] Howard GT. Biodegradation of polyurethane: a review. International Biodeterioration & Biodegradation 2002;49(4):245-52.
    [179] Wilkes GL. Tutorial lecture on a review of structure/property relationships in polyurethane elastomers and foams. Abstracts of Papers of the American Chemical Society 2001;222:U322-U22.
    [180] Ramesh S, Tharanikkarasu K, Mahesh GN, Radhakrishnan G. Synthesis, physicochemical characterization, and applications of polyurethane ionomers: A review. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics 1998;C38(3):481-509.
    [181] Chuang FS. Analysis of thermal degradation of diacetylene-containing polyurethane copolymers. Polymer Degradation and Stability 2007;92(7):1393-407.
    [182] Vlad S, Oprea S. Chain extender and diisocyanate amount effects on the thermal, mechanical and wettability properties of some polyurethane elastomers. E-Polymers 2008:-.
    [183] Li WL, Liu JL, Hao CW, Jiang K, Xu DF, Wang DJ. Interaction of thermoplastic polyurethane with polyamide 1212 and its influence on the thermal and mechanical properties of TPU/PA1212 blends. Polymer Engineering and Science 2008;48(2):249-56.
    [184] Kim YH, Choi SJ, Kim AM, Han MS, Kim WN, Bang KT. Effects of organoclay on the thermal insulating properties of rigid polyurethane foams blown by environmentally friendly blowing agents. Macromolecular Research 2007;15(7):676-81.
    [185] Thirumal M, Khastgir D, Singha NK, Manjunath BS, Naik YP. Mechanical, morphological andthermal properties of rigid polyurethane foam: Effect of the fillers. Cellular Polymers 2007;26(4):245-59.
    [186] de Sousa FVV, da Mota RO, Quintela JP, Vieira MM, Margarit ICP, Mattos OR. Characterization of corrosive agents in polyurethane foams for thermal insulation of pipelines. Electrochimica Acta 2007;52(27):7780-85.
    [187] Modesti M, Lorenzetti A, Besco S. Influence of nanofillers on thermal insulating properties of polyurethane nanocomposites foams. Polymer Engineering and Science 2007;47(9):1351-58.
    [188] Erickson KL. Thermal decomposition mechanisms common to polyurethane, epoxy, poly(diallyl phthalate), polycarbonate and poly(phenylene sulfide). Journal of Thermal Analysis and Calorimetry 2007;89(2):427-40.
    [189] Kymakis E, Alexandou I, Amaratunga GAJ. Single-walled carbon nanotube-polymer composites: electrical, optical and structural investigation. Synthetic Metals 2002;127(1-3):59-62.
    [190] Amass W, Amass A, Tighe B. A review of biodegradable polymers: Uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polymer International 1998;47(2):89-144.
    [191] Averous L. Biodegradable multiphase systems based on plasticized starch: A review. Journal of Macromolecular Science-Polymer Reviews 2004;C44(3):231-74.
    [192] Garlotta D. A literature review of poly(lactic acid). Journal of Polymers and the Environment 2001;9(2):63-84.
    [193] Wasewar KL, Yawalkar AA, Moulijn JA, Pangarkar VG. Fermentation of glucose to lactic acid coupled with reactive extraction: A review. Industrial & Engineering Chemistry Research 2004;43(19):5969-82.
    [194] Agrawal AK, Bhalla R. Advances in the production of poly(lactic acid) fibers. A review. Journal of Macromolecular Science-Polymer Reviews 2003;C43(4):479-503.
    [195] Mehta R, Kumar V, Bhunia H, Upadhyay SN. Synthesis of poly(lactic acid): A review. Journal of Macromolecular Science-Polymer Reviews 2005;C45(4):325-49.
    [196] Barton SE, Engelhard P, Conant M. Poly-L-lactic acid for treating HIV-associated facial lipoatrophy: a review of the clinical studies. International Journal of Std & Aids 2006;17(7):429-35.
    [1] Iijima S. Helical Microtubules of Griphitic Carbon. Nature 1991;354 (6348):56-58.
    [2] Iijima S, I. T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993;363(6430):603-05.
    [3] Wang J. Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis 2005;17(1):7-14.
    [4] Kaushik BK, Goel S, Rauthan G. Future VLSI interconnects: optical fiber or carbon nanotube - a review. Microelectronics International 2007;24(2):53-63.
    [5] O'Flaherty SA, Murphy R, Hold SV, Cadek M, Coleman JN, Blau WJ. Material investigation and optical limiting properties of carbon nanotube and nanoparticle dispersions. Journal of Physical Chemistry B 2003;107(4):958-64.
    [6] Xue YQ, Datta S. Fermi-level alignment at metal-carbon nanotube interfaces: Application to scanning tunneling spectroscopy. Physical Review Letters 1999;83(23):4844-47.
    [7] Cheung CL, Hafner JH, Lieber CM. Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging. Proceedings of the National Academy of Sciences of the United States of America 2000;97(8):3809-13.
    [8] Zhou G, Kawazoe Y. Application of single-walled carbon nanotube body to unique emitter: a first-principles study. Chemical Physics Letters 2001;350(5-6):386-92.
    [9] Nishimura K, Kato M. Production and application development of carbon nanotube. Sen-I Gakkaishi 2003;59(12):P417-P20.
    [10] Jeykumari DRS, Kumar SS, Narayanan SS. Immobilization of redox mediators on functionalized carbon nanotube: A material for chemical sensor fabrication and amperometric determination of hydrogen peroxide. Pramana-Journal of Physics 2005;65(4):731-38.
    [11] Shvedova AA, Murray AR, Kisin ER, Schwegler-Berry D, Kagan VE, Gandelsman VZ, et al. Exposure to carbon nanotube material: Evidence of exposure-induced oxidant stress in human keratinocyte and bronchial epithelial cells. Free Radical Research 2003;37:97-97.
    [12] Anson A, Benham M, Jagiello J, Callejas MA, Benito AM, Maser WK, et al. Hydrogen adsorption on a single-walled carbon nanotube material: a comparative study of three different adsorption techniques. Nanotechnology 2004;15(11):1503-08.
    [13] Hirata T, Takagi K, Akiya M. Development of a taste sensor based on a carbon nanotube-polymer composite material (vol 46, pg L314, 2007). Japanese Journal of Applied Physics Part 2-Letters & Express Letters 2007;46(25-28):L657-L57.
    [14] Johnson RR, Johnson ATC, Klein ML. Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics. Nano Letters 2008;8(1):69-75.
    [15] Bokobza L. Multiwall carbon nanotube elastomeric composites: A review. Polymer 2007;48(17):4907-20.
    [16] Hou J, Wang X, Liu C, Cheng H. Development of photothermal-resistance technique and its application to thermal diffusivity measurement of single-wall carbon nanotube bundles. Applied Physics Letters 2006;88(18):-.
    [17] Guthy C, Du F, Brand S, Winey KI, Fischer JE. Thermal conductivity of single-walled carbonnanotube/PMMA nanocomposites. Journal of Heat Transfer-Transactions of the Asme 2007;129(8):1096-99.
    [18] Singh IV, Tanaka M, Endo M. Effect of interface on the thermal conductivity of carbon nanotube composites. International Journal of Thermal Sciences 2007;46(9):842-47.
    [19] Sivakumar R, Guo SQ, Nishimura T, Kagawa Y. Thermal conductivity in multi-wall carbon nanotube/silica-based nanocomposites. Scripta Materialia 2007;56(4):265-68.
    [20] Haggenmueller R, Guthy C, Lukes JR, Fischer JE, Winey KI. Single wall carbon nanotube/polyethylene nanocomposites: Thermal and electrical conductivity. Macromolecules 2007;40(7):2417-21.
    [21] Gao L, Zhou XF, Ding YL. Effective thermal and electrical conductivity of carbon nanotube composites. Chemical Physics Letters 2007;434(4-6):297-300.
    [22] Gonnet P, Liang SY, Choi ES, Kadambala RS, Zhang C, Brooks JS, et al. Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites. Current Applied Physics 2006;6(1):119-22.
    [23] Velasco-Santos C, Martinez-Hernandez AL, Fisher FT, Ruoff R, Castano VM. Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chemistry of Materials 2003;15(23):4470-75.
    [24] Park JH, Alegaonkar PS, Jeon SY, Yoo JB. Carbon nanotube composite: Dispersion routes and field emission parameters. Composites Science and Technology 2008;68(3-4):753-59.
    [25] Park SD, Han DH, Teng D, Kwon Y. Rheological properties and dispersion of multi-walled carbon nanotube (MWCNT) in polystyrene matrix. Current Applied Physics 2008;8(3-4):482-85.
    [26] Kwon SM, Kim HS, Myung SJ, Jin HJ. Poly(methyl methacrylate)/multiwalled carbon nanotube microspheres fabricated via in-situ dispersion polymerization. Journal of Polymer Science Part B-Polymer Physics 2008;46(2):182-89.
    [27] Kim HS, Myung SJ, Jung R, Jin HJ. Microspherical poly(methyl methacrylate)/Multiwalled carbon nanotube composites prepared via in situ dispersion polymerization. Journal of Nanoscience and Nanotechnology 2007;7(11):4045-48.
    [28] Marconcini P, Macucci M. Optimized technique for the calculation of carbon nanotube dispersion relationships. Physica Status Solidi a-Applications and Materials Science 2007;204(6):1898-904.
    [29] Xu GD, Zhu B, Han Y, Bo ZS. Covalent functionalization of multi-walled carbon nanotube surfaces by conjugated polyfluorenes. Polymer 2007;48(26):7510-15.
    [30] Dang ZM, Wang L, Zhang LP. Surface functionalization of multiwalled carbon nanotube with trifluorophenyl. Journal of Nanomaterials 2006:-.
    [31] Ma PC, Kim JK, Tang BZ. Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Composites Science and Technology 2007;67(14):2965-72.
    [32] Grujicic M, Sun YP, Koudela KL. The effect of covalent functionalization of carbon nanotube reinforcements on the atomic-level mechanical properties of poly-vinyl-ester-epoxy. Applied Surface Science 2007;253(6):3009-21.
    [33] Kitano H, Tachimoto K, Anraku Y. Functionalization of single-walled carbon nanotube by the covalent modification with polymer chains. Journal of Colloid and Interface Science 2007;306(1):28-33.
    [34] Lee HJ, Oh SJ, Choi JY, Tan LS, Baek JB. Functionalization of multi-wall carbon nanotube asfunctions of reacting groups and substituents. Abstracts of Papers of the American Chemical Society 2006;231:-.
    [35] Jorio A, Pimenta MA, Souza AG, Saito R, Dresselhaus G, Dresselhaus MS. Characterizing carbon nanotube samples with resonance Raman scattering. New Journal of Physics 2003;5:139,1-39,17.
    [36] Chen GX, Kim HS, Park BH, Yoon JS. Controlled functionalization of multiwalled carbon nanotubes with various molecular-weight poly(L-lactic acid). Journal of Physical Chemistry B 2005;109(47):22237-43.
    [37] Zhang DH, Kandadai MA, Cech J, Roth S, Curran SA. Poly(L-lactide) (PLLA)/multiwalled carbon nanotube (MWCNT) composite: Characterization and biocompatibility evaluation. Journal of Physical Chemistry B 2006;110(26):12910-15.
    [38] Xu YY, Gao C, Kong H, Yan DY, Luo P, Li WW, et al. One-pot synthesis of amphiphilic core-shell suprabranched macromolecules. Macromolecules 2004;37(17):6264-67.
    [39] Kong H, Gao C, Yan DY. Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and defunctionalization of the products. Macromolecules 2004;37(11):4022-30.
    [40] Kong H, Gao C, Yan DY. Constructing amphiphilic polymer brushes on the convex surfaces of multi-walled carbon nanotubes by in situ atom transfer radical polymerization. Journal of Materials Chemistry 2004;14(9):1401-05.
    [41] Pan BF, Cui DX, Gao F, He R. Growth of multi-amine terminated poly(amidoamine) dendrimerson the surface of carbon nanotubes. Nanotechnology 2006;17(10):2483-89.
    [42] Chang TE, Jensen LR, Kisliuk A, Pipes RB, Pyrz R, Sokolov AP. Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer 2005;46(2):439-44.
    [43] Shaffer MSP, Koziol K. Polystyrene grafted multi-walled carbon nanotubes. Chemical Communications 2002(18):2074-75.
    [2] Iijima S. Helical microtubules of graphitic carbon Nature. 1991;354(6348):56-58.
    [3] Bokobza L. Multiwall carbon nanotube elastomeric composites: A review. Polymer 2007;48(17):4907-20.
    [4] Coleman JN, Khan U, Blau WJ, Gun'ko YK. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon 2006;44(9):1624-52.
    [5] Mizak B, Borowski A. Application of PLA test for the evaluation of canine distemper virus, adenovirus type 1 and parvovirus replication in cell cultures. Medycyna Weterynaryjna 1998;54(11):753-56.
    [6] Wang J. Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis 2005;17(1):7-14.
    [7] Kaushik BK, Goel S, Rauthan G. Future VLSI interconnects: optical fiber or carbon nanotube - a review. Microelectronics International 2007;24(2):53-63.
    [8] Ajayan PM. Nanotubes from carbon. Chemical Reviews 1999;99(7):1787-99.
    [9] Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE. Carbon nanotube composites for thermal management. Applied Physics Letters 2002;80(15):2767-69.
    [10] Chen GX, Kim HS, Park BH, Yoon JS. Controlled functionalization of multiwalled carbon nanotubes with various molecular-weight poly(L-lactic acid). Journal of Physical Chemistry B 2005;109(47):22237-43.
    [11] Smith LJ, inventor Smith, L J (SMIT-Individual), assignee. Educational kit used for teaching paleontology to child. US. 1999 August 24.
    [12] Li HJ, Wang XB, Song YL, Liu YQ, Li QS, Jiang L, et al. Super-"amphiphobic" aligned carbon nanotube films. Angewandte Chemie-International Edition 2001;40(9):1743-46.
    [13] Hirsch A. Functionalization of single-walled carbon nanotubes. Angewandte Chemie-International Edition 2002;41(11):1853-59.
    [14] Xu GD, Zhu B, Han Y, Bo ZS. Covalent functionalization of multi-walled carbon nanotube surfaces by conjugated polyfluorenes. Polymer 2007;48(26):7510-15.
    [15] Salzmann CG, Llewellyn SA, Tobias G, Ward MAH, Huh Y, Green MLH. The role of carboxylated carbonaceous fragments in the functionalization and spectroscopy of a single-walled carbon-nanotube material. Advanced Materials 2007;19(6):883-+.
    [16] Parekh BB, Fanchini G, Eda G, Chhowalla M. Improved conductivity of transparent single-wall carbon nanotube thin films via stable postdeposition functionalization. Applied Physics Letters 2007;90(12):-.
    [17] McIntosh D, Khabashesku VN, Barrera EV. Benzoyl peroxide initiated in situ functionalization, processing, and mechanical properties of single-walled carbon nanotube-polypropylene composite fibers. Journal of Physical Chemistry C 2007;111(4):1592-600.
    [1] Mahar B, Laslau C, Yip R, Sun Y. Development of carbon nanotube-based sensors - A review. Ieee Sensors Journal 2007;7(1-2):266-84.
    [18] Sung YT, Kum CK, Lee HS, Byon NS, Yoon HG, Kim WN. Dynamic mechanical and morphological properties of polycarbonate/multi-walled carbon nanotube composites. Polymer 2005;46(15):5656-61.
    [19] Breuer O, Sundararaj U. Big returns from small fibers: A review of polymer/carbon nanotube composites. Polymer Composites 2004;25(6):630-45.
    [20] Garlotta D. A literature review of poly(lactic acid). Journal of Polymers and the Environment 2001;9(2):63-84.
    [21] Gong YH, Ma ZW, Zhou QL, Li J, Gao CY, Shen JC. Poly(lactic acid) scaffold fabricated by gelatin particle leaching has good biocompatibility for chondrogenesis. Journal of Biomaterials Science-Polymer Edition 2008;19(2):207-21.
    [22] Takatani M, Ikeda K, Sakamoto K, Okamoto T. Cellulose esters as compatibilizers in wood/poly(lactic acid) composite. Journal of Wood Science 2008;54(1):54-61.
    [23] Wang Y, Mano JF. Biodegradable Poly(L-lactic acid)/Poly(butylene succinate-co-adipate) blends: Miscibility, morphology, and thermal Behavior. Journal of Applied Polymer Science 2007;105(6):3204-10.
    [24] Ulbricht M. Advanced functional polymer membranes. Polymer 2006;47(7):2217-62.
    [25] Ray SS, Bousmina M. Biodegradable polymers and their layered silicate nano composites: In greening the 21st century materials world. Prog Mater Sci 2005;50(8):962-1079.
    [26] Yu L, Dean K, Li L. Polymer blends and composites from renewable resources. Prog Polym Sci 2006;31(6):576-602.
    [27] Auras R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromol Biosci 2004;4(9):835-64.
    [28] Ben-Shabat S, Kumar N, Domb AJ. PEG-PLA block copolymer as potential drug carrier: Preparation and characterization. Macromol Biosci 2006;6(12):1019-25.
    [29] Cohn D, Lando G. Tailoring lactide/caprolactone co-oligomers as tissue adhesives. Biomaterials 2004;25(27):5875-84.
    [30] Zhu ZX, Xiong CD, Zhang LL, Yuan ML, Deng XM. Preparation of biodegradable polylactide-co-poly(ethylene glycol) copolymer by lactide reacted poly(ethylene glycol). Eur Polym J 1999;35(10):1821-28.
    [31] Lee CW. Synthesis and properties of multiblock copolymers consisting of oligo(L-lactic acid) and poly(oxyethylene-co-oxypropylene) with different composition. Korea Polym J 2001;9(5):259-66.
    [32] Huang MH, Coudane J, Li SM, Vert M. Methylated and pegylated PLA-PCL-PLA block copolymers via the chemical modification of Di-hydroxy PCL combined with the ring opening polymerization of lactide. J Polym Sci Pol Chem 2005;43(18):4196-205.
    [33] Chang K. Oldest Bacteria Fossils? Or Are They Merely Tiny Rock Flaws? New York Times 2002Mar 12;Sect. F4.
    [34] Lee HT, Lee DS. Thermoresponsive phase transitions of PLA-block-PEO-block-PLA triblock stereo-copolymers in aqueous solution. Macromol Res 2002;10(6):359-64.
    [35] Frick EM, Zalusky AS, Hillmyer MA. Characterization of polylactide-b-polylsoprene-b-polylactide thermoplastic elastomers. Biomacromolecules 2003;4(2):216-23.
    [36] Teng CQ, Yang K, Ji P, Yu MH. Synthesis and characterization of poly(L-lactic acid)-poly(epsilon-caprolactone) multiblock copolymers by melt polycondensation (vol 42, pg 5045, 2004). J Polym Sci Pol Chem 2004;42(22):5845-45.
    [37] Gao JB, Zhao B, Itkis ME, Bekyarova E, Hu H, Kranak V, et al. Chemical engineering of the single-walled carbon nanotube-nylon 6 interface. Journal of the American Chemical Society 2006;128(23):7492-96.
    [38] Riggs JE, Guo ZX, Carroll DL, Sun YP. Strong luminescence of solubilized carbon nanotubes. Journal of the American Chemical Society 2000;122(24):5879-80.
    [39] Fu KF, Huang WJ, Lin Y, Riddle LA, Carroll DL, Sun YP. Defunctionalization of functionalized carbon nanotubes. Nano Letters 2001;1(8):439-41.
    [40] Kong H, Gao C, Yan DY. Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. Journal of the American Chemical Society 2004;126(2):412-13.
    [41] Chang TE, Jensen LR, Kisliuk A, Pipes RB, Pyrz R, Sokolov AP. Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer 2005;46(2):439-44.
    [42] Qin SH, Qin DQ, Ford WT, Resasco DE, Herrera JE. Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods. Macromolecules 2004;37(3):752-57.
    [43] Scheyer LE, Chiweshe A. Application and performance of disperse dyes on polylactic acid (PLA) fabric. Aatcc Review 2001;1(2):44-48.
    [44] Gao C, Jin YZ, Kong H, Whitby RLD, Acquah SFA, Chen GY, et al. Polyurea-functionalized multiwalled carbon nanotubes: Synthesis, morphology, and Raman spectroscopy. Journal of Physical Chemistry B 2005;109(24):11925-32.
    [45] Jorio A, Pimenta MA, Souza AG, Saito R, Dresselhaus G, Dresselhaus MS. Characterizing carbon nanotube samples with resonance Raman scattering. New Journal of Physics 2003;5:139,1-39,17.
    [46] Zhang DH, Kandadai MA, Cech J, Roth S, Curran SA. Poly(L-lactide) (PLLA)/multiwalled carbon nanotube (MWCNT) composite: Characterization and biocompatibility evaluation. Journal of Physical Chemistry B 2006;110(26):12910-15.
    [47] Xu YY, Gao C, Kong H, Yan DY, Luo P, Li WW, et al. One-pot synthesis of amphiphilic core-shell suprabranched macromolecules. Macromolecules 2004;37(17):6264-67.
    [48] Kong H, Gao C, Yan DY. Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and defunctionalization of the products. Macromolecules 2004;37(11):4022-30.
    [49] Kong H, Gao C, Yan DY. Constructing amphiphilic polymer brushes on the convex surfaces of multi-walled carbon nanotubes by in situ atom transfer radical polymerization. Journal of Materials Chemistry 2004;14(9):1401-05.
    [50] Pan BF, Cui DX, Gao F, He R. Growth of multi-amine terminated poly(amidoamine) dendrimerson the surface of carbon nanotubes. Nanotechnology 2006;17(10):2483-89.
    [51] Shaffer MSP, Koziol K. Polystyrene grafted multi-walled carbon nanotubes. Chemical Communications 2002(18):2074-75.
    [1] Garlotta D. A literature review of poly(lactic acid). Journal of Polymers and the Environment 2001;9(2):63-84.
    [2] Gong YH, Ma ZW, Zhou QL, Li J, Gao CY, Shen JC. Poly(lactic acid) scaffold fabricated by gelatin particle leaching has good biocompatibility for chondrogenesis. Journal of Biomaterials Science-Polymer Edition 2008;19(2):207-21.
    [3] Takatani M, Ikeda K, Sakamoto K, Okamoto T. Cellulose esters as compatibilizers in wood/poly(lactic acid) composite. Journal of Wood Science 2008;54(1):54-61.
    [4] Wang Y, Mano JF. Biodegradable Poly(L-lactic acid)/Poly(butylene succinate-co-adipate) blends: Miscibility, morphology, and thermal Behavior. Journal of Applied Polymer Science 2007;105(6):3204-10.
    [5] Ulbricht M. Advanced functional polymer membranes. Polymer 2006;47(7):2217-62.
    [6] Ray SS, Bousmina M. Biodegradable polymers and their layered silicate nano composites: In greening the 21st century materials world. Prog Mater Sci 2005;50(8):962-1079.
    [7] Yu L, Dean K, Li L. Polymer blends and composites from renewable resources. Prog Polym Sci 2006;31(6):576-602.
    [8] Auras R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromol Biosci 2004;4(9):835-64.
    [9] Wang WS, Ping P, Chen XS, Jing XB. Polylactide-based polyurethane and its shape-memory behavior. European Polymer Journal 2006;42(6):1240-49.
    [10] Xiong XY, Tam KC, Gan LH. Synthesis and thermal responsive properties of P(LA-b-EO-b-PO-b-EO-b-LA) block copolymers with short hydrophobic poly(lactic acid) (PLA) segments. Polymer 2005;46(6):1841-50.
    [11] Huang LH, Hu J, Lang L, Wang X, Zhang PB, Jing XB, et al. Synthesis and characterization of electroactive and biodegradable ABA block copolymer of polylactide and aniline pentamer. Biomaterials 2007;28(10):1741-51.
    [12] Ben-Shabat S, Kumar N, Domb AJ. PEG-PLA block copolymer as potential drug carrier: Preparation and characterization. Macromol Biosci 2006;6(12):1019-25.
    [13] Cohn D, Lando G. Tailoring lactide/caprolactone co-oligomers as tissue adhesives. Biomaterials 2004;25(27):5875-84.
    [14] Zhu ZX, Xiong CD, Zhang LL, Yuan ML, Deng XM. Preparation of biodegradable polylactide-co-poly(ethylene glycol) copolymer by lactide reacted poly(ethylene glycol). Eur Polym J 1999;35(10):1821-28.
    [15] Lee CW. Synthesis and properties of multiblock copolymers consisting of oligo(L-lactic acid) andpoly(oxyethylene-co-oxypropylene) with different composition. Korea Polym J 2001;9(5):259-66.
    [16] Huang MH, Coudane J, Li SM, Vert M. Methylated and pegylated PLA-PCL-PLA block copolymers via the chemical modification of Di-hydroxy PCL combined with the ring opening polymerization of lactide. J Polym Sci Pol Chem 2005;43(18):4196-205.
    [17] Chang K. Oldest Bacteria Fossils? Or Are They Merely Tiny Rock Flaws? New York Times 2002 Mar 12;Sect. F4.
    [18] Lee HT, Lee DS. Thermoresponsive phase transitions of PLA-block-PEO-block-PLA triblock stereo-copolymers in aqueous solution. Macromol Res 2002;10(6):359-64.
    [19] Frick EM, Zalusky AS, Hillmyer MA. Characterization of polylactide-b-polylsoprene-b-polylactide thermoplastic elastomers. Biomacromolecules 2003;4(2):216-23.
    [20] Teng CQ, Yang K, Ji P, Yu MH. Synthesis and characterization of poly(L-lactic acid)-poly(epsilon-caprolactone) multiblock copolymers by melt polycondensation (vol 42, pg 5045, 2004). J Polym Sci Pol Chem 2004;42(22):5845-45.
    [21] Maiti P, Yamada K, Okamoto M, Ueda K, Okamoto K. New polylactide/layered silicate nanocomposites: Role of organoclays. Chem Mater 2002;14(11):4654-61.
    [22] Cho D, Seo JM, Park WH, Han SO, Hwang TW, Choi CH, et al. Improvement of the interfacial, flexural, and thermal properties of Jute/Poly(lactic acid) biocomposites by fiber surface treatments. Journal of Biobased Materials and Bioenergy 2007;1(3):331-40.
    [23] Ren J, Liu Z, Ren T. Mechanical and thermal properties of poly(lactic acid)/starch/montmorillonite biodegradable blends. Polymers & Polymer Composites 2007;15(8):633-38.
    [24] Lin LH, Liu HJ, Yu NK. Morphology and thermal properties of poly(L-lactic acid)/organoclay nanocomposites. Journal of Applied Polymer Science 2007;106(1):260-66.
    [25] Petersson L, Kvien I, Oksman K. Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Composites Science and Technology 2007;67(11-12):2535-44.
    [26] S. I. Helical microtubules of graphitic carbon. Nature 1991;354(6348):56-58.
    [27] Peeterbroeck S, Laoutid F, Swoboda B, Lopez-Cuesta JM, Moreau N, Nagy JB, et al. How carbon nanotube crushing can improve flame retardant behaviour in polymer nanocomposites? Macromol Rapid Comm 2007;28(3):260-64.
    [28] Spinks GM, Mottaghitalab V, Bahrami-Saniani M, Whitten PG, Wallace GG. Carbon-nanotube-reinforced polyaniline fibers for high-strength artificial muscles. Adv Mater 2006;18(5):637-+.
    [29] Haggenmueller R, Guthy C, Lukes JR, Fischer JE, Winey KI. Single wall carbon nanotube/polyethylene nanocomposites: Thermal and electrical conductivity. Macromolecules 2007;40(7):2417-21.
    [30] Gao L, Zhou XF, Ding YL. Effective thermal and electrical conductivity of carbon nanotube composites. Chem Phys Lett 2007;434(4-6):297-300.
    [31] Yuen SM, Ma CCM, Wu HH, Kuan HC, Chen WJ, Liao SH, et al. Preparation and thermal, electrical, and morphological properties of multiwalled carbon nanotube and epoxy composites. J Appl Polym Sci 2007;103(2):1272-78.
    [32] Xiong JW, Zheng Z, Qin XM, Li M, Li HQ, Wang XL. The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite. Carbon 2006;44(13):2701-07.
    [33] Xia HS, Song M, Jin J, Chen L. Poly(propylene glycol)-grafted multi-walled carbon nanotube polyurethane. Macromolecular Chemistry and Physics 2006;207(21):1945-52.
    [34] Breuer O, Sundararaj U. Big returns from small fibers: A review of polymer/carbon nanotube composites. Polym Composite 2004;25(6):630-45.
    [35] Nam JY, Ray SS, Okamoto M. Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite. Macromolecules 2003;36(19):7126-31.
    [36] Lopez-Rodriguez N, Lopez-Arraiza A, Meaurio E, Sarasua JR. Crystallization, morphology, and mechanical behavior of polylactide/poly(epsilon-caprolactone) blends. Polymer Engineering and Science 2006;46(9):1299-308.
    [37] Kang SH, Hsu SL. Analysis correlating morphology and deformation behavior in biodegradable poly(lactic acid). Abstracts of Papers of the American Chemical Society 2000;219:U486-U86.
    [38] Cicero JA, Dorgan JR. Physical properties and fiber morphology of poly(lactic acid) obtained from continuous two-step melt spinning. Journal of Polymers and the Environment 2001;9(1):1-10.
    [39] Iwata T, Doi Y. Morphology and enzymatic degradation of poly(L-lactic acid) single crystals. Macromolecules 1998;31(8):2461-67.
    [40] Moon YS, Uyama H, Inoue S, Tabata Y. Fabrication of non-woven mats of gelatin/poly(L-lactic acid) composites by electrospinning and their application for scaffold of cell proliferation. Chemistry Letters 2006;35(6):564-65.
    [41] Ohya Y. Synthesis of nobel poly(lactic acid)-based biodegradable polymers and their application as biomaterials. Kobunshi Ronbunshu 2002;59(8):484-98.
    [42] Negulescu II, Lowe NE. Thermal behavior of poly(lactic acid) related to the application of disperse dyes. Abstracts of Papers of the American Chemical Society 2001;221:U311-U11.
    [43] Zheng J, Northrup SR, Hornsby PJ. Modification of materials formed from poly(L-lactic acid) to enable covalent binding of biopolymers: Application to high-density three-dimensional cell culture in foams with attached collagen. In Vitro Cellular & Developmental Biology-Animal 1998;34(9):679-84.
    [44] author, Zheng Z, Tang W, Wang X. A facile approach to covalently functionalized carbon nanotubes with biocompatible polymer. Polymer 2007;48(13):3658-63.
    [45] Kari Hiltunen MH, Jukka V. Sepp?l?, Taito V??n?nen Synthesis and Characterization of LacticAcid Based Telechelic Prepolymers. Macromolecules 1996;29(27):8677-82.
    [46] Xie XL, Liu QX, Li RKY, Zhou XP, Zhang QX, Yu ZZ, et al. Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization. Polymer 2004;45(19):6665-73.
    [47] Zhang DH, Kandadai MA, Cech J, Roth S, Curran SA. Poly(L-lactide) (PLLA)/multiwalled carbon nanotube (MWCNT) composite: Characterization and biocompatibility evaluation. Journal of Physical Chemistry B 2006;110(26):12910-15.
    [48] Sahoo NG, Jung YC, Yoo HJ, Cho JW. Influence of carbon nanotubes and polypyrrole on the thermal, mechanical and electroactive shape-memory properties of polyurethane nanocomposites. Composites Science and Technology 2007;67(9):1920-29.
    [49] Einarsson E, Shiozawa H, Kramberger C, Rummeli MH, Gruneis A, Pichler T, et al. Revealing the small-bundle internal structure of vertically aligned single-walled carbon nanotube films. Journal of Physical Chemistry C 2007;111(48):17861-64.
    [1] Eceiza A, Martin MD, de la Caba K, Kortaberria G, Gabilondo N, Corcuera MA, et al. Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: Mechanical and thermal properties. Polymer Engineering and Science 2008;48(2):297-306.
    [2] Abramova NY, Sukhareva LA. Influence of the method of mixing of pigments with a polymer on the structure and properties of polyurethane compositions. Polymer Science Series C 2007;49(2):152-55.
    [3] Chun BC, Cho TK, Chong MH, Chung YC. Structure-property relationship of shape memory polyurethane cross-linked by a polyethyleneglycol spacer between polyurethane chains. Journal of Materials Science 2007;42(21):9045-56.
    [4] Madhavan K, Reddy BSR. Synthesis and characterization of poly (dimethylsiloxane-urethane) elastomers: Effect of hard segments of polyurethane on morphological and mechanical properties. Journal of Polymer Science Part a-Polymer Chemistry 2006;44(9):2980-89.
    [5] Lemos VA, Santos MS, Santos ES, Santos MJS, dos Santos WNL, Souza AS, et al. Application of polyurethane foam as a sorbent for trace metal pre-concentration - A review. Spectrochimica Acta Part B-Atomic Spectroscopy 2007;62(1):4-12.
    [6] Chou CW, Hsu SH, Chang H, Tseng SM, Lin HR. Enhanced thermal and mechanical properties and biostability of polyurethane containing silver nanoparticles. Polymer Degradation and Stability 2006;91(5):1017-24.
    [7] Kumar H, Kumar AA, Siddaramaiah. Physico-mechanical, thermal and morphological behaviour of polyurethane/poly(methyl methacrylate) semi-interpenetrating polymer networks. Polymer Degradation and Stability 2006;91(5):1097-104.
    [8] Zia KM, Bhatti HN, Bhatti IA. Methods for polyurethane and polyurethane composites, recycling and recovery: A review. Reactive & Functional Polymers 2007;67(8):675-92.
    [9] Vlad S. Polyurethane coatings for corrosive protection. Materiale Plastice 2005;42(4):293-96.
    [10] Christenson EM, Anderson JM, Hiltner A, Baer E. Relationship between nanoscale deformation processes and elastic behavior of polyurethane elastomers. Polymer 2005;46(25):11744-54.
    [11] Chen CP, Dai SA, Chang HL, Su WC, Wu TM, Jeng RJ. Polyurethane elastomers through multi-hydrogen-bonded association of dendritic structures. Polymer 2005;46(25):11849-57.
    [12] Melnig V, Apostu MO, Tura V, Ciobanu C. Optimization of polyurethane membranes - Morphology and structure studies. Journal of Membrane Science 2005;267(1-2):58-67.
    [13] Xue F, Shi YS, Huang SH. Synthesis and performance of transparent casting polyurethane resin.Journal of Wuhan University of Technology-Materials Science Edition 2005;20(2):24-28.
    [14] Ludke H, Albus S. Polyurethanes (PU). Kunststoffe-Plast Europe 2002;92(10):138-+.
    [15] 李绍雄, 刘益军. 聚氨酯树脂及其应用. 北京,化学工业出版社 2002.
    [16] Qin XM, Xiong JW, Yang XH, Wang XL, Zheng Z. Preparation, morphology, and properties of polyurethane-urea elastomers derived from sulphone-containing aromatic diamine. Journal of Applied Polymer Science 2007;104(6):3554-61.
    [17] Roeder J, Oliveira RB, Becker D, Goncalves MW, Soldi V, Pires ATN. Compatibility effect on the thermal degradation behaviour of polypropylene blends with polyamide 6, ethylene propylene diene copolymer and polyurethane. Polymer Degradation and Stability 2005;90(3):481-87.
    [18] Breuer O, Sundararaj U. Big returns from small fibers: A review of polymer/carbon nanotube composites. Polymer Composites 2004;25(6):630-45.
    [19] Coleman JN, Khan U, Blau WJ, Gun'ko YK. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon 2006;44(9):1624-52.
    [20] White AA, Best SM, Kinloch IA. Hydroxyapatite-carbon nanotube composites for biomedical applications: A review. International Journal of Applied Ceramic Technology 2007;4(1):1-13.
    [21] Meng QH, Hu JL, Zhu Y. Shape-memory Polyurethane/Multiwalled carbon nanotube fibers. Journal of Applied Polymer Science 2007;106(2):837-48.
    [22] McClory C, McNally T, Brennan GP, Erskine J. Thermosetting polyurethane multiwalled carbon nanotube composites. Journal of Applied Polymer Science 2007;105(3):1003-11.
    [23] Buffa F, Abraham GA, Grady BP, Resasco D. Effect of nanotube functionalization on the properties of single-walled carbon nanotube/polyurethane composites. Journal of Polymer Science Part B-Polymer Physics 2007;45(4):490-501.
    [24] Perepelkin KE. Polylactide fibres: Fabrication, properties, use, prospects. a review. Fibre Chemistry 2002;34(2):85-100.
    [25] Nakayama Y, Yamaguchi R, Tsutsumi C, Shiono T. Synthesis of poly(ester-urethane)s from hydroxytelechelic polylactide: Effect of initiators on their physical and degradation properties. Polymer Degradation and Stability 2008;93(1):117-24.
    [26] Anderson KS, Schreck KM, Hillmyer MA. Toughening polylactide. Polymer Reviews 2008;48(1):85-108.
    [27] author, Zheng Z, Tang WL, Wang XL. A facile approach to covalently functionalized carbon nanotubes with biocompatible polymer. Polymer 2007;48(13):3658-63.
    [28] author, Zheng Z, Lu HX, Wang XL. Incorporation of multiwalled carbon nanotubes intobiodegradable telechelic prepolymer. Macromolecuar chemistry and physics 2008;209(3):315-21.
    [29] Kumari S, Mishra AK, Chattopadmay DK, Raju KVSN. Synthesis and characterization of hyperbranched polyesters and polyurethane coatings. Journal of Polymer Science Part a-Polymer Chemistry 2007;45(13):2673-88.
    [30] Jena KK, Chattopadhyay DK, Raju KVSN. Synthesis and characterization of hyperbranched polyurethane-urea coatings. European Polymer Journal 2007;43(5):1825-37.
    [31] Pham JQ, Mitchell CA, Bahr JL, Tour JM, Krishanamoorti R, Green PF. Glass transition of polymer/single-walled carbon nanotube composite films. Journal of Polymer Science Part B-Polymer Physics 2003;41(24):3339-45.
    [32] Barrau S, Demont P, Maraval C, Bernes A, Lacabanne C. Glass transition temperature depression at the percolation threshold in carbon nanotube-epoxy resin and polypyrrole-epoxy resin composites. Macromolecular Rapid Communications 2005;26(5):390-94.
    [33] Sahoo NG, Jung YC, Yoo HJ, Cho JW. Influence of carbon nanotubes and polypyrrole on the thermal, mechanical and electroactive shape-memory properties of polyurethane nanocomposites. Composites Science and Technology 2007;67(9):1920-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700