双网络结构水凝胶的合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高吸水性凝胶是一种新型的亲水性的三维网络聚合物。由于化学交联的脆性,导致凝胶吸水后强度差,限制其在生物化学,人工软骨和其他方面的应用。如何在保持一定含水量的同时提高凝胶的强度,成为化学工作者在凝胶领域研究的重点。
     本文以无机粘土作为交联剂,采用自由基引发合成双交联剂聚丙烯酰胺,在不同无机交联剂Laponite和有机交联剂MBAM含量的情况下测试其在拉伸和压缩应力-应变曲线。同时考察无机粘土的交联性能和交联效率。并在碱性条件水解后测其压缩强度,吸液性能及其吸液动力学。通过研究表明,水解以后聚丙烯酰胺水凝胶在Laponite含量为10.7%,有机交联剂MBAM含量为0.02%时,压缩强度为8.26 KPa,吸水率为459.8 g/g,,吸盐66.7 g/g。水解双交联剂聚丙烯酰胺吸液速率较快,且扩散过程多表现为non-Fickian扩散。
     为进一步研究粘土的交联作用,同时为提高凝胶的综合性能,我们引入不同单体的双网络结构来提高凝胶的强度和吸液性能。采用以粘土为交联剂的PAAm网络作为第一网络,而在第二网络用MBAM做交联剂合成PAA双网络结构水凝胶。通过研究表明,在无机粘土含量为5%,有机含量为0.05%,凝胶在含水量为99.58%,压缩强度为21.5 KPa,在蒸馏水中的吸液倍率为1219 g/g,在0.9 wt%NaCl的吸液倍率为124 g/g。而吸水达到平衡时间比双交联剂聚丙烯酰胺所用时间要少。
     采用不同的合成方法,我们构建了以分别以粘土和MBAM为交联剂的PAAm-PAMPS双网络凝胶,与PAAm-PAA双网络凝胶相比,第一网络较为紧密。在粘土含量为13.8%,而MBAM含量为1.8%下所得的凝胶表现出较高的机械强度,在含水量为99.3%时的压缩强度为87.58 KPa,最大吸水量为195.2 g/g。
Hydrogels are a new kind of three-dimensional hydrophilic crosslinked polymers. The low fracture toughness of chemically crosslinked hydrogels restricts their application in biomedicine, organ engineering and other fields. Many efforts have been made to increase the mechanical strength of hydrogels by the introduction of inorganic nanoclay into organic polymer networks and double network.
     At first, polyacrylamide nanocomposite hydrogels with two crosslinkers, Laponite and MBAM, was prepared by free radical initiation. Different crosslinkers contents were investigated in terms of tensile and compressive strength. In addition, the PAAm hydrogels were hydrolyzed and the swelling capacity, mechanical strength and the swelling dynamics were studied. The results indicated that a compressive stress of 8.26 KPa was obtained with 10.7% Laponite and 0.02% MBAM. In addition, the swelling capacity was 459.8 g/g in distilled water and 66.7 g/g in 0.9% NaCl. The swelling of the hydrolyzed PAAm hydrogel was faster and the diffusion behaviors obeyed non-fickian type. To investigate the crosslinking effect of Laponite further and enhance the comprehensive performance, the double network composed of different monomers was introduced. A novel double network nanocomposite hydrogel consisting of the first network of PAAm using laponite as a crosslinker and the second network of PAA using MBAM as a crosslinker was synthesized by two-step solution polymerization. The resulting PAAm-PAA double network nanocomposite hydrogels showed an excellent swelling capacity of 1219 g/g in deionized water, 124 g/g in 0.9 wt% NaCl solution while 21.5 KPa high compressive stress in a high water content of 99.58% was achieved when 5 wt% laponite and 0.05 wt% MBAM were used during the polymerization respectively. But the time to reach swelling equilibrium is shorter than hydrogel with two crosslinkers.
     Based on PAAm-PAA double network nanocomposite hydrogels, PAAm-PAMPS hydrogels were prepared by different methods by which the first network of PAAm was denser in contrast to the one in PAAm-PAA. The results showed the hydrogel had a high compressive stress of 87.58 KPa in high water content of 99.3% while the swelling capacity in deionized water is 195.2 g/g when the contents of laponite and MBAM were 13.8% and 1.8%, respectively..
引文
[1] H. Chen, A. Wang. Adsorption characteristics of Cu(II) from aqueous solution onto poly(acrylamide)/attapulgite composite [J]. Journal of Hazardous Materials, 2009, 165: 223-231.
    [2] Y.-F. Chu, C.-H. Hsu, P. K. Soma, Y. M. Lo. Immobilization of bioluminescent Escherichia coli cells using natural and artificial fibers treated with polyethyleneimine [J]. Bioresource Technology, 2009, 100(13): 3167-3174.
    [3] K. Kofuji, T. Isobe, Y. Murata. Controlled release of alpha-lipoic acid through incorporation into natural polysaccharide-based gel beads [J]. Food Chemistry, 2009, 115(2): 483-487.
    [4] J. Lu, F. Xu, D. Wang, J. Huang, W. Cai. The application of silicalite-1/fly ash cenosphere (S/FAC) zeolite composite for the adsorption of methyl tert-butyl ether (MTBE) [J]. Journal of Hazardous Materials, 2009, 165: 120-125.
    [5] M. Namdeo, S. K. Bajpai. Immobilization of [alpha]-amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study [J]. Journal of Molecular Catalysis B: Enzymatic, 2009, 59: 134-139.
    [6] T. J. Smith, J. E. Kennedy, C. L. Higginbotham. The rheological and thermal characteristics of freeze-thawed hydrogels containing hydrogen peroxide for potential wound healing applications [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2009, 2(3): 264-271.
    [7] A. K. Upadhyay, T. W. Ting, S. M. Chen. Amperometric biosensor for hydrogen peroxide based on coimmobilized horseradish peroxidase and methylene green in ormosils matrix with multiwalled carbon nanotubes [J]. Talanta, 2009, 79(1): 38-45.
    [8] V. P. Bavaresco, C. A. Zavagllia, M. C. Reis. Study on the tribological properties of pHEMA hydrogels for use in artificial articular cartilage[J]. Wear, 2008, 265: 269-277.
    [9] K. Kanie, A. Muramatsu. Thermotropic Mesophases Formed by Hybridization of Liquid-Crystalline Phosphates and Monodispersed Fe2O3 Particles [J]. Organic-Inorganic Hybrid Liquid Crystals, 2005, 127(33): 11578-11579.
    [10] M. H. Bartl, S. W. Boettcher, E. L. Hu, G. D. Stucky. Dye-Activated Hybrid Organic/InorganicMesostructured Titania Waveguides [J]. Journal of the American Chemical Society 2004, 126(35): 10826-10827.
    [11] J. Pyun, S. Jia, T. Kowalewski, G. D. Patterson, K. Matyjaszewski. Synthesis and Characterization of Organic/Inorganic Hybrid Nanoparticles: Kinetics of Surface-Initiated Atom Transfer Radical Polymerization and Morphology of Hybrid Nanoparticle Ultrathin Films [J]. 2003, 36(18): 6952-6952.
    [12] D. Neumann, M. Fisher, L. Tran, J. G. Matisons. Synthesis and Characterization of an Isocyanate Functionalized Polyhedral Oligosilsesquioxane and the Subsequent Formation of an Organic-Inorganic Hybrid Polyurethane [J]. 2002, 124(47): 13998-13999.
    [13] X. Hu, L. Xiong, T. Wang, Z. Lin, X. Liu, Z. Tong. Synthesis and dual response of ionic nanocomposite hydrogels with ultrahigh tensibility and transparence [J]. Polymer, 2009, 50: 1933–1938.
    [14] L. Zheng, S. Xu, Y. Peng, J. Wang, G. Peng. Preparation and swelling behavior of amphoteric superabsorbent composite with semi-IPN composed of poly(acrylic acid)/Ca-bentonite/poly(dimethyldiallylammonium chloride) [J]. Polymer for advanced technology., 2007, 18: 194–199.
    [15] J.-M. L. Negrete, L. D. Jean-Luc Putaux, E. Bourgeat-Lami. Aqueous Dispersions of Silane-Functionalized Laponite Clay Platelets. A First Step toward the Elaboration of Water-Based Polymer/Clay Nanocomposites [J]. langmuir, 2004, 20(5): 1564-1571.
    [16]徐国财,张立德,纳米复合材料[M]. 2001:219-232.
    [17] Y. J. Y Rong, R Li et al. CN: 85102156, 1985.
    [18]刘平生,李利,周宁琳.蒙脱土/聚丙烯酸高吸水性树脂的合成[J].复合材料学报, 2006, 23(3): 44-48.
    [19] L. W. Fu, C. Y. Chu. Effect of intercalated reactive mica on water absorbency for poly(sodium acrylate) composite superabsorbents [J]. European Polymer Journal, 2005, 41(7): 1605-1612.
    [20] X. Huang, S. Xu, M. Zhong, J. Wang, S. Feng, R. Shi. Modification of Na-bentonite by polycations for fabrication of amphoteric semi-IPN nanocomposite hydrogels [J]. Applied Clay Science, 2009, 42: 455-459.
    [21] S. H. Jang, Y. G. Jeong, B. G. Min, W. S. Lyoo, S. C. Lee. Preparation and lead ion removal property of hydroxyapatite/polyacrylamide composite hydrogels [J]. Journal of Hazardous Materials, 2008, 159: 294-299.
    [22]徐志良,范力仁,沈上仁.表面Ca2+交联对蒙脱石/聚丙烯酸(钠)吸水保水复合材料性能的影响[J].功能材料, 2004, 35(增刊): 2596-2598.
    [23]魏月琳,吴季怀,黄昀.膨润土/聚丙烯酸高吸水材料制备及改性[J].华侨大学学报, 2005, 26(4): 365-369.
    [24]王秀红,张福强,鲁金芝.聚(丙烯酸丙烯酰胺)/膨润土高吸水性复合材料的制备研究[J].河北工业大学学报, 2007, 36(3): 27-31.
    [25]童.昕,张振方,卢言成.聚乙烯醇/膨润土杂化水凝胶的力学性能和溶胀行为[J].过程工程学报, 2006, 6(3): 503-506.
    [26] X. Wang, Y. Zheng, A. Wang. Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites [J]. Journal of Hazardous Materials, In Press, Corrected Proof.
    [27] J. Zhang, Q. Wang, A. Wang. Synthesis and characterization of chitosan-g-poly(acrylic acid)/attapulgite superabsorbent composites [J]. Carbohydrate Polymers, 2007, 68(2): 367-374.
    [28] A. Pourjavadi, M. Ayyari, M. S. Amini-Fazl. Taguchi optimized synthesis of collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel [J]. European Polymer Journal, 2008, 44(4): 1209-1216.
    [29] K. Haraguchi, T. Takehisa. Nanocomposite Hydrogels: A Unique Organic-Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De-swelling Properties [J]. Advanced materials , 2002, 14(16): 1120-1124.
    [30] K. Haraguchi, H. J. Li, K. Matsuda, T. Takehisa, E. Elliott. Mechanism of Forming Organic/Inorganic Network Structures during In-situ Free-Radical Polymerization in PNIPA-Clay Nanocomposite Hydrogels [J]. Macromolecules, 2005, 38(8): 3482-3490.
    [31] M. Shibayama, J. Suda, T. Karino, S. Okabe, T. Takehisa, K. Haraguchi. Structure and Dynamics of Poly(N-isopropylacrylamide)-Clay Nanocomposite Gels [J]. Macromolecules, 2004, 37(25): 9606-9612.
    [32] K. Haraguchi, H. J. Li. Control of the Coil-to-Globule Transition and Ultrahigh Mechanical Properties of PNIPA in Nanocomposite Hydrogels [J]. Polymer, 2005, 117(40): 6658-6662.
    [33] K. Haraguchi, K. Matsuda. Spontaneous Formation of Characteristic Layered Morphologies in PorousNanocomposites Prepared from Nanocomposite Hydrogels [J]. 2005, 17(5): 931-934.
    [34] K. Haraguchi. Reversible Force Generation in a Temperature Responsive Nanocomposite Hydrogel Consisting of Poly(N-isopropylacrylamide) and Clay [J]. 2005, 6(2): 238-241.
    [35] W. Zhang, Y. Liu, M. Zhu, Y. Zhang, X. Liu. Surprising conversion of nanocomposite hydrogels with high mechanical strength by posttreatment: From a low swelling ratio to an ultrahigh swelling ratio [J]. Rapid communications, 2006, 44(22): 6640-6645.
    [36] Y. Liu, Z. Meifang, L. Xiaoli, W. Zhang, B. Sun, Y. Chen, H.-J. P. Adler. High clay content nanocomposite hydrogels with surprising mechanical strength and interesting deswelling kinetics [J]. Polymer, 2006, 47(1): 1-5.
    [37] Y. Liu, M. Zhu, X. Liu, Y. M. Jiang, Y. Ma, Z. Y. Qin, D. Kuckling, H.-J. P. Adler. Mechanical Properties and Phase Transition of High Clay Content Clay/Poly(N-isopropylacrylamide) Nanocomposite Hydrogel [J]. Macromolecular Symposium, 2007, 254(1): 353-360.
    [38] M. Zhu, Y. Liu, B. Sun. A Novel HighNanocomposite Hly Resilient ydrogel with Low Hysteresis and Ultrahigh Elongation [J]. Communication, 2006, 27(13): 1023-1028.
    [39] T. Karino, Y. Okumura, K. Ito, M. Shibayama. SANS Studies on Spatial Inhomogeneities of Slide-Ring Gels [J]. Macromolecules, 2004, 38(3): 1035-1035.
    [40] J. P. Gong, Y. Katsuyama, T. Kukayukawa. Double-Network Hydrogels with Exetremely High Mechanical Strength [J]. Advanced materials , 2003, 15(14): 1155-1158.
    [41] B. T. Huang, H. Xu, K. Jiao, L. Zhu, H. R. Brown, H. Wang. [J]. Advanced Materials, 2007, 19: 1622–1626.
    [42] N. Zeoli, S. Gu. Computational validation of an isentropic plug nozzle design for gas atomisation [J]. Computational Materials Science, 2008, 42(2): 245-258.
    [43] L. Yin, J. Ding, L. Fei, M. He, F. Cui, C. Tang, C. Yin. Beneficial properties for insulin absorption using superporous hydrogel containing interpenetrating polymer network as oral delivery vehicles [J]. International Journal of Pharmaceutics, 2008, 350: 220-229.
    [44] Y. J. Wang, D. Kim. The effect of F127 addition on the properties of PEGDA/PVdF cross-linked gel polymer electrolytes [J]. Journal of Membrane Science, 2008, 312: 76-83.
    [45] A. M. Vuorinen, S. R. Dyer, L. V. J. Lassila. Effect of rigid rod polymer filler on mechanical properties of poly-methyl methacrylate denture base material [J]. Dental Materials, 2008, 24(5): 708-713.
    [46] F. Tran-Van, L. Beouch, F. Vidal. Self-supported semi-interpenetrating polymer networks for new design of electrochromic devices [J]. Electrochimica Acta, 2008, 53(12): 4336-4343.
    [47] J. Chen, M. Liu, S. Chen. Synthesis and characterization of thermo- and pH-sensitive kappa-carrageenan-g-poly(methacrylic acid)/poly(N,N-diethylacrylamide) semi-IPN hydrogel [J]. Materials Chemistry and Physics, 2009, 115(1): 339-346.
    [48] L. Zheng, S. Xu, Y. Peng. Preparation and swelling behavior of amphoteric superabsorbent composite with semi-IPN composed of poly(acrylic acid)/Ca-bentonite/poly(dimethyldiallylammonium chloride) [J]. Polymer for advanced technologies, 2007, 18: 194-199.
    [49]陈效珍,徐世美,李欣.两性半互穿型高吸水树脂对氯化钙的吸附及解吸热力学行为研究[J].新疆大学学报(自然科学版), 2008, 25(4): 461-465.
    [50] X. Li, S. Xu, J. Wang. Structure and characterization of amphoteric semi-IPN hydrogel based on cationic starch [J]. Carbohydrate Polymers, 2009, 75(4): 688-693.
    [51] S. S. Jang, W. A. Goddard, M. Y. S. Kalani. Mechanical and Transport Properties of the Poly(ethylene oxide)-Poly(acrylic acid) Double Network Hydrogel from Molecular Dynamic Simulations [J]. Journal of Physical Chemistry B, 2007, 111(51): 14440-14440.
    [52] G. Peng, S. Xu, Y. Peng. A new amphoteric superabsorbent hydrogel based on sodium starch sulfate [J]. Bioresource Technology, 2008, 99(2): 444-447.
    [53] X. Shi, S. Xu, J. Lin. Synthesis of SiO2-polyacrylic acid hybrid hydrogel with high mechanical properties and salt tolerance using sodium silicate precursor through sol-gel process [J]. Materials Letters, 2009, 63(5): 527-529.
    [54] S. Xu, S. Zhang, J. Yang. An amphoteric semi-IPN nanocomposite hydrogels based on intercalation of cationic polyacrylamide into bentonite [J]. Materials Letters, 2008, 62(24): 3999-4002.
    [55] H. Y. Zhou, X. G. Chen, M. Kong. Kennedy. Effect of molecular weight and degree of chitosan deacetylation on the preparation and characteristics of chitosan thermosensitive hydrogel as a delivery system[J]. Carbohydrate Polymers, 2008, 73(2): 265-273.
    [56] L. Jongpaiboonkit, W. J. King, G. E. Lyons. An adaptable hydrogel array format for 3-dimensional cell culture and analysis [J]. Biomaterials, 2008, 29(23): 3346-3356.
    [57] G. F. Mehyar, Z. Liu, J. H. Han. Dynamics of antimicrobial hydrogels in physiological saline [J]. Carbohydrate Polymers, 2008, 74(1): 92-98.
    [58] G. S. Chauhan, S. Chauhan, S. Kumar, A. Kumari. A study in the adsorption of Fe2+ and on pine needles based hydrogels [J]. Bioresource Technology, 2008, 99(14): 6464-6470.
    [59] J. Z. Yi, Y. Q. Ma, L. M. Zhang. Synthesis and decoloring properties of sodium humate/poly (N-isopropylacrylamide) hydrogels [J]. Bioresource Technology, 2008, 99(13): 5362-5367.
    [60] X. J. Loh, K. B. Colin Sng, J. Li. Synthesis and water-swelling of thermo-responsive poly(ester-urethane) containing poly(epsilon-caprolactone), poly(ethylene-glycol) and poly(propylene glycol) [J]. Biomaterials, 2008, 29(22): 3185-3194.
    [61] Q. Tang, J. Wu, H. Sun. Superabsorbent conducting hydrogel from poly(acrylamide-aniline) with thermo-sensitivity and release properties [J]. Carbohydrate Polymers, 2008, 73(3): 473-481.
    [62] X. Hu, L. Xiong, T. Wang. Synthesis and dual response of ionic nanocomposite hydrogels with ultrahigh tensibility and transparence [J]. Polymer, 2009, 50(8): 1933-1938.
    [63]徐世美.有机/无机纳米复合水凝胶的合成及性能研究[J].大连理工博士.博士.大连, 2008.
    [64] J. Z. Yi, L. M. Zhang. Studies of sodium humate/polyacrylamide/clay hybrid hydrogels. I. Swelling and rheological properties of hydrogels [J]. Macromolecular Nanotechnology, 2007, 43: 3215–3221.
    [65]黄小娟.半互穿型有机/无机纳米复合水凝胶的合成及性能研究.化学化工学院:新疆大学,2008.
    [66] B. G. Kabra, S. H. Gehrke, S. T. Hwang, W. A. Ritschel. Modification of the dynamic swelling behavior of poly(2-hydroxyethyl methacrylate) in water [J]. Journal of Applied Polymer Science, 1991, 42(9): 2409.
    [67] Z. Chen, M. Liu, S. Ma. Synthesis and modification of salt-resistant superabsorbent polymers [J]. Reactive and Functional Polymers, 2005, 62(1): 85-92.
    [68]李欣.阳离子淀粉基两性半互穿型高吸水树脂的合成及性能研究.化学化工学院:新疆大学,2008.
    [69] L. Serra, J. Dom. Engineering design and molecular dynamics of mucoadhesive drug delivery systems astargeting agents [J]. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71(3): 519-528.
    [70] Q. Fan, K. K. Sirkar, J. Wu. A Thermo-Sensitive Release System Based on Polymeric Membrane for Transdermal Delivery of Doxycycline HCl [J]. Journal of Membrane Science, In Press, Accepted Manuscript.
    [71] L. Jin, P. Lu, H. You, Q. Chen, J. Dong. Vitamin B12 diffusion and binding in crosslinked poly(acrylic acid)s and poly(acrylic acid-co-N-vinyl pyrrolidinone)s [J]. International Journal of Pharmaceutics, 2009, 371: 82-88.
    [72] M. J. Ramazani-Harandi, M. J. Zohuriaan-Mehr, A. A. Yousefi. Rheological determination of the swollen gel strength of superabsorbent polymer hydrogels [J]. Polymer testing, 2006, 25(4): 470-474.
    [73] J. T. Lin, S. M. Xu, X. M. Shi. Synthesis and properties of a novel double network nanocomposite hydrogel [J]. Polymers for Advanced Technologies, 2008. DOI: 10.1002/pat.1322
    [74] F. Topuz, O. Okay. Macroporous hydrogel beads of high toughness and superfast responsivity [J]. Reactive and Functional Polymers, 2009, 69(5): 273-280.
    [75] A. Büyükya?c?, G. Tuzcu, L. Aras. Synthesis of copolymers of methoxy polyethylene glycol acrylate and 2-acrylamido-2-methyl-1-propanesulfonic acid: Its characterization and application as superplasticizer in concrete [J]. Cement and Concrete Research, 2009, doi:10.1016/j.cemconres.2009.03.010
    [76] G. S. Chauhan, G. Garg. Study in sorption of Cr6+ and NO3- on poly (2-acrylamido-2-methylpropane-1-sulfonic acid) hydrogels [J]. Desalination, 2009, 239: 1-9.
    [77] Y. H. Gad. Preparation and characterization of poly(2-acrylamido-2-methylpropane-sulfonic acid)/Chitosan hydrogel using gamma irradiation and its application in wastewater treatment [J]. Radiation Physics and Chemistry, 2008, 77(9): 1101-1107.
    [78] S. B. Lin, C. H. Yuan, A. R. Ke. Quan. Electrical response characterization of PVA-P(AA/AMPS) IPN hydrogels in aqueous Na2SO4 solution [J]. Sensors and Actuators B: Chemical, 2008, 134(1): 281-286.
    [79]周向东. AM/ AMPS/ NVP三元共聚物降滤失剂WH21的研制[J].油田化学, 2007, 24(4): 293-296.
    [80] S. Kundakci, ?. Bar?,ü. a. E. Karada?. Swelling and dye sorption studies of acrylamide/2-acrylamido-2-methyl-1-propanesulfonic acid/bentonite highly swollen composite hydrogels [J]. Reactive and Functional Polymers, 2008, 68(2): 458-473.
    [81] S. Durmaz, O. Okay. Acrylamide/2-acrylamido-2-methylpropane sulfonic acid sodium salt-based hydrogels: synthesis and characterization [J]. Polymer, 2000, 41(10): 3693-3704.
    [82]李文波,薛峰.化学交联聚乙烯醇(PVA)水凝胶的合成、表征及溶涨特性[J].高分子学报,2005,5:671-675

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700