中国北方汉族人群FGB基因与冠心病的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:心肌梗死(Myocardial infarction,MI)是世界范围内最主要的死亡原因之一,约90%的心肌梗死是由动脉粥样斑块破裂并继发血栓形成导致冠状动脉急性阻塞所引起的。动脉血栓形成是MI病理过程中最主要的致病环节之一。纤维蛋白原是一种急性期蛋白,它山肝脏合成。当机体处于感染状态时,血浆中的纤维蛋白原水平会显著增高。纤维蛋白原作为血栓形成过程中凝血作用激活的最后一个靶点,通过聚集血小板和促进纤维斑块的形成,在血栓形成和延展过程中起到十分关键的作用,在欧美及日本等国家所进行的流行病学研究也已证实血浆纤维蛋白原水平与纤维蛋白原基因变异均和MI相关。由于纤维蛋白原β链(Fibrinogenβ-chain)的合成是纤维蛋白原合成的限速步骤,因此,纤维蛋白原β链(Fibrinogenβ-chain,FGB)基因变异被科学家们大量关注。既往的研究中已发现FGB基因-455G/A、-148C/T等多态与MI相关,但这种关联也可能是这些位点与功能性多态连锁不平衡所造成的。因此,我们考虑采用候选基因途径基因组扫描策略,系统筛查中国北方汉族人群FGB基因编码区和侧翼序列,识别所有多态位点,并进一步在病例-对照研究中探讨潜在的功能多态位点与MI的关系。
     材料和方法:选取1997年10月至2000年9月期间阜外心血管病医院病房收治的北京地区汉族急性MI后存活的患者509例;选择年龄、性别与病例匹配的北京社区人群507例作为对照组。对每一个参加者均详细填写调查表,包括疾病个人史、家族史、吸烟与饮酒史和药物使用情况,并测量血压、身高、体重、腰围及臀围等,计算体重指数和腰臀比值,测定脂质等生化指标。为研究FGB基因序列中是否存在未知的功能性多态位点,我们先在病例人群中随机选取48例样本,利用基因组DNA直接测序筛查出基因编码区及部分调节区的全部序列变异:然后根据既往研究热点及测序所获得结果,分别在启动子区、编码区及3'侧翼序列各选择1个频率大于5%的多态位点,在全部个体中应用聚合酶链反应-限制性片断长度多态性分析(PCR-RFLP)方法进行基因型鉴定。方差分析及χ~2检验用于单变量分析,多元非条件Logistic回归分析用于检验多态位点与疾病的独立关联及与环境因素的交互作用。用2LD程序计算连锁不平衡系数,EH程序估计单体型频率,Haplo.score程序检验单体型与疾病的独立关联,Haplo.glm程序检验单体型和环境因素的交互作用。
     结果:1.我们在FGB基因5.7 kb的测序范围内共发现18个多态位点,均为单核苷酸多态(SNP)。其中有6个SNP为首次报道,它们是位于内含子4中的5092G/A、内含子6中的6493T/C和6401G/A、编码区的3501G/A(CyslllTyr)、6264A/T(Asn309Tyr)和位于3'侧翼序列的8588G/A,但后三个多态在我们的研究人群中少见等位基因频率较低。2.研究最多的启动子区多态-455G/A和R448K等在国人中的频率和高加索人群相似(均≈20%)。3.基因内部常见的多态间存在紧密连锁不平衡。4.单变量分析提示在显性、隐性及加性三种模式下,-455G/A、R448K和8558C/G三个多态均与MI关联。但调整了其它传统的心血管病危险因素后,只有R448K在显性模型下(RK+KK∶RR,OR=0.71,P=0.026)及8558C/G在隐性模型下(GG∶GC+CC,OR=0.28,P=0.046)仍然与MI保持显著关联。5。连锁不平衡和单体型分析显示,-455G/A、R448K和8558C/G三个多态间存在几乎完全的连锁不平衡,并主要组成两种相对立的单体型-455G-448R-8558G和-455A-448K-8558C,前者与MI的危险性增加相关联,而后者与MI的危险性降低相关联。单体型和吸烟间似乎存在交互作用,而和年龄及性别间不存在交互作用。
     结论:在中国北方汉族人群中,在调整了传统危险因素后,FGB基因R448K多态与MI独立关联,提示该基因可能与国人MI的发生相关。
Background:Myocardial infarction(MI),one of the leading causes of death worldwide,is a complex disorder influenced by multiple genetic and environmental factors.Approximately 90%of MI results from an acute thrombus that obstructs an atherosclerotic coronary artery.As the last target of coagulation,fibrinogen plays a pivotal role in the hemostatic balance by representing the substrate for fibrin clot formation,and the support for platelet aggregation.Fibrinogen is an acute phase protein,synthesized in the liver,the plasma levels of which acutely rise during inflammatory conditions.In some large prospective studies in Europe and the United States,elevated plasma fibrinogen levels has been shown to be strongly associated with the genetic variants in fibrinogen genes and an independent predictor of MI.In recent years,several polymorphisms in the genes for fibrinogen have been associated with increased plasma fibrinogen.The FGB gene(fibrinogenβ-chain gene) has been more extensively studied because theβ-chain synthesis is the limiting step in the production of mature fibrinogen.The association between MI and some polymorphisms in FGB gene,such as-455G/A and-148C/T,had been found in some studies,but others had not.The inconsistent results might be due to linkage relationships with other unidentified functional genetic variants in the FGB gene.The aim of the present study was to scan the whole FGB gene,and to identify all putative functional polymorphisms and further investigate whether these polymorphisms are associated with MI in Nothem Chinese Hart population.
     Methods:A case-control design was applied in this study.In brief,509 unrelated CHD patients who surrived an acute MI were enrolled from hospitalized patients of Fu Wai Hospital between October 1997 and September 2000.507 age-and sex-matched subjects were randomly recruited from individuals participating in a community-based survey of cardiovascular risk factors in Beijing.A detail of questionnaires about the risk factors of cardiovascular disease was available and physical examination was carried out in all subjects.We randomly selected 48 patients to detect all polymorphisms of the FGB gene by directly sequencing.We selected three polymorphisms in the FGB gene for genotyping by polymerase chain reaction-restriction fragment length polymorphism(PCR-RFLP) in all subjects. Univariate analysis was applied to measure the association of each polymorphism with MI.Multivariate analysis was performed to investigate the independent or interactive effect of polymorphisms/haplotypes on MI.Statistical analysis was conducted using the SPSS 13.0 version for Windows,2LD program and EH program, in conjunction with the haplo.score and haplo.glm programs.
     Results:(1) In a total length of 5.7 kb explored,we identified 18 SNPs,of which 6 were first reported,they were 5092G/A(intron 4),6401G/A and 6493T/C(intron 6), CyslllTyr(exon 3),Asn309Tyr(exon 6) and 8588G/A(3' flanking region) respectively.However,the latter three polymorphisms appeared only once in the 48 samples,their frequencies were less than 5%.(2) Allele frequencies of the most studied polymorphisms such as-455G/A and R448K are similar between our population and Caucasian populations.(3) Complete or nearly complete LD between polymorphisms was frequently observed.(4) Univariate analyses indicated that the 3 FGB polymorphisms were associated with MI in all of three genetic models(i.e. dominant,recessive and additive models).After adjusting other risk factors,however, only individuals carrying the 448K allele had an approx.30%reduction in risk of developing MI(OR 0.71,95%CI 0.52-0.96),and homozyosity for 8558G was associated with a 70%decreased risk of MI(GG:GC+CC,OR=0.28,P=0.046). Haplotype analyses showed that the A-K-G haplotype(-455A,448K,8558G) was associated with a protective effect against MI,whereas the most common haplotype (G-R-C) was related to an increased risk of MI,even after adjusting for environmental risk factors.
     Conclusions:Our study demonstrated the first evidence of a significant association between the FGB R448K polymorphism and MI in a Chinese Han population,which possession of the 448K allele may be protective against developing MI.However,the results should be interpreted with caution,given the small sample size.A larger cohort will ultimately be required to confirm whether or not this association is real.
引文
1. American Heart Association. Heart disease and stroke statistics- 2007 update. Dallas: American Heart Association, 2007
    2. Zaman AG, Helft G, Worthley SG, Badimon JJ. The role of plaque rupture and thrombosis in coronary artery disease. Atherosclerosis 2000; 149:251-266
    3. Meade TW, Mellows S, Brozovic M, Miller GJ, Chakrabarti RR, North WR, Haines AP, Stirling Y, Imeson JD, Thompson SG. Haemostatic function and ischaemic heart disease: Principal results of the Northwick Park Heart Study. Lancet 1986; 2:533-537
    4. Wilhelmsen L, Svardsudd K, Korsan-Bengtsen K, Larsson B, Welin L, Tibblin G. Fibrinogen as a risk factor for stroke and myocardial infarction. N Engl J Med 1984; 11:501-550
    5. Kannel WB, Wolf PA, Castelli WP, D'Agostino RB. Fibrinogen and risk of cardiovascular disease: The Framingham Study. J Am Med Assoc 1987; 258:1183-1186
    6. Henry I, Uzan G, Weil D, Nicolas H, Kaplan JC, Marguerie C, Kahn A, Junien C. The genes coding for α -, β-, and γ-chains of fibrinogen map to 4q2. Am J Hum Genet. 1984; 36: 760-768
    7. Kant JA, Furnace AJ, Saxe D, Simon MI, McBride OW, Crabtree GR. Evolution and organization of the fibrinogen locus on chromosome 4: gene duplication accompanied by transcription and inversion. Proc Natl Acad Sci U S A. 1985;82:2344
    8. Courtois G, Morgan JG, Campbell LA, Fourel G, Crabtree GR. Interaction of a liver specific nuclear factor with the fibrinogen and a-1 antitrypsin promoters. Science. 1987;238:688
    9. Dalmon J, Laurent M, Courtois G. The human b-fibrinogen promoter contains hepatocyte nuclear factor 1-dependent interleukin-6-responsive element. Mol Cell Biol. 1993;13:1183
    10. Vaisanen S, Rauramaa R, Penttila I, Rankinen T, Gagnon J, Perusse L, Chagnon M, Bouchard C. Variation in plasma fibrinogen over one year: relationships with genetic polymorphisms and non-genetic factors. Thromb Haemost. 1997; 77: 884-889
    11. Van't Hooft FM, von Bahr SJF, Silveira A, Diadou A, Eriksson P, Hamsten A. Two common, functional polymorphisms in the promoter region of the β-fibrinogen gene contribute to regulation of plasma fibrinogen concentration. Arterioscler Thromb Vasc Biol. 1999; 19: 3063-3070
    12. de Maat MP, de Knijff P, Green FR, Thomas AE, Jespersen J, Kluft C. Gender-related association between β-fibrinogen genotype and plasma fibrinogen levels and linkage disequilibrium at the fibrinogen locus in Greenland Inuit. Arterioscler Thromb Vasc Biol. 1995; 15: 856-860
    13. Folsom AR, Aleksic N, Ahn C, Boerwinkle E, Wu KK. β fibrinogen gene -455G/A polymorphosm and coronary heat disease incidence: the Atherosclerosis Risk in Communities (ARIC) Study. Ann Epidemiol. 2001; 11: 66-170
    14. Heinrich J, Funke H, Rust S, Schulte H, Schonfeld R, Kohler E, Assmann G. Impact of the polymorphisms in the - and β-fibrinogen gene on plasma fibrinogen concentrations of coronary heart disease patients. Thromb Res. 1995; 77:209-215
    15. Henry JA, Bolla M, Osmond C, Fall C, Barker DJ, Humphries SE. The effects of genotype and infant weight on adult plasma levels of fibrinogen, factor VII, and LDL cholesterol are additive. J Med Genet. 1997; 34: 553-558
    16. Humphries SE, Ye S, Talmud P, Bara L, Wilhelmsen L, Tiret L. European Atherosclerosis Research Study: genotype at the fibrinogen locus (G-455-A β) is associated with differences in plasma fibrinogen levels in young men and women from different regions in Europe: evidence for gender-genotype-environment interaction. Arterioscler Thromb Vasc Biol. 1995; 15: 96-104
    17. Kessler C, Spitzer C, Stauske D, Mende S, Stadlmuller J, Walther R, Rettig R. The apolipoprotein E and β-fibrinogen G/A-455 gene polymorphisms are associated with ischemic stroke involving large-vessel disease. Arterioscler Thromb Vasc Biol. 1997; 17: 2880-2884
    18. Koster T, Rosendaal FR, Reitsma PH, van der Velden PA, Briet E, Vandenbroucke JP. Factor VII and fibrinogen levels as risk factors for venous thrombosis: a case-control study of plasma levels and DNA polymorphisms: the Leiden Thrombophilia Study (LETS). Thromb Haemost. 1994; 71: 719-722
    19. Lam KS, Ma OC, Wat NM, Chan LC, Janus ED. β-fibrinogen gene G/A-455 polymorphism in relation to fibrinogen concentrations and ischaemic heart disease in Chinese patients with type II diabetes. Diabetologia. 1999; 42: 1250-1253
    20. Lee AJ, Fowkes FG, Lowe GD, Connor JM, Rumley A, Fibrinogen, factor VII, and PAI-1 genotypes and the risk of coronary and peripheral atherosclerosis: Edinburgh Artery Study. Thromb Haemost. 1999; 81: 553-560
    21. Margaglione M, Cappucci G, Colaizzo D, Pirro L, Vecchione G, Grandone E, Di Minno G. Fibrinogen plasma levels in an apparently healthy general population: relation to environmental and genetic determinants. Thromb Haemost. 1998; 80: 805-810
    22. Montgomery HE, Clarkson P, Nwose OM, Mikailidis DP, Jagroop IA, Dollery C, Moult J, Benhizia F, Deanfield J, Jubb M, World M, McEwan JR, Winder A, Humphries S. The acute rise in plasma fibrinogen concentration with exercise is influenced by the G-453-A polymorphism of the β-fibrinogen gene. Arterioscler Thromb Vasc Biol. 1996; 16: 386-391
    23. Thomas A, Lamlum H, Humphries S, Green F. Linkage disequilibrium across the fibrinogen locus as shown by five genetic polymorphisms, G/A-455 (HaeIII), C/T-148 (HindIII/AluI), T/G+1689 (AvaII), and Bc1I (β-fibrinogen) and TaqI (-fibrinogen), and their detection by PCR. Hum Mutat. 1994; 3: 79-81
    24. Tybjaerg-Hansen A, Agerholm-Larsen B, Humphries SE, Abildgaard S, Schnohr P, Nordestgaard BG. A common mutation (G-455 A) in the β-fibrinogen promoter is an independent predictor of plasma fibrinogen, but not of ischemic heart disease: a study of 9,127 individuals based on the Copenhagen City Heart Study. J Clin Invest. 1997; 99: 3034-3039
    25. Wang XL, Wang J, McCredie RM, Wilcken DE. Polymorphisms of factor V, factor VII, and fibrinogen genes: relevance to severity of coronary artery disease. Arterioscler Thromb Vasc Biol. 1997; 17: 246-251
    26. Scarabin PY, Bara L, Ricard S, Poirier O, Cambou JP, Arveiler D, Luc G, Evans AE, Samama MM, Cambien F. Genetic variation at the β-fibrinogen locus in relation to plasma fibrinogen concentrations and risk of myocardial infarction: the ECTIM. Study Arterioscler Thromb. 1993; 13: 886-891
    27. Behague I, Poirier O, Nicaud V, Evans A, Arveiler D, Luc G, Cambou JP, Scarabin PY, Bara L, Green F, Cambien F. β-Fibrinogen gene polymorphisms are associated with plasma fibrinogen and coronary artery disease in patients with myocardial infarction: the ECTIM Study Etude Cas-Temoins sur l'Infarctus du Myocarde. Circulation. 1996; 93: 440-449
    28. Gardemann A, Schwartz O, Haberbosch W, Katz N, Weiss T, Tillmanns H, Hehrlein FW, Waas W, Eberbach A. Positive association of the β fibrinogen H1/H2 gene variation to basal fibrinogen levels and to the increase in fibrinogen concentration during acute phase reaction but not to coronary artery disease and myocardial infarction. Thromb Haemost. 1997; 77: 1120-1126
    29. Leander K, Wiman B, Hallqvist J, Falk G, De Faire U. The G-455A polymorphism of the fibrinogen Bbeta-gene relates to plasma fibrinogen in male cases, but does not interact with environmental factors in causing myocardial infarction in either men or women. J Intern Med 2002;252:332-341
    30. Doggen CJ, Bertina RM, Cats VM, Rosendaal FR. Fibrinogen polymorphisms are not associated with the risk of myocardial infarction. Br J Haematol. 2000; 110:935-8
    31. Green F, Hamsten A, Blomback M, Humphries S. The role of β-fibrinogen genotype in determining plasma fibrinogen levels in young survivors of myocardial infarction and healthy controls from Sweden. Thromb Haemost. 1993; 70:915-920
    32. van der Bom JG, de Maat MP, Bots ML, Haverkate F, de Jong PT, Hofman A, Kluft C, Grobbee DE. Elevated plasma fibrinogen: cause or consequence of cardiovascular disease? Arterioscler Thromb Vasc Biol 1998; 18:621-625
    33. Boekholdt SM, Bijsterveld NR, Moons AH, Levi M, Buller HR, Peters RJ. Genetic variation in coagulation and fibrinolytic proteins and their relation with acute myocardial infarction: a systematic review. Circulation 2001; 104:3063-3068
    34. Yamada Y, Izawa H, Ichihara S, Takatsu F, Ishihara H, Hirayama H, Sone T, Tanaka M, Yokota M. Prediction of the risk of myocardial infarction from polymorphisms in candidate genes. N Engl J Med 2002;347:1916-1923
    35. Atherosclerosis, Thrombosis, and Vascular Biology Italian Study Group. No evidence of association between prothrombotic gene polymorphisms and the development of acute myocardial infarction at a young age. Circulation 2003;107:1117-1122
    36. Carter AM, Ossei-Gerning N, Wilson IJ, Grant PJ. Association of the platelet PI (A) polymorphism of glycoprotein IIb/IIIa and the fibrinogen Bbeta 448 polymorphism with myocardial infarction and extent of coronary artery disease. Circulation 1997; 96:1424-1431
    37. Maghzal GJ, Brennan SO, George PM. Fibrinogen B beta polymorphisms do not directly contribute to an altered in vitro clot structure in humans. Thromb Haemost 2003 ;90:1021-1028
    38. Heinrich J, Balleisen L, Schulte H, Assmann G, van de Loo J. Fibrinogen and factor VII in the prediction of coronary risk: results from the PROCAM study in healthy men. Arterioscler Thromb. 1994; 14: 54-59
    39. Meade TW, Ruddock V, Stirling Y, Chakrabarti R, Miller GJ. Fibrinolytic activity, clotting factors, and long-term incidence of ischaemic heart disease in the Northwick Park Heart Study. Lancet. 1993; 342: 1076-1079
    40. Haines AP, Howarth D, North WR, Goldenberg E, Stirling Y, Meade TW, Raftery EB, Millar Craig MW. Haemostatic variables and the outcome of myocardial infarction. Thromb Haemost. 1983; 50: 800-803
    41. Ernst E, Resch KL. Fibrinogen as a cardiovascular risk factor: a meta-analysis and review of literature. Ann Intern Med. 1993; 118: 956-963
    42. Maresca G, Di Blasio A, Marchioli R, Di Minno G. Measuring plasma fibrinogen to predict stroke and myocardial infarction: an update. Arterioscler Thromb Vasc Biol. 1999; 19: 1368-1377
    43. Danesh J, Collins R, Appleby P, Peto R. Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies. JAMA. 1998; 279: 1477-1482
    44. Baumann RE, Henschen AH. Human fibrinogen polymorphic site analysis by restriction endonuclease digestion and allele-specific polymerase chain reaction amplification: identification of polymorphisms at positions A alpha 312 and B beta 448. Blood 1993;82:2117-2124
    45. Carter AM, Catto AJ, Bamford JM, Grant PJ. Gender-specific associations of the fibrinogen Bβ 448 polymorphism, fibrinogen levels, and acute cerebrovascular disease. Arterioscler Thromb Vasc Biol 1997; 17:589-594
    46. Baumann RE, Henschen AH. Linkage disequilibrium relationships among four polymorphisms within the human fibrinogen gene cluster. Hum Genet 1994; 94:165-170
    47. Carter AM, Mansfield MW, Stickland MH, Grant PJ. β-fibrinogen gene-455 G/A polymorphism and fibrinogen levels: risk factors for coronary artery disease in subjects with NIDDM. Diabetes Care. 1996; 19: 1265-1268
    48. Margaglione M, Di Minno G, Grandone E, Vecchione G, Celentano E, Cappucci G, Giordano M, Simone P, Fusilli S, Panico S, Mancini M. Raised plasma fibrinogen concentrations in subjects attending a metabolic ward-relation to family history and vascular risk factors. Thromb Haemost. 1995; 73: 579-583
    49. de Maat MPM, Kastelein JJP, Jukema JW, et al. -455G/A polymorphism of the β-fibrinogen gene is associated with the progression of coronary atherosclerosis in symptomatic men:proposed role for an acute phase reaction pattern of fibrinogen.Arterioscler Thromb Vasc Biol.1998;18:265
    50.马会利 陈纪林冯军 李明花马永莉 陈在嘉,年轻心肌梗死患者纤维蛋白原基因βG-455-A多态性研究.中华心血管病杂志2002;30:74-77
    51.Cook DG,Cappuccio FP,Atkinson RW,Wicks PD,Chitolie A,Nakandakare ER,Sagnella GA,Humphries SE.Ethnic differences in fibrinogen levels:the role of environmental factors and the β fibrinogen gene.Am J Epidemiol 2001;153:799-806
    52.Thomas AE,Green FR,Lamlum H,Humphries SE.The association of combined alpha and beta fibrinogen genotype on plasma fibrinogen levels in smokers and non-smokers.J Med Genet 1995;32:585-589
    53.Stephens JC,Schneider JA,Tanguay DA,Choi J,Acharya T,Stanley SE,Jiang R,et al.Haplotype variation and linkage disequilibrium in 313 human genes.Science.2001 20;293:489-493
    54.Johnson GC,Esposito L,Barratt BJ,Smith AN,Heward J,Di Genova G,Ueda H,et al.Haplotype tagging for the identification of common disease genes.Nat Genet.2001;29:233-237
    55.Schaid DJ,Rowland CM,Tines DE,Jacobson RM,Poland GA.Score tests for association between traits and haplotypes when linkage phase is ambiguous.Am J Hum Genet 2002;70:425-434
    56.Lake SL,Lyon H,Tantisira K,Silverman EK,Weiss ST,Laird NM,Schaid DJ.Estimation and tests of haplotype-environment interaction when linkage phase is ambiguous.Hum Hered 2003;55:56-65
    57.Iacoviello L,Vischetti M,Zito F,Benedetta Donati M.Genes encoding fibrinogen and cardiovascular risk.Hypertension 2001;38:1199-1203
    58.Sabeti S,Exner M,Mlekusch W,Amighi J,Quehenberger P,Rumpold H,Maurer G,Minar E,Wagner O,Schillinger M.Prognostic impact of fibrinogen in carotid atherosclerosis:nonspecific indicator of inflammation or independent predictor of disease progression? Stroke.2005;36:1400-1404
    59. Kathiresan S, Yang Q, Larson MG, Camargo AL, Tofler GH, Hirschhorn JN, Gabriel SB, O'Donnell CJ. Common genetic variation in five thrombosis genes and relations to plasma hemostatic protein level and cardiovascular disease risk. Arterioscler Thromb Vasc Biol. 2006;26:1405-1412.
    60. Reiner AP, Carty CL, Carlson CS, Wan JY, Rieder MJ, Smith JD, Rice K, Fornage M, Jaquish CE, Williams OD, Tracy RP, Lewis CE, Siscovick DS, Boerwinkle E, Nickerson DA. Association between patterns of nucleotide variation across the three fibrinogen genes and plasma fibrinogen levels: the Coronary Artery Risk Development in Young Adults (CARDIA) study. J Thromb Haemost.2006; 4:1279-1287.
    61. Tobin MD, Braund PS, Burton PR, Thompson JR, Steeds R, Channer K,Cheng S, Lindpaintner K, Samani NJ. Genotypes and haplotypes predisposingto myocardial infarction: a multilocus case-control study. Eur Heart J. 2004;25:459-467.
    62. Mannila MN, Eriksson P, Lundman P, Samnegard A, Boquist S, Ericsson CG, Tornvall P, Hamsten A, Silveira A. Contribution of haplotypes across the fibrinogen gene cluster to variation in risk of myocardial infarction. Thromb Haemost 2005;93:570-577.
    63. Sampaio MF, Hirata MH, Hirata RD, Santos FC, Picciotti R, Luchessi AD, de Quateli Doi S, Armaganijan D, Batlouni M AMI is associated with polymorphisms in the NOS3 and FGB but not in PAI-1 genes in young adults. Clin Chim Acta. 2007;377:154-162
    64. Smith GD, Harbord R, Milton J, Ebrahim S, Sterne JA. Does elevated plasma fibrinogen increase the risk of coronary heart disease? Evidence from a meta-analysis of genetic association studies. Arterioscler Thromb Vasc Biol 2005;25:2228-2233.
    65. Maghzal GJ, Brennan SO, George PM . Fibrinogen B beta polymorphisms do not directly contribute to an altered in vitro clot structure in humans. Thromb Haemost 2003;90:1021-1028
    66.Lim BC,Ariens RA,Carter AM,Weisel JW,Grant PJ.Genetic regulation of fibrin structure and function:complex gene-environment interactions may modulate vascular risk.Lancet 2003;361:1424-1431
    67.Baumann RE,Henschen AH.Linkage disequilibrium relationships among four polymorphisms within the human fibrinogen gene cluster.Hum Genet 1994;94:165-170
    1. American Heart Association. Heart disease and stroke statistics- 2004 update. Dallas: American Heart Association, 2004
    2. Libby P: Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 2001; 104:365-372.
    3. Hansson GK: Inflammation, atherosclerosis, and coronary artery disease. An up-to-date and comprehensive review of the inflammatory mediators and processes involved in atherosclerosis. N Engl J Med 2005;352:1685-1695.
    4. Danesh J, Whincup P, Walker M, Lennon L, Thomson A, Appleby P, Gallimore JR, Pepys MB: Low-grade inflammation and coronary heart disease: prospective study and updated meta-analyses. BMJ 2000;321:199-204.
    5. Ridker PM, Rifai N, Rose L, Burning JE, Cook NR: Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 2002;347:1557-1565.
    6. Six DA, Denis EA: The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. Biochim Biophys Acta 2000; 1488:1-19.
    7. Caslake MJ, Packard CJ, Suckling KE:Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase: a potential new risk factor for coronary artery disease. Atherosclerosis. 2000; 150(2): 413-419.
    8. Korth R., Bidault J, Palmantier R: Human platelets release a paf-acether. acetylhydrolase similar to that in plasma. Lipids. 1993;28(3): 193-199.
    9. Asano K, Okamoto S, Fukunaga K: Cellular sources of platelet activating-factor acetylhydrolase activity in plasma. Biochem. Biophys. Res. Commun.1999;261(2): 511-514.
    10. Stafforini DM, Tjoelker LW, McCormick SP, Vaitkus D,McIntyre TM, Gray PW, Young SG, Prescott SM: Molecular basis of the interaction between plasma platelet-activating factor acetylhydrolase and low density lipoprotein. J Biol Chem 1999;274:7018-7024.
    11. Asano K, Okamoto S, Fukunaga K, Shiomi T, Mori T, Iwata M,Ikeda Y, Yamaguchi K: Cellular source(s) of platelet-activating factor acetylhydrolase activity in plasma. Biochem Biophys Res Commun 1999;261:511-514.
    12. Min JH, Jain MK, Wilder C, Paul L, Apitz-Castro R, Aspleaf DC,Gelb MH: Membrane-bound plasma platelet activating factor acetylhydrolase acts on substrate in the aqueous phase.Biochemistry 1999;38:12935-12942.
    13. Stafforini DM, McIntyre TM, Zimmerman GA, Presott SM:Platelet-activating factor acetylhydrolases. J Biol Chem 1997;272: 17895-17898.
    14. L.W. Tjoelker, C. Wilder, C. Eberhardt, D.M. Stafforini, G. Dietsch, B.Schimpf, S. Hooper, H. Le Trong, L.S. Cousens, G.A. Zimmerman, Y.Yamada, T.M. Mclntyre, S.M. Prescott, P.W. Gray: Anti-inflammatory properties of a platelet-activating factor acetylhydrolase, Nature 1995;374:549-553.
    15. L.W. Tjoelker, C. Eberhardt, J. Unger, H.L. Trong, G.A. Zimmerman,T.M. Mclntyre, D.M. Stafforini, S.M. Prescott, P.W. Gray, Plasma platelet-activating factor acetylhydrolase is a secreted phospholipase A2 with a catalytic triad, J. Biol. Chem. 1995; 270:25481-25487.
    16. Min JH, Jain MK, Wilder C, Paul L, Apitz-Castro R, Aspleaf DC, Gelb MH: Effect of platelet activating factor-acetylhydrolase on the formation and action of minimally oxidized low density lipoprotein. J Clin Invest 1995;95:774-782.
    17. Henig NR, Aitken ML, Liu MC, Yu AS, Henderson WR Jr: Effect of recombinant human platelet-activating factor acetylhydrolase on allergen-induced asthmatic responses.Am J Respir Crit Care Med 2000; 162:523-527.
    18. Opal S, Laterre PF, Abraham E, Francois B, Wittebole X, Lowry S, Dhainaut JF, Warren B, Dugernier T, Lopez A et al.: Recombinant human platelet-activating factor acetylhydrolase for treatment of severe sepsis: results of a phase III, multicenter, randomized, double-blind placebo-controlled, clinical trial. Crit Care Med 2004;32:332-341.
    19. Naoki K, Asano K, Satoh N, Fukunaga K, Oguma T, Shiomi T, Suzuki Y, Nakajima T, Niimi K, Shiraishi Y et al.: PAF responsiveness in Japanese subjects with plasma PAF acetylhydrolase deficiency. Biochem Biophys Res Commun 2004;317:205-210.
    20. Tselepsis AD, John Chapman M: Inflammation, bioactive lipids and atherosclerosis: potential roles of a lipoprotein associated phospholipase A2 platelet activating factor acetylhydrolase. Atherosceler Suppl 2002;3:57-68.21.
    21. Caslake MJ, Packard CJ: Lipoprotein-associated phospholipase A2 (platelet-activating factor acetylhydrolase and cardiovascular disease. Curr Opin Lipidol 2003; 14:347-352.22.
    22. Zalewski A, Macphee CH: Role of lipoprotein-associated phospholipase A2 in atherosclerosis. Arterioscler Thromb Vasc Biol 2005;25:923-931.
    23. Caslake MJ, Packard CJ. Lipoprotein-associated phospholipase AZ (platelet-activating factor acetylhydrolase) and cardiovascular disease. Curr Opin Lipidol. 2003; 14(4): 347-352.
    24. Tselepis AD, Chapman JM:Inflammation, bioactive lipids and atherosclerosis: potential roles of a lipoprotein-associated phospholipase AZ, platelet activating factor-acetylhydrolase. Atheroscler Suppl. 2002;3(4): 57-68.
    25. Dada N, Kim NW, Wolfert RL. Lp-PLAz: an emerging biomarker of coronary heart disease. Expert Rev Mol Diagn. 2002;2(1): 17-22.
    26. Macphee CH, Nelson JJ, Zalewski A: Lipoprotein-associated phospholipase A2 as a target of therapy. Curr Opin Lipidol 2005; 16:4442-4446.
    27. MacPhee CH, Moores KE, Boyd HF, Dhanak D, Ife RJ, Leach CA, Leake DS, Milliner KJ, Patterson RA, Suckling KE et al.: Lipoprotein-associated phospholipase A2 platelet-activating factor acetylhydrolase, generates two bioactive products during the oxidation of low-density lipoprotein: use of a novel inhibitor. Biochem J 1999;338:479-487.
    28. Carpenter KL, Dennis IF, Challis IR, Osborn DP, Macphee CH, Leake DS, Arends MJ, Mitchinson MJ: Inhibition of lipoprotein associated phospholipase A2 diminishes the death-inducing effects of oxidized LDL on human monocyte-macrophages. FEBS Lett 2001;505:357-363.
    29. Subbanagounder G, Leitinger N, Schwenke DC, Wong JW, Lee H, Rizza C, Watson AD, Faull KF, Fogelman AM, Berliner JA: Determinants of bioactivity of oxidized phospholipids. Specific oxidized fatty acyl groups at the sa-2 position. Arterioscler Thromb Vasc Biol 2000;20:2248-2254.
    30. Subbanagounder G, Wong JW, Lee H, Faull KF, Miller E, Witztum JL, Berliner JA: Epoxyisoprostane and epoxycyclopentenone phospholipids regulate monocyte chemotactic protein-1 and interleukin-8 synthesis. J Biol Chem 2002;277:7271-7281.
    31. Tselepis AD, Dentan C, Karabina SA, Chapman MJ, Ninio E: PAF-degrading acetylhydrolase is preferentially associated with dense LDL and VHDL-1 in human plasma. Catalytic characteristics and relation to the monocyte-derived enzyme. Arterioscler Thromb Vasc Biol 1995;15:1764-1773.
    32. Benitez S, Sanchez-Quesada JL, Ribas V, Jorba O, Blanco-Vaca F, Gonzalez-Sastre F, Ordonez-Llanos J: Plateletactivating factor acetylhydrolase is mainly associated with electronegative low-density lipoprotein subtraction. Circulation 2003; 108:92-96.
    33. Sevanian A, Bittolo-Bon G, Cazzolato G, Hodis H, Hwang J, Zamburlini A, Maiorino M, Ursini F: LDL is a lipid hydroperoxideenriched circulating lipoprotein. J Lipid Res 1997;38:419-428.
    34. Benitez S, Villegas V, Bancells C, Jorba O, Gonzalez-Sastre F, Ordonez-Llanos J, Sanchez-Quesada JL: Impaired binding affinity of electronegative low-density lipoprotein (LDL) to the LDL receptor is related to nonesterified fatty acids and lysophosphatidylcholine content. Biochemistry 2004; 43:15863-15872.
    35. Sanchez-Quesada JL, Camacho M, Anton R, Benitez S, Vila L, Ordonez-Llanos J: Electronegative LDL of FH subjects: chemical characterization and induction of chemokine release from human endothelial cells. Atherosclerosis 2003; 166:261-270.
    36. Yang CY, Raya JL, Chen HH, Chen CH, Abe Y, Pownall HJ, Taylor AA, Smith CV: Isolation, characterization, and functional assessment of oxidatively modified subfractions of circulating low-density lipoproteins. Arterioscler Thromb Vasc Biol 2003;23:1083-1090.
    37. Marathe GK, Zimmerman GA, Mclntyre TM: Platelet-activating factor acetylhydrolase, and not paraoxonase-1, is the oxidized phospholipid hydrolase of high density lipoprotein particles. J Biol Chem. 2003 ;278(6):3937-47.
    38. Forte TM, Subbanagounder G, Berliner JA, Blanche PJ,Clermont AO, Jia Z, Oda MN,Krauss RM, Bielicki JK: Altered activities of anti-atherogenic enzymes LCAT, paraoxonase, and platelet-activating factor acetylhydrolase in atherosclerosis-susceptible mice. J Lipid Res. 2002;43(3):477-85.
    39. Hase M, Tanaka M, Yokota M, Yamada Y: Reduction in the extent of atherosclerosis in apolipoprotein E-deficient mice induced by electroporation-mediated transfer of the human plasma platelet-activating factor acetylhydrolase gene into skeletal muscle. Prostaglandins Other Lipid Mediat. 2002;70(1-2): 107-18.
    40. Noto H, Hara M, Karasawa K, Iso-O N, Satoh H, Togo M, Hashimoto Y, Yamada Y, Kosaka T, Kawamura M, Kimura S, Tsukamoto K: Human plasma platelet-activating factor acetylhydrolase binds to all the murine lipoproteins, conferring protection against oxidative stress. Arterioscler Thromb Vasc Biol. 2003;23(5):829-35.
    41. M.J. Caslake, C.J. Packard, K.E. Suckling, S.D. Holmes, P. Chamberlain, CH. Macphee, Lipoprotein-associated phospholipase A2 platelet-activating factor acetylhydrolase: a potential new risk factor for coronary artery disease, Atherosclerosis.2000; 150:413-419.
    42. C.J. Packard, D.S. O'Reilly, M.J. Caslake, A.D. McMahon, I. Ford, J. Cooney, C.H. Macphee, K.E. Suckling, M. Krishna, F.E. Wilkinson, A.Rumley, G.D. Lowe, Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart disease. West of Scotland Coronary Prevention Study Group, N. Engl. J. Med. 2000;343:1179-1182.
    43. CM. Ballantyne, R.C. Hoogeveen, H. Bang, J. Coresh, A.R. Folsom, G. Heiss, A.R. Sharrett, Lipoprotein-associated phospholipase A2, highsensitivity C-reactive protein, and risk for incident coronary heart diseases in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study, Circulation .2004; 109:837-842.
    44. W. Koenig, N. Khuseyinova, H. Lowel, G. Trischler, C. Meisinger, Lipoprotein-associated phospholipase A2 adds to risk prediction of incident coronary events by C-reactive protein in apparently healthy middle-aged men from the general population: results from the 14-year follow-up of a large cohort from southern Germany, Circulation. 2004; 110:1903-1908.
    45. Oei HH, Vliegenthart R,Hofman A,Oudkerk M,Witteman JC. Risk factors for coronary calcification in older subjects. The Rotterdam Coronary Calcification Study. Eur Heart J. 2004;25(1):48-55.
    46. G.J. Blake, N. Dada, J.C. Fox, J.E. Manson, P.M. Ridker, A prospective evaluation of lipoprotein-associated phospholipase A2 levels and the risk of future cardiovascular events in women, J. Am. Coll. Cardiol. 2001 ;38:1302-1306.
    47. Heart Protection Study Collaborative Group: MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002;360:7-22.
    48. M. Miwa, T. Miyake, T. Yamanaka, J. Sugatani, Y. Suzuki, S. Sakata, Y. Araki, M. Matsumoto, Characterization of serum platelet-activating factor (PAF) acetylhydrolase. Correlation between deficiency of serum PAF acetylhydrolase and respiratory symptoms in asthmatic children, J. Clin. Invest. 1988; 82:1983-1991.
    49. D.M. Stafforini, K. Satoh, D.L. Atkinson, L.W. Tjoelker, C. Eberhardt, H. Yoshida, T. Imaizumi, S. Takamatsu, G.A. Zimmerman, T.M. McIntyre, P.W. Gray, S.M. Prescott, Platelet activating factor acetylhydrolase deficiency. A missense mutation near the active site of anti-inflammatory phospholipase, J. Clin. Invest. 1996;97:2784-2791.
    50. Y. Yamada, S. Ichihara, T. Fujimura, M. Yokota, Identification of the G994→T missense in exon 9 of the plasma platelet-activating factor acetylhydrolase gene as an independent risk factor for coronary artery disease in Japanese men, Metabolism . 1998;47 :177-181.
    51. M. Hiramoto, H. Yoshida, T. Imaizumi, N. Yoshimizu, K. Satoh, A mutation in plasma platelet-activating factor acetylhydrolase (Val279→Phe) is a genetic risk factor for stroke, Stroke .1997;28 :2417-2420.
    52. S. Ichihara, Y. Yamada, M. Yokota, Association of a G994→T missense mutation in the plasma platelet-activating factor acetylhydrolase gene with genetic susceptibility to nonfamilial dilated Cardiomyopathy in Japanese, Circulation. 1998;98:1881-1885.
    53. Y. Yamada, S. Ichihara, H. Izawa, M. Tanaka, M. Yokota, Association of a G994→7 (Val279→Phe) polymorphism of the plasma platelet-activating factor acetylhydrolase gene with myocardial damage in Japanese patients with nonfamilial hypertrophic caridomyopathy, J. Hum. Genet. 2001 ;46:436—441.
    54. H. Yoshida, T. Imaizumi, K. Fujimoto, H. Itaya, M. Hiramoto, N. Yoshimizu, K. Fukushi, K. Satoh, A mutation in plasma platelet activating factor acetylhydrolase (Val279Phe) is a genetic risk factor for cerebral hemorrhage but not for hypertension, Thromb. Haemost. 1998;80:372-375.
    55. N. Unno, T. Nakamura, H. Kaneko, T. Uchiyama, M. Yamamoto, J. Sugatani, M. Miwa, S. Nakamura, Plasma platelet-activating factor acetylhydrolase deficiency is associated with atherosclerotic occlusive disease in Japan, J. Vasc. Surg. 2000;32:263-267.
    56. K. Shimokata, Y. Yamada, T. Kondo, S. Ichihara, H. Izawa, K. Nagata, T.Murohara, M. Ohno, M. Yokota, Association of gene polymorphisms with coronary artery disease in individuals with or without nonfamilial hypercholesterolemia, Atherosclerosis. 2004; 172:167-173.
    57. Zhang X, Yuan CL, Zhang HZ, Xu J, Wu J, Chen BL. Analysis of 994(G-->T) mutation in the plasma platelet-activating factor acetylhydrolase gene in the patients with cerebral infarction. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2005;22(4):450-2.
    58. Jang Y, Kim OY, Koh SJ, Chae JS, Ko YG, Kim JY, Cho H, Jeong TS, Lee WS, Ordovas JM, Lee JH. The Val279Phe variant of the lipoprotein-associated phospholipase A2 gene is associated with catalytic activities and cardiovascular disease in Korean men. J Clin Endocrinol Metab. 2006;91(9):3521-7.
    59. Sekuri C, Cam FS, Tengiz I, Ercan E, Bayturan O, Berdeli A. Association of platelet-activating factor acetylhydrolase gene polymorphism with premature coronary artery disease in Turkish patients. Anadolu Kardiyol Derg. 2006;6(2):132-4.
    60. Liu PY, Li YH, Wu HL, Chao TH, Tsai LM, Lin LJ, Shi GY, Chen JH. Platelet-activating factor-acetylhydrolase A379V (exon 11) gene polymorphism is an independent and functional risk factor for premature myocardial infarction. J Thromb Haemost. 2006;4(5): 1023-8.
    61. Abuzeid AM, Hawe E, Humphries SE, Talmud PJ; HIFMECH Study Group. Association between the Ala379Val variant of the lipoprotein associated phospholipase A2 and risk of myocardial infarction in the north and south of Europe. Atherosclerosis. 2003;168(2):283-8.
    62. Yamada Y, Izawa H, Ichihara S, Takatsu F, Ishihara H, Hirayama H. Prediction of the risk of myocardial infarction from polymorphisms in candidate genes. N Engl J Med 2002; 347:1916-1923.
    63. Yamada Y, Yoshida H, Ichihara S, Imaizumi T, Satoh K, Yokota M. Correlations between plasma platelet-activating factor acetylhydrolase (PAF-AH) activity and PAF-AH genotype, age, and atherosclerosis in a Japanese population. Atherosclerosis. 2000; 150( 1 ):209-16.
    64. Yamada Y, Ichihara S, Fujimura T, Yokota M. Identification of the G994--> T missense in exon 9 of the plasma platelet-activating factor acetylhydrolase gene as an independent risk factor for coronary artery disease in Japanese men.Metabolism.1998;47(2):177-81.
    65.Hiramoto M,Yoshida H,Imaizumi T,Yoshimizu N,Satoh K.A mutation in plasma platelet-activating factor acetylhydrolase(Va1279-->Phe) is a genetic risk factor for stroke.Stroke.1997;28(12):2417-20.
    66.Ninio E,Tregouet D,Carrier JL,Stengel D,Bickel C,Perret C,Rupprecht HJ,Cambien F,Blankenberg S,Tiret L.Platelet-activating factor-acetylhydrolase and PAF-receptor gene haplotypes in relation to future cardiovascular event in patients with coronary artery disease.Hum Mol Genet.2004;13(13):1341-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700