计算电磁学和并行算法解决生物电磁学关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物电磁学(bioelectromagnetics)是研究生物体内和生物体间电磁现象的一门新兴学科。随着技术的发展和电磁环境的复杂度的提高,电磁辐射产生的生物效应问题已经成为人们关注的热点。由于生物体的高度复杂性,科学技术界往往针对一个问题采用多种方法研究,采用计算机模拟是公认的必须的研究方法。该方法可以模拟生命体在自然状态下的过程,这是其他方法所无法取代的。近些年来计算生物学技术已经成为生命科学研究和生物医学工程的关键技术,国内外在该领域的研究正逐步升温。在国家自然科学基金重点项目和北邮创新基金项目的支持下,本文研究了计算电磁学和并行算法在生物电磁学仿真中的应用,特别是研究了人体天线设计和最为重要的阻抗方法和时域有限差分法。这些工作包括仿真了高压输电线、经颅磁刺激对人体内的感应电流密度分布,分析了蓝牙通信系统在人体内产生的比吸收率分布,建立了计算机显示器辐射模型并分析了对人脑的影响,提出了可穿戴式网络的概念,对窄带蓝牙可穿戴式网络进行了估计,设计了用于可穿戴式网络的平面倒F天线和用于无线超宽带通信的对称平面偶极天线(CPD-UWB)。论文的主要贡献包括以下内容:
     1首次完成了阻抗方法的并行化研究,实现并验证了并行阻抗算法。基于Maxwell方程,通过离散化网格重新推导了三维阻抗方法,得到了可计算的电磁波波长和网格解析度之间的关系以及离散化计算方程的生成方式并给出了迭代解法。进一步给出了实现阻抗方法的并行化的通信方式并在8节点并行计算系统上通过消息传递界面(MPI)实现了并行阻抗方法。验证了并行阻抗算法的正确性并评估了并行计算效率。
     2根据时域有限差分法(FDTD)在生物电磁学领域中应用的需要,重新推导了分裂场形式的FDTD,给出了求解损耗媒质中散射电磁场的FDTD方法。进一步对标准FDTD的数值色散进行分析,提出了修改介质电参数方式来降低网格数值色散的方法,最后对非均匀网格技术进行了讨论。
     3基于并行三维阻抗方法,建立了用于仿真暴露在电磁场环境中的人体内感应电流密度的分布情况的通用的数值模型。进一步又仿真了暴露于国际非电离辐射保护委员会(ICNRIP)建议的磁场限值100μT和0.4μT的磁场(流行病学报告显示该磁场强度儿童患白血病的几率会增加一倍)中仿真人体模型中感应电流密度的分布;仿真了暴露在实际高压输电线附近的人体内的感应电流密度分布,仿真了重复经颅磁刺激在高解析度的人体头部产生的感应电流密度分布。
     4建立了基于可变网格时域有限差分法的仿真微波电磁场与人体近距离互作用的数值模型。仿真了用于蓝牙通信系统的平面倒F天线电磁辐射在人体中产生的比吸收率分布,分析了天线对人体的影响以及人体对天线辐射的影响,为构建人体中心网络和可穿戴网络提供了理论基础。
     5基于运动电荷的电磁辐射原理针对计算机显示器阴极射线管(CRT)建立了电子束辐射模型,得到了辐射场与电子束电流的对应关系,在此基础上建立了计算机显示器CRT辐射场的数值模型。利用建立的CRT电子束的辐射模型计算了人脑暴露于CRT监视屏的电磁场环境下的比吸收率。基于显示器CRT辐射模型针对一种具体的计算机监视器结构建立了辐射频谱特性并将理论计算结果与实际侦收实验得到的测量结果进行了比较。
     6随着手机、蓝牙耳机、无线网卡、无线路由器、可穿戴计算机等在人体附近使用的无线设备的逐渐普及,对于人体中心无线网络技术的研究也在不断升温。为此,在人体中心网络的基础上提出了可穿戴式网络的概念。仿真并设计了采用蓝牙技术构成窄带可穿戴式网络的平面倒F天线,对基于蓝牙窄带的可穿戴式网络的传输通道进行了测试和估计,分析了呼吸、佩戴金属饰品和运动对的影响。仿真并设计了采用宽带UWB技术构建可穿戴式的网络天线。
Bioelectromagnetics (BEM) is the study of electromagnetic phenomena within and between biological systems. With the development of technologies, the electromagnetic environment becomes more and more complicated, therefore the biological effects caused by electromagnetic radiation and human body-centric wireless network have proved to be the key technologies in BEM. Because life body is very complicated, we should use more research methods to deal with one problem. Computer simulation is the commonly used method, because using this method we can simulate the nature life. Nowadays, the computational biology methods have been becoming the key technology of life science and engineering of biology and medicine. Supported by the national natureal science fundation of China and the innovation fundaiton of Beijing University of Posts and Telecommunications, this paper studies the applications of computational electromagnetics and parallel computing in BEM simulation modeling, especially the parallel impedance method and finite-difference time-domain method for BEM simualtion. These research works include the simulation of the induced current distribution in human body exposed to the electromagnetic fields of power transmition line and transcranial magnetic stimulation, the specific absorbed rate distribution in human body when wearing a Bluetooth RF device, the modeling of the computer video display unit, the biology effect of human brain when working in front of the computer monitor, proposed the concept of wearable network and estimating channel character for narrowband wearable network construced by Bluetooth, and giving the design of the planar inverted-F antenna and coupled planar dipole UWB antenna for narrow and broad band wearable network respectively. The main novel works included in this dissertation are as follows:
     1 The implemention of the parallelized three-dimensional impedance method is proposed and verified. Based on Maxwell's equation, the three-dimensional impedance method is deduced and the association numerical model has been found between the minimum incident wave length and the resolution of human body model. Furthermore, a communication scheme to exchange the border data for processors during iteration by message passing interface (MPI) library is designed and a parallel computer system has been set up. The validation and effective of parallel IM is verified by simulation experiment.
     2 In BEM application, the FDTD method is rededuced into splited formations and scattered fields in lossy medium. Forthermore, the constitutive medium is modified to improve the numerical dispersion. The non-uniform mesh technology is discussed.
     3 Set up a numerical model for calculating the induced current in humen body when exposed in electromagnetic fields. The simulations of the induced current in human body is made, when exposed to 100μT (1000mG), which is the limit recommended by the ICNIRP for the public and to 0.4μT (4mG), which is the level at which there appears to be a statistical link with a doubled risk of development of childhood leukaemia based on paralled impedance method. The induced current in human body exposure to power line for lineman and dweller and the induced current density distribution in human head model caused by transcranial magnetic stimulation (TMS) are also simulated for clinical application.
     4 The SAR distribution in a High-Fidelity human body model caused by 2.4GHz band planar inverted-F antenna (PIFA) for Bluetooth application and the PIFA performance affected by human body have been studied by the sub-grid finite-difference time-domain (FDTD) method. The results can provied safety guarantee for body-centric wireless network and wearable network.
     5 In order to consider the video imformation security, based on the radiation of moving charges, a model is proposed for the electromagnetic field of electron beam in acceleration region of CRT. From this model, the radiation field is directly associated with electron beam's current, and it can be analyzed and calculated by numerical method. Further, the frequency spectrum of radiation field has been transformed. The character of frequency spectrum is that each lobe has the same video information. The whole spectrum and the video signals can be recovered by processing each lobe. The numerical simulation results are in agreement with experiments.The human head effect is simulated by FDTD.
     6 With the development of mobilephone, Bluetooth earphone, wireless network card, wireless router and wearable- computers are frequently used near the human body. Quite soon we will see a wide range of unobtrusive wearable and ubiquitous computing equipment integrated into our everyday wear and the body-centric wireless network equipment will be studied bloomingly. Considering the applications, we propose the concept of the wearable network. The planar inverted-F antenna is simulated and designed for Bluetooth wearable network and the on-body channel character is estamated and measured. The effects of deep breath, metal ornament and body movement are studied. The couple planar dipole UWB antenna is also designed for ulta-wide band wearable network.
引文
[1] Noetic Sciences Review, Winter 1993, pages 30-32 Bioelectromagnetics: Old Roots of a New Science[J]. Christian de Quincey. http://twm.co.nz/bem_quincey.html[OL]
    [2] A.F. Huxley-Nobel Lecture. http://nobelprize.org/nobel_prizes/medicine/laureates/1963/ huxley-lecture.pdf[OL] A. L. Hodgkin, A. F. Huxley and B. Katz, J. Physiol. (London)[J], 1952, 116: 424.
    [3] 李缉熙,牛中奇.生物电磁学概论[M].西安电子科技大学出版社,1996.6
    [4] 刘亚宁等,电磁生物效应[M],北京邮电大学出版社,2002年1月
    [5] Hu Yu, Bai Baodong, Xie Dexin. The electromagnetic field distribution in the human body under the ultra-high voltage transmission lines[A], Power System Technology, Proceedings. PowerCon 2002. International Conference on[C]. 2002, 4: 2243-2246
    [6] Dawson T. W., Caputa, K., Stuchly, M.A., High-resolution organ dosimetry for human exposure to low-frequency electric fields[J]. IEEE Trans. Power Delivery. 1998, 13(2):366-373.
    [7] Angela P. Moneda, Melina P. Ioannidou, Dimitris P. Chrissoulidis radio-wave exposure of the human head: analytical study based on a versatile eccentric spheres model including a brain core and a pair of eyeballs[J]. IEEE Tran. Biom. Eng. 2003, 50(6): 667-676.
    [8] International Agency for Research on Cancer, Monographs on the Evaluation of C arcinogenic Risks to Humans, vol.80. Static and Extremely Low Frequency Electric and Magnetic Fields. (26 June 2001), online: International Agency for Research on Cancer [OL].
    [9] Francis, N.P., Biological effects of EMI from domestic appliance[A]. Proceedings of the International Conference on Electromagnetic Interference and Compatibility '97[C], 3-5 Dec. 1997: 289-293
    [10] Chen J., Jin J.m.Calculation of SAR and B_1-field within human head excited by MRI birdcage coils[A]. Antennas and Propagation Society International Symposium, 1997. IEEE.[C], 1997 Digest, Volume: 2,13-18 July 1997:1210-1213.
    [11] Stuchly M.A. Health effects of exposure to electromagnetic fields[A]. Aerospace Applications Conference[C], 1995. Proceedings., 1995 IEEE, Issue: 0,4-11 Feb. 1995:351-368.
    [12] ]Schwan, H. P. Interaction of Microwave and Radio Frequency Radiation with Biological Systems[J]. IEEE Trans. Microwave Theory and Tech. 1968, 19(2): 146-152.
    [13] C95.1-1999 IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz[S].
    [14] C95.1b-2004 IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz Amendment 2: Specific Absorption Rate (SAR) Limits for the Pinna[S].
    [15] PC95.1/D2.4, Jul 2005 Unapproved Revised PC95.1b (Draft IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz Amendment 1: Specific Absorption Rate (SAR) Limits for the Pinna) (Amendment 1 to IEEE Std C95.1-1991 (1999 ed.) C95.1b) Replaced by approved draft[S].
    [16] C95.2-1999 IEEE standard for radio-frequency energy and current-flow symbols[S].
    [17] C95.3-2002 IEEE recommended practice for measurements and computations of radio frequency electromagnetic fields with respect to human exposure to such fields,100 kHz-300 GHz [S].
    [18] C95.4-2002 IEEE Recommended Practice for Determining Safe Distances from Radio Frequency Transmitting Antennas When Using Electric Blasting Caps During Explosive Operations[S].
    [19] C95.5-1981 American national standard recommended practice for the measurement of hazardous electromagnetic fields-rf and microwave
    [20] C95.6-2002 IEEE Standard for Safety Levels with Respect to Human Exposure to Electromagnetic Fields, 0-3 kHz[S].
    [21] C95.7-2005 IEEE Recommended Practice for Radio Frequency Safety Programs, 3 kHz to 300 GHz IS].
    [22] International Agency for Research on Cancer, Monographs on the Evaluation of C arcinogenic Risks to Humans, vol.80. Static and Extremely Low Frequency Electric and Magnetic Fields(26 June 2001). online: International Agency for Research on Cancer [OL].
    [23] Denis L. Henshaw, NRPB Consultation Document Issued 1 May 2003, Proposals for Limiting Exposure to Electromagnetic Fields (0-300 GHz): Comments from Professor Denis L. Henshaw. at 10, [OL].
    [24] O. P. Gandhi, J.-Y. Chen. Numerical dosimetry at power line frequencies using anatomically based models[J]. Bioelectromagn. J. 1992,1 (Supp.): 43-60.
    [25] T. W. Dawson, J. DeMoerloose, M. A. Stuchly. Comparison of magnetically induced ELF fields in humans computed by FDTD and scalar potential FD codes[J]. Appl. Comput. Electromag. Soc. (ACES). 1996,11(3): 63-71.
    [26] I. G. Zubal, C. R. Harrell, E. O. Smith, Z. Rattner, G. R. Gindi, and P. H. Hoffer. Computerized three-dimensional segmented human anatomy[J]. Med. Phys. Biol., 1994, 21:299-302.
    [27] P. J. Dimbylow. FDTD calculations of the whole-body averaged SAR in an anatomically realistic voxel model of the human body from 1 MHz to 1 GHz[J]. Phys. Med. Biol.,1997, 42: 479-490.
    [28] Ryan, D. A. Nelson, K. I. Smith, and J. M. Ziriax. Effects of frequency, permittivity and voxel size on predicted specific absorption rate values in biological tissue during electromagnetic-field exposure[J]. IEEE Trans. Microwave Theory Tech. 2000, 48(11): 2050-2058.
    [29] Nelson R D A, Smith K I, Ziriax J. M. Effects of frequency, permittivity and voxel size on predicted specific absorption rate values in biological tissue during electromagnetic-field exposure[J]. IEEE Trans Microwave Theory Tech, 2000, 48(11): 2050-2058.
    [30] Nelson D. A., Nelson M. T., Waiters T.J.; Mason P.A. Skin heating effects of millimeter-wave irradiation-thermal modeling results[J]. IEEE Trans. Microwave Theory and Tech. 2000, 48(11):2111-2120.
    [31] C. Gabriel. Compilation of the dielectric properties of body tissues at RF and microwave frequencies[R]. Brooks Air Force Technical Report, Al/OE-TR-1996-0037, 1996.
    [32] Xia L., Huo M. M., Zhang X., Wei Q., Liu, F. Beating heart modeling and simulation[C]. Computers in Cardiology, 19-22 Sept. 2004:137-140.
    [33] Zhenyao Xu, Gulrajani R.M., Lorange, M., Savard, P. Simulation of ventricular ectopic beats with a computer heart model[C]. Engineering Advances: New Opportunities for Biomedical Engineers. Proceedings of the 16th Annual International Conference of the IEEE 3-6 Nov. 1994, 2:1192-1193.
    [34] Clancy E. A., Smith J. M., Cohen R. J. A simple electrical-mechanical model of the heart applied to the study of electrical-mechanical alternans[J]. IEEE Trans. Biom. Engi. 1991, 38(6):551-560.
    [35] Alabaster C. M. Permittivity of human skin in millimetre wave band[J]. IEEE Electronics Letters 2003, 39(21): 1521-1522.
    [36] R. Hanington, Time Harmonic Electromagnetic Fields. New York: McGraw-Hill, 1961.
    [37] Gandhi, O. P. Numerical methods for specific absorption rate calculations[C]. Biological Effects and Medical Applications of Electromagnetic Energy, Gandhi, O. P., editor. Englewood Cliffs, NJ: Prentice-Hall, 1990:113-140.
    [38] Gandhi, O. P., and Chen, J. Y. Electromagnetic absorption in the human head from experimental 6 GHz hand-held transceivers[J]. IEEE Trans. Electromagnetic Compatibility, 1995, 37(4):547-558.
    [39] Chen K. M., and Guru B. S. Internal EM field and absorbed power density in human torsos inducby 1 [E] 500 MHz EM waves[J]. IEEE Trans. Microwave Theory and Tech. 1977, 2(9):746-755.
    [40] Hagmann M. J., Gandhi O. P., and Durney C. H. Numerical calculation of electromagnetic energy deposition for a realistic model of man[J]. IEEE Trans Microwave Theory and Tech. 1979, 27(9):804-809.
    [41] Livesay D. E. and Chen K. M.. Electromagnetic fields induced inside arbitrary shaped biological bodies[J]. IEEE Trans. Microwave Theory and Tech. 1974, 22(12): 1273-1280.
    [42] Spiegel R. J. A review of numerical models for predicting the energy deposition and resultant thermal response in humans exposed to electromagnetic fields[J]. IEEE Trans. Microwave Theory and Tech. 1984, 32(8):730-746.
    [43] Chiba, et al. Application of the Finite Element Method to Analysis of Induced Current Densities Inside Human Model Exposed to 60 Hz Electric Field[J]. IEEE Trans. Power Application Systems. 1984, 103(7): 1895-1902.
    [44] Lynch D. R., et al. Finite element solution of Maxwell's equations for hyperthermia treatment planning[J]. Journal of Computational Physics. 1985, 58(2):246-269.
    [45] Morgan M. A.. Finite element calculation of microwave absorption by the cranial structures[J]. IEEE Trans. Biomedical Eng. 1981, 28(10): 687-695.
    [46] Yamashita Y. and Takahashi T. Use of the finite element method to determine epicardial for body surface potentials under a realistic torso model[J]. IEEE Trans. Biomedical Eng. 1984, 28(9): 611-621.
    [47] Brauer J. R., et al. Dynamic electric fields computed by finite elements[J]. IEEE Trans. Industrial Applications. 1989, 25(6): 1088-1092.
    [48] Chen C. H. and Lien C. D. A finite element solution of the wave propagation problem for an inhomogeneous dielectric slab[J]. IEEE Trans. Antennas and Propagation, 1989, 27(6): 887-880.
    [49] Hafner C. The Generalized Multipole Technique for Computational Electromagnetics[M]. Boston: Artech House Books, 1990.
    [50] Hafner C. and Kuster N. Computations of electromagnetic fields by the MMP method (GMT)[J]. Radio Science, 1991, 26(1):291-297.
    [51] Leuchtmann P. and Bomholt L. Thin wire feature for the MMP-code[C]. 6th Annual Review Progress in Applied Computational Electromagnetics, (AECS) Conference Proceedings, Monterey, CA, Mar. 1990.
    [52] Shankar V., Hall W. F. and Mohammadian A. H. A time-domain differential solver for electro-magnetic scattering problems[C]. Proceedings of the IEEE. 1989, 77:709-721.
    [53] Armitage D. W., Levine H. H. and Pethig R. Radiofrequency induced hyperthermia computer simulation of specific absorption rate distributions using realistic anatomical models[J]. Physics in Medicine and Biology, 1983, 28(1):31-42.
    [54] Gandhi O. P., DeFord, J. and Kanai K. Impedance method for calculation of power deposition Patterns in magnetically induced hyperthermia[J]. IEEE Trans. Biomedical Eng. 1984, 31 (10):644-651.
    [55] Chen J. Y., Gandhi O. P. and Conover D. L. SAR and induced current distributions for operator exposure to RF dielectric sealers[J]. IEEE Trans. Electromagnetic Compatibility. 1991,33(3): 252-261
    [56] Gandhi O. P., Gu Y. G., Chen J. Y., and Bassen H. I. Specific absorption rates and induced current distributions in an anatomically based human model for plane-wave exposures[J] Health Physics, 1992, 63(3):281-290
    [57] 吕英华.计算电磁学的数值方法[M]清华大学出版社2006.6
    [58] Lin J. C., and Gandhi O. P. Computational models for predicting field intensity[M]. Handbook of Biological Effects of Electromagnetic Fields, C. Polk and E. Postow, Eds. Boca Raton, FL: CRC Press, 1995:337-402.
    [59] Simunic Ed. Reference models for bioelectromagnetic test of mobile communication systems[C]. Proceedings of the COST 244 Meeting, Rome, Italy, Nov. 17-19, 1994.
    [60] Bui M. D., Stuchly S. S. and Costache G. I. Propagation of transients in dispersive dielectric media[J] IEEE Trans. Microwave Theory and Tech. 1991, 39(7): 1165-1172.
    [61] Furse C. M., Chen J. Y. and Gandhi O. P. The use of the frequency-dependent finite-difference time-domain method for induced currents and SAR calculations for a heterogeneous model of the human body[J]. IEEE Trans. Electromagnetic Compatibility. 1994, 36(2): 128-133.
    [62] Gandhi O. P., Gao B. Q. and Chen J. Y. A frequency-dependent finite-difference time-domain formulation for general dispersive media[J]. IEEE Trans. Microwave Theory and Tech. 1993, 41(4):658-665.
    [63] Joseph R. M., Hagness S. C. and Taflove A. Direct time integration of Maxwell's equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses[J]. Optics Letters. 1991, 16(18):1412-1414.
    [64] Kunz K. S. and Luebbers R. J. The Finite-Difference Time-Domain Method for Electromagnetics[M]. Boca Raton, FL: CRC Press, 1993.
    [65] Lee C. F., Shin R. T. and Kong J. A. Application of FD-TD technique to dispersive materials[C]. PIERS Proceedings, 1991.
    [66] Luebbers R., Hunsberger F. P., Kunz K. S., Sandier R. B. and Schneider M. A frequency-dependent finite-difference time-domain formulation for dispersive materials[J]. IEEE Trans. Electromagnetic Compatibility. 1990, 32(3):222-227.
    [67] Sullivan D. M. Frequency-dependent FDTD methods using Z transformations[J]. IEEE Trans. Antennas and Propagation. 1992, 40(10): 1232-1230.
    [68] Sullivan D. M. A frequency-dependent FDTD method for biological applications[J]. IEEE Trans. Microwave Theory and Tech. 1992, 40:32-539.
    [69] Taflove A. Computational Electrodynamics: Finite-Difference Time-Domain Method[M]. Boston:Artech House, 1995.
    [70] Johnson C. C., et al. Long-wavelength electromagnetic power absorption in prolate spheroidal models of man and animals[J]. IEEE Trans. Microwave Theory and Tech1975, 23(9):739-747.
    [71] Massoudi H., et al. Long-wavelength electromagnetic power absorption in prolate spheroidal models of man and animals[J] IEEE Trans. Microwave Theory and Tech. 1977, 25(1): 41-46.
    [72] Waterman P. C. Symmetry, unitarity and geometry in electromagnetic scattering[J]. Physics Review,1971, 3(2):825-839.
    [73] Barber P. W. Electromagnetic power deposition in prolate spheroid models of man and animals at resonance[J]. IEEE Trans. Biomedical Eng. 1977, 24(6):513-521.
    [74] Lakhtakia A., et al. An iterative extended boundary condition method for solving the absorption characteristic of lossy dielectric objects of larger aspect ratio[J]. IEEE Trans. Microwave Theory and Tech. 1983, 31 (8):640-647.
    [75] Massoudi H., et al. Geometrical-option and exact solutions for internal fields and SARs in a cylindrical model of man as irradiated by an electromagnetic planewave[C]. Abstract of Scientific Papers, URSI International Symposium on the Biological Effects of the Electromagnetic Waves, Airlie, VA, Oct. 30-Nov. 4, 1977:49
    [76] Schaubert D. H., et al. A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies[J]. IEEE Trans. Antenna and Propagation, 1984, 32(1):77-85.
    [77] Hagmann M. J. and Levin R. Accuracy of block models for evaluation of the deposition of energy by electromagnetic fields[J]. IEEE Trans. Microwave Theory and Tech. 1986, 34(6): 653-659.
    [78] Harrington R. F. and Mautz J. R. Green's function for surfaces of revolution[J]. Radio Science. 1972, 7(5):1972.
    [79] Wu T.-K. Electromagnetic fields and power deposition in body-of-revolution models of man," IEEE Transactions on Microwave Theory and Tech. 1979, 27(3):279-283.
    [80] Yee K. S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Trans. Antennas and Propagation. 1996, 17: 585-589.
    [81] Chen J-Y. and Gandhi O. P. Currents induced in an anatomically based model of a human for exposure to vertically polarized electromagnetic pulses[J] IEEE Trans. Microwave Theory and Techniques, 1991, 39(1):31-39
    [82] Chen J-Y. and Gandhi O. P. Numerical simulation of annular-phased arrays of dipoles for hyperthermia of deep-seated tumors[J] IEEE Trans. Biom. Eng. 1992, 39(3): 209-216
    [83] Dimbylow P. J. and Mann S. M.. SAR calculations in an anatomically based realistic model of the head for mobile communication transceivers at 900 MHz and 1.8 GHz[J]. Physics in Medicine and Biology, 1994, 39(10):1537-1553
    [84] Gandhi O. P., Lazzi G., and Furse C. M. Electromagnetic absorption in the human head and neck for mobile telephones at 835 and 1900 MHz[J]. IEEE Trans. Microwave Theory and Techniques, 1996, 44(10): 1884-1897
    [85] Jensen M. A. and Rahmat-Samii, Y. EM interaction of handset antennas and humans in personal communications [C] Proceedings of the IEEE, 1995, 83:7-17
    [86] Luebbers R., Chen L., Uno T., and Adachi S. FDTD calculation of radiation patterns, impedance and gain for a monopole antenna on a conducting box [J] IEEE Trans. on Antennas and Propagation, 192, 40:1577-1582
    [87] Gandhi O. P., Chen S. B., Yuan X. and Chen J. Y. Dosimetry for time-varying magnetic fields in MR imaging[C]. Abstracts of the Sixteenth Annual Meeting of the Bioelectromagnetics Society, Copenhagen, Denmark, June 12-17, 1994:16
    [88] Umashankar K. and Taflove A. A novel method to analyze electromagnetic scattering of complex objects[J]. IEEE Trans. Electromagnetic Compatibility, 1982, 24(4):397-405
    [89] Borup D. T., Sullivan D. M., and Gandhi O. P. Comparison of the FFT conjugate gradient method and the finite-difference time-domain method for the 2D absorption problem[J]. IEEE Trans. Microwave Theory and Tech. 1987, 35(4):383-385.
    [90] Furse C. M., Mathur S. P. and Gandhi O. P. Improvements in the finite-difference time-domain method for calculating the radar cross section of a perfectly conducting target[J]. IEEE Trans. Microwave Theory and Tech. 1990, 38 (7): 919-927.
    [91] Taflove A., and Brodwin M. Numerical solutions of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations[J]. IEEE Trans. Microwave Theory and Tech. 1975, 23(8): 623-630.
    [92] 高本庆.时域有限差分法[M].北京:国防工业出版社.1995
    [93] Gao B. Q. and Gandhi O. P. An expanding-grid algorithm for the finite-difference time-domain method[J]. IEEE Trans. Electromagnetic Compatibility. 1992,34(3):277-283.
    [94] Holland R., Simpson L., and Kunz K. S. Finite-difference analysis of EMP coupling to lossy dielectric structures[J]. IEEE Trans. Electromagnetic Compatibility. 1980, 22(3):203-209.
    [95] Taflove A., Umashankar K. R. and Jurgens T. G. Validation of FD-TD modeling of the radar cross section of three-dimensional structures spanning up to nine wavelengths[J]. IEEE Trans. Antennas and Propagation. 1985, 33(6):662-666.
    [96] Oristaglio M. L. and Hohmann G. W. Diffusion of electromagnetic fields into a two dimensional earth: A finite-difference approach[J]. Geophysics. 1984: 870-894.
    [97] Kunz K. S. and Lee K.-M. A three-dimensional finite-difference solution of the external response—Comparisons of predictions and measure-on an aircraft to a complex transient EM environment: Part Ⅱ ments[J]. IEEE Trans. Electromagnetic Compatibility. 1978, 20(2): 333-341.
    [98] Chen J-Y. and Gandhi O. P. RF currents induced in an anatomically-based model of a human for plane-wave exposures 20-100 MHz[J]. Health Physics. 1989, 57(1): 89-98.
    [99] Gandhi O. P., Chatterjee I., Wu D. and Gu Y. G. Likelihood of high rates of energy deposition in the human legs at the ANSI recommended 3-30 MHz RF safety levels[J]. IEEE Proceedings, 1985, 73:1145-1147.
    [100] Deno D. W. Current induced in the human body by voltage transmission line electric field-measure-ment and calculation of distribution and dose[J]. IEEE Trans. Power Apparatus and Systems. 1977, 96(5): 1517-1527.
    [101] Luebbers R., Chen L., Uno T. and Adachi S. FDTD calculation of radiation patterns, impedance and gain for a monopole antenna on a conducting box[J]. IEEE Trans. Antennas and Propagation. 1992, 40:1577-1582.
    [102] Gandhi O. P. Some numerical methods for dosimetry: Extremely low frequencies to microwave frequencies[J]. Radio Science. 1995, 30(1): 161-177.
    [103] Gandhi O. P. and Furse C. M. Millimeter-Resolution MRI-Based Models of the Human Body for electromagnetic Dosimetry from ELF to Microwave Frequencies[C]. Voxel Phantom Development, Proceedings of an International Workshop held at the National Radiological Protection Board, Chilton, UK, P. J. Dimbylow, Ed., 1995.
    [104] Olley P. and Excell P. S. Classification of a high resolution voxel image of a human head," Voxel Phantom Development[C]. Proceedings of an International Workshop, National Radiological Protection Board, Chilton, UK, P. J. Dimbylow, Ed., 1995.
    [105] Okoniewski M. and Stuchly M. A. A study of the handset antenna and human body interaction[J]. IEEE Trans. Microwave Theory and Tech. 1996, 44(10): 1855-1864.
    [106] Luebbers R. and Baurle R. FDTD predictions of electromagnetic field in and near human bodies using visible human project anatomical scans[C]. IEEE AP-S International Symposium and URSI Radio Science Meeting, Baltimore, MD, July 21-26, 1996.
    [107] Visible Human Project, National Library of Medicine, Bethesda, MD. Available online:[OL].
    [108] Durney C., Massoudi H. and Iskander M. Radiofrequency Radiation Dosimetry Handbook (Fourth Edition)[R]. U. S. Air Force School of Aerospace Medicine, Report USAFSAM-TR-85-73, 1986.
    [109] Gabriel C. Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies[R]. AL/OE-TR-1996-0037, prepared for the U. S. Air Force Armstrong Laboratory, Brooks AFB, TX, June 1996.
    [110] Gabriel S., Lau R. W. and Gabriel C. The dielectric properties of biological tissues: Ⅲ. Parametric models for the dielectric spectrum of tissues[J]. Phys. Med. Biol. 1996, 41(11): 2271-2293.
    [111] Geddes L. A. and Baker L. E. The specific resistance of biological material—A compendium of data for the biomedical engineer and physiologist[J]. Med Biol. Eng. 1967, 5(3):271-293.
    [112] Stuchly M. A. and Stuchly S. S. Dielectric properties of biological substances—Tabulated[J]. Journal of Microwave Power. 1980, 15(1): 19-26.
    [113] Fraaone A., Yew-Siow Tay R., Joyner K. and Balzano Q. Estimation of the average power density in the vicinity of cellular base-station collinear array antennas[J]. IEEE Tran. Vehicular Technology. 2000, 49(3): 984-996.
    [114] Picket-May M. A., Taflove A., and Baron. FD-TD modeling of digital signal propagation in 3-D circuits with passive and active loads[J]. IEEE Trans. Microwave Theory and Tech. 1994, 42(8): 1514-1523.
    [115] Ludwig A. A new technique for numerical electromagnetics[J] IEEE AP-S Newsletter. 1989, 31: 40-41.
    [116] Golub G. H. and Van Loan C. F. Matrix Computations[M], 2nd ed. Baltimore, MD: Johns Hopkins University Press, 1989.
    [117] Kuster N. Multiple multipole method applied to an exposure safety study[J] ACES Special Issue on Bioelectromagnetic Computations, A. H. J. Fleming and K. H. Joyner, Eds., Applied Computational Electromagnetics Society, 1992, 7(2): 43-60.
    [118] Regli P. Estimating the far field accuracy of MMP results[C]. 2nd International Conference and Workshop on Approximations and Numerical Methods for the Solution of the Maxwell Equations Workshop Proceedings, The George Washington University, Oct. 1993.
    [119] Kuster N. Multiple multipole method applied to an exposure safety study[J]. ACES Special Issue on Bioelectromagnetic Computations, A. H. J. Fleming and K. H. Joyner, Eds., Applied Computational Electromagnetics Society, 1992, 7(2): 43-60.
    [120] Kuster N. Multiple multipole method for simulating EM problems involving biological bodies[J]. IEEE Trans. Biomedical Eng. 1993, 40(7): 611-620.
    [121] Tay R. Y. and Kuster N. Performance of the generalized multipole technique (GMT/MMP) for antenna design and optimization[J]. Applied Computational Electromagnetics (ACES) Journal. 1994, 9(3): 79-89.
    [122] Furse C. M. and Gandhi O. P. Calculation of electric fields and currents induced in a millimeter-resolution human model at 60 Hz using the FDTD method[J]. Bioelectromagnetics. 1998, 19: 293-299.
    [123] Gandhi O. P. and DeFord J. F. Calculation of EM power deposition for operator exposure to RF induction heaters. IEEE Trans. Electromagnetic Compatibility. 1988, 30: 63-68
    [124] 胡俊.复杂目标矢量电磁散射的高效方法—快速多极子方法及其应用[D].电子科技大学电子工程学院博士论文,200,5
    [125] 韩宇南,吕英华,张金玲,张洪欣.蓝牙平面倒F天线辐射对人体比吸收率仿真[J]//电波科学学报(已录用)
    [126] 韩宇南,吕英华,张金玲,张洪欣,秦鹏钧.阻抗方法及其并行算法实现[J]//北京邮电大学学报,2007,30(sup):57-60.
    [127] HAN Yu-nan, LU Ying-hua, ZHANG Hong-xin. A 3-D Impedance Method to Compute extremely low frequency EMF Exposure[J]//The journal of China universities of posts and telecommunications, 2007(已录用)
    [128] HAN Yu-nan, LU Ying-hua, ZHANG Jin-ling, ZHANG Hong-xin. A Parallel 3-D impedance method to compute the Induce Current in Human Head by TMS[C]//2007 IEEE/ICME International Conference on Complex Medical Engineering. Beijing: [s.n.],2007:1455-1459
    [129] Han Yunan, Lu Yinghua, Zhang Hongxin. A model for electromagnetic leakage of information from electron beam in CRT's acceleration region[C] // Asia-Pacific Radio Science Conference. Qingdao:[s.n.], 2004: 512-515.
    [130] Yunan Han, Yinghua Lu, Jinling Zhang, Biao Yang. A 3-D impedance method to compute current induced in human body when exposed to power lines[C]//IEEE 2005 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. Beijing:[s.n.], 2005: 470-473.
    [131] Han Yunan, Lu Yinghua, Du Juan, et al. 3D-FDTD computation of SAR distribution in an anatomical model of human head exposed to the EM field radiated by CRT computer monitors[C]//16th International Conference on Computer Communication. Beijing:[s.n.], 2004: 1618-1621.
    [132] HAN Yu-nan, LU Ying-hua, LIU Ning, HE Peng-fei. SAR Distribution in Visible Human Head Exposure to the Field Radiated by CRT Computer Monitors[C]//5th International Conference on Microwave and Millimeter Wave Technology. April 18-21, 2007, Guilin, China: 219-222.
    [133] Han Yu-nan, Lu Ying-hua, Zhang Jin-ling, Zhu Xiao-lu. The interaction between PIFA for Bluetooth applications and a Hi-Fi human body model[C]// Asia-pacific conference on environmental electromagnetics, Dalian, China2006: 331-335.
    [134] 韩宇南,吕英华,黄小红.并行改进回溯算法实现N皇后问题的快速计数[J]//计算机工程与应用,2006,(36):1-3.
    [135] Yunan Han, Yinghua Lu, Tao Yu, Yaning Liu. The Simulation of Interaction Between PIFA for Bluetooth and Human Body[C]//The 4th International Conference on Electromagnetic Fields and Biological Effects, Kunming, China, 2005: 60-61.
    [136] Yunan Han, Yinghua Lu, Zheng Gong, Yinhua Cui. A 3-D Impedance Method to Compute extremely low frequency EMF Exposure[C]//The 4th International Conference on Electromagnetic Fields and Biological Effects, Kunming, China, 2005: 62-68.
    [137] 韩宇南,吕英华,杜鹃,王海兰,车树良.高压输电线磁感应强度对人体感应电流的计算[C]//第十五届全国电磁兼容学术会议,中国广州,2005.4:76-79.
    [138] 韩宇南,吕英华,杜鹃,王海兰.计算机显示器CRT的电磁辐射对人脑产生的生物效应研究[C]//全国非电离辐射与电离辐射生物效应及防护学术研讨会,中国西安,2004.8:207-208.
    [139] 韩宇南,吕英华,贺鹏飞,张洪欣.阴极射线管加速区电子束信息泄漏建模分析[C]//第十四届全国电磁兼容学术会议,中国成都,2004.5:85-89.
    [140] 韩宇南,吕英华,张洪欣,阳彪.室内电磁环境中计算机系统的电磁辐射测量[J]//新电子2005年9月.
    [141] 韩宇南,吕英华,陈大庆,郑刚,徐力,陈国东.基于移动通信系统的远程医疗监护系统构建方案[J]//通信世界周刊,2004,46:48.
    [142] 余文华,苏涛,Raj Mittra,刘永俊.并行时域有限差分[M]中国传媒大学出版社.2005,9
    [143] Gandhi O P, DeFord J F, Kanai H. Impedance method for calculation of power deposition patterns in magnetically induced hyperthermia[J]. IEEE Trans Biomed, 1984, 31(10): 644-651.
    [144] Orcutt N, Gandhi O P. A 3-D impedance method to calculate power deposition in biological bodies subjected to time varying magnetic fields[J]. IEEE Trans Biomed, 1988, 35(8): 577-583.
    [145] Nadeem M, Thorlin T, Gandhi O P, et al. Computation of electric and magnetic stimulation in human head using the 3-D impedance method. IEEE Trans Biomed. 2003, vol. 50:900-907.
    [146] Stanislaw S. Stuchly, Maria A. Stuchly, Andrzej Kraszewski, George Hartsgrove. Energy Deposition in a Model of Man: Frequency Effects[J]. IEEE Trans. Biomedical Eng. 1986, 33(7): 702-711.
    [147] Maria A. Stuchly, Andrzej Kraszewski, Stanislaw S. Stuchly. Exposure of Human Models in the Near and Far Field:A Comparison[J]. IEEE Trans Biomed. 1985, 32(8): 609-616.
    [148] Stanislaw S. Stuchly, Andrzej Kraszewski, Maria A. Stuchly, George W. Hartsgrove, Ronald J. Spiegel. RF Energy Deposition in a Heterogeneous Model of Man: Far-Field Exposures[J]. IEEE Trans Biomed. 1987, 34(12): 951-957.
    [149] Hokstad P., Maria A., Tomis P. Estimation of common cause factors from systems with different numbers of channels[J]. IEEE Trans. Reliability. 2006, 55(1): 18-25.
    [150] Maria, A. Introduction To Modeling And Simulation[C]. Simulation Conference Proceedings, 1997. Winter. 7-10 December 1997: 7-13.
    [151] Carson Y., Maria A. Simulation Optimization: Methods And Applications[C]. Simulation Conference Proceedings, 1997. Winter 7-10 December 1997:118-126.
    [152] Stuchly M A, Dawson T W. Interaction of Low-Frequency Electric and Magnetic Fields with the Human Body[J].Proceedings of the IEEE,2000,88(5): 643-664.
    [153] Jianqing Wang, Fujiwara O. Comparison and evaluation of electromagnetic absorption characteristics in realistic human head models of adult and children for 900-MHz mobile telephones[J]. IEEE Trans. Microwave Theory and Tech. 2003, 51 (3): 966-971.
    [154] Wang J., Fujiwara O., Watanabe S., Yamanaka. Computation with a parallel FDTD system of human-body effect on electromagnetic absorption for portable telephones[J]. IEEE Trans. Microwave Theory and Tech. 2004, 52(1): 53-58.
    [155] Jianqing Wang, Komatsu M., Fujiwara O. Human exposure assessment using a hybrid technique based on ray-tracing and FDTD methods for a cellular base-station antenna[C].Radio Science Conference, 2004. Proceedings. 2004 Asia-Pacific. 24-27 Aug. 2004: 538.
    [156] Jianqing Wang, Fujiwara O. FDTD computation of temperature rise in the human head for portable telephones[J]. IEEE Trans. Microwave theory Tech. 1999, 47(8): 1528-1534.
    [157] Hirata A., Fujimoto M., Asano T., Jianqing Wang; Fujiwara O., Shiozawa T. Correlation between maximum temperature increase and peak SAR with different average schemes and masses[J]. IEEE Trans. Electromagnetic Compatibility. 2006, 48(3): 569-578.
    [158] Jianqing Wang, Fujita M., Fujiwara O., Wake K., Watanabe S.Uncertainty evaluation of an in vivo near-field exposure setup for testing biological effects of cellular phones[J]. IEEE Trans. Electromagnetic Compatibility. 2006, 48(3): 545-551.
    [159] Hirata A., Fujiwara O., Shiozawa T.Correlation Between Peak Spatial-Average SAR and Temperature Increase Due to Antennas Attached to Human Trunk[J]. IEEE Trans. Biomedical Eng. 2006, 53(8): 1658-1664.
    [160] Fujimoto M., Hirata A., Jianqing Wang, Fujiwara O., Shiozawa T. FDTD-derived correlation of maximum temperature increase and peak SAR in child and adult head models due to dipole antenna[J]. IEEE Trans. 2006, 48(1): 240-247.
    [161] Beard B.B., Kainz W., Onishi T., Iyama T., Watanabe S., Fujiwara O., Jianqing Wang, Bit-Babik G., Faraone A., Wiart J., Christ A., Kuster N., Ae-Kyoung Lee, Kroeze H., Siegbahn M., Keshvari J., Abrishamkar H., Simon W., Manteuffel D., Nikoloski N. Comparisons of computed mobile phone induced SAR in the SAM phantom to that in anatomically correct models of the human head[J]. IEEE Trans. Electromagnetic Compatibility. 2006, 48(2): 397-407.
    [162] Jianqing Wang, Fujiwara O., Watanabe S. Approximation of aging effect on dielectric tissue properties for SAR assessment of mobile telephones[J]. IEEE Trans. Electromagnetic Compatibility. 2006, 48(2): 408-413.
    [163] Jianqing Wang, Fujiwara O., Uda T. New approach to safety evaluation of human exposure to stochastically-varying electromagnetic fields[J]. IEEE Trans. Electromagnetic Compatibility. 2005, 47(4): 971-976.
    [164] James C. Lin. Interaction of Two Cross-Polarized Electromagnetic Waves with Mammalian Cranial Structures[J]. IEEE Trans. Biomedical Eng. 1976, 23(5): 371-375.
    [165] William D., O'Neill. James C. Lin; Ying-Chang Ma. Estimation and Verification of a Stochastic Neuron Model[J]. IEEE Trans. Biomedical Eng. 1986, 33(7): 654-666.
    [166] James C. Lin. Electromagnetic Pulse Interaction with Mammalian Cranial Structures[J]. IEEE Trans. Biomedical Eng. 1976, 23(1): 61-65.
    [167] James C. Lin, Arthur W. Guy. A Note on the Optical Scattering Characteristics of Whole Blood[J]. IEEE Trans. Biomedical Eng. 1974, 21(1): 43-45.
    [168] James C. Lin, Mei F. Lin. Temperature-Time Profile in Rats Subjected to Selective Microwave Irradiation of the Brain [J]. IEEE Trans.. 1981, 28(1): 29-31.
    [169] James C. Lin. Microwave Properties of Fresh Mammalian Brain Tissues at Body Temperature[J]. IEEE Trans. Biomedical Eng. 1975, 22(1): 74-76.
    [170] Taylor E.M., Guy A.W., Ashleman B., James C. Lin. Microwave Effects on Central Nervous System Attributed to Thermal Factors[C]. Microwave Symposium Digest, G-MTT International. 1973, 73(1): 316-317.
    [171] James C. Lin. Is there a brain tumor risk from cell phone use?[J] IEEE Microwave magazine 2005, 6(3): 28-30
    [172] Eberdt M., Brown P.K., Lazzi G.Two-dimensional SPICE-linked multiresolution impedance method for low-frequency electromagnetic interactions[J]. IEEE Trans. Biomedical Eng. 2003, 50(7): 881-889.
    [173] Gosalia K., Lazzi G., Humayun M. Investigation of a microwave data telemetry link for a retinal prosthesis[J]. IEEE Trans. 2004, 52(8 Part 2): 1925-1933.
    [174] Alomainy A., Hao Y., Owadally A., Parini C. G., Nechayev Y., Constantinou C. C., Hall P. S. Statistical Analysis and Performance Evaluation for On-Body Radio Propagation With Microstrip Patch Antennas[J]. IEEE Trans. Antennas and Propagation. 2007, 55(1): 245-248.
    [175] Dubrovka R., Parini C., Hao Y., Alomainy A., Hall P., Constantinou C., Nechayev Y. On-body propagation loss estimation using method of equivalent sources. Electronics Letters. 2006, 42(9): 506-508.
    [176] 高攸纲 交流电气化铁道接触网对通信维护人员的电磁危害影响[J].铁道学报,1980年,第2期.高攸纲 论文选集 北京邮电学院出版社 1992年4月:77-82.
    [177] 高攸纲 强电场对人体组织的有害影响——谈谈电磁污染问题[J].北京邮电学院学报.1982年第1期.高攸纲 论文选集 北京邮电学院出版社 1992年4月:113-121.
    [178] 林武隽,吕英华,冯晓俊.电化学治癌中埋入式偶极子的电辐射规律的研究[C].全国电磁辐射生物学效应及应用学术会议论文集,中国电子学会电磁兼容分会电磁辐射生物学专业委员会,中国电子学会生命电子学分会毫米波医学应用专业委员会,2001年9月.
    [179] 吕英华,林武隽,冯晓俊.流行病学的调查研究网络化方法—构建心电网络医疗保健系统基础设施的关键技术研究[C].全国电磁辐射生物学效应及应用学术会议论文集,中国电子学会电磁兼容分会电磁辐射生物学专业委员会,中国电子学会生命电子学分会毫米波医学应用专业委员会,2001年9月.
    [180] 吕英华,车树良,王海兰,陈国东.基于数字人体的电磁辐射生物效应仿真研究.全国非电离辐射与电离辐射生物效应及防护学术研讨会-论文汇编,中国西安,2004年8月:198-201.
    [181] 吕英华,车树良,肖强菊,“基于数字化人体的电磁辐射生物效应仿真研究”,中国临床实用医学杂志,第1卷第4期,2006年7月.
    [182] 韩宇南,吕英华,周磊,张金玲,用于人体中心无线网络的平面倒F天线仿真[J]//滨州学院学报.2006,22(6):26-29.
    [1] Gandhi O P, DeFord J F, Kanai H. Impedance method for calculation of power deposition patterns in magnetically induced hyperthermia[J]. IEEE Trans Biomed, 1984, 31(10): 644-651.
    [2] Orcutt N, Gandhi O P. A 3-D impedance method to calculate power deposition in biological bodies subjected to time varying magnetic fields[J]. IEEE Trans Biomed, 1988, 35(8): 577-583.
    [3] Deeley E.M, Xiang J. Improved surface impedance methods for 2-D and 3-D problems[J]. IEEE Trans on Magnetics, 1988, 24(1): 209-211
    [4] Davey K. R., Turner, L. Prediction of transient eddy current fields using surface impedance methods[J]. IEEE Trans on Magnetics, 1989, 25(5): 4156-4158
    [5] Thiel D.V., Mittra R. Self-consistent impedance method for the solution of electromagnetic problems[C]. Microwave Conference. Asia-Pacific: [s. n.] 2000: 281-285
    [6] Thiel D. V., Mitua R. A. Self-consistent impedance method for electromagnetic surface impedance modeling[J]. Radio Sci., 2001, 36(1): 31-44
    [7] Wilson G. A. and Thiel D. V. Modeling of inclined anisotropic complex permittivity media using the self-consistent impedance method[C]. Antennas and Propagation Society International Symposium, IEEE. 2002, 2: 808-811
    [8] Eberdt M., Brown P.K., Lazzi G. Two-dimensional SPICE-linked multiresolution impedance method for low-frequency electromagnetic interactions[J]. IEEE Trans Biomed, 2003, 50(7): 881-889.
    [9] 韩宇南,吕英华,张金玲,张洪欣,秦鹏钧.阻抗方法及其并行算法实现[J]//北京邮电大学学报,2007,30(sup):19-22
    [10] W. Xi, M.A. Stuchly, and O.P. Gandhi. Induced electric currents in models of man and rodents from 60 Hz magnetic fields[J]. IEEE Trans. Biomed. Eng. 1994 41(11): 1018-1024
    [11] M.A. Stuchly, Zhao Shengkai. Magnetic field-induced currents in the human body in proximity of power lines[J]. IEEE Trans Power Delivery, 1996, 11(1): 102-109
    [12] Yunan Han, Yinghua Lu, Jinling Zhang, Biao Yang. A 3-D impedance method to compute current induced in human body when exposed to power lines[C]//IEEE 2005 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. Beijing:[s.n.], 2005: 470-473.
    [13] HAN Yu-nan, LU Ying-hua, ZHANG Hong-xin. A 3-D Impedance Method to Compute extremely low frequency EMF Exposure[J]//The journal of China universities of posts and telecommunications, 2007(已录用)
    [14] Gandhi O P, DeFord J F. Calculation of EM power deposition for operator exposure to RF induction heaters[J]. IEEE Trans on EMC, 1988, 30(1): 63-68.
    [15] Dina Simunic, Werner Renhart, Werner Renhart. Spatial distribution of high-frequency electromagnetic energy in human head during MRI: numerical results and measurements[J]. IEEE Trans. Biomed. Eng., 1996, 43(1): 88~94.
    [16] Nadeem M, Thorlin T, Gandhi O P, et al. Computation of electric and magnetic stimulation in human head using the 3-D impedance method[J]. IEEE Trans Biomed, 2003, 50(7): 900-907.
    [17] HAN Yu-nan, LU Ying-hua, ZHANG Jin-ling, ZHANG Hong-xin. A Parallel 3-D impedance method to compute the Induce Current in Human Head by TMS[C]//2007 IEEE/ICME International Conference on Complex Medical Engineering. Beijing: [s.n.],2007.(已录用)
    [18] C. Johnk, EnPineerinP Electromaenetic Fields and Waves[M]. New York Wiley, 1975.
    [19] Lu Ying-hua, The numerical method for electromagnetics[M]. Tsinghua Publishing house, 2006
    [20] 韩宇南,吕英华,黄小红.并行改进回溯算法实现N皇后问题的快速计数[J]//计算机工程与应用,2006,(36):1-3
    [1] Yee, K. S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Trans. Antennas and Propagation, 1966, 17: 585-589.
    [2] Kunz, K. S., and Luebbers, R. J., The Finite-Difference Time-Domain Method for Electromagnetics. Boca Raton, FL: CRC Press, 1993.
    [3] 余文华,苏涛,Raj Mittra,刘永俊.并行时域有限差分[M]中国传媒大学出版社.2005,9
    [4] 吕英华 计算电磁学的数值方法[M]清华大学出版社 2006.6
    [5] 高本庆.时域有限差分法[M].北京:国防工业出版社.1995
    [6] Gandhi, O. P., Gu, Y. G., Chen, J. Y., and Bassen, H. I. Specific absorption rates and induced current distributions in an anatomically based human model for plane-wave exposures[J] Health Physics, 1992, 63(3):281-290
    [7] Chen, J. Y., Gandhi, O. P., and Conover, D. L. SAR and induced current distributions for operator exposure to RF dielectric sealers[J] IEEE Trans. Electromagnetic Compatibility. 1991, 33(3): 252-261
    [8] Chen, J-Y., and Gandhi, O. P. Currents induced in an anatomically based model of a human for exposure to vertically polarized electromagnetic pulses[J] IEEE Trans. Microwave Theory and Techniques, 1991, 39(1): 31-39
    [9] Chen, J-Y., and Gandhi, O. P. Numerical simulation of annular-phased arrays of dipoles for hyperthermia of deep-seated tumors[J] IEEE Trans. Biom. Eng. 1992, 39(3): 209-216
    [10] Gandhi, O. P., and Chen, J. Y. Electromagnetic absorption in the human head from experimental 6 GHz hand-held transceivers[J]IEEE Trans. Electromagnetic Compatibility, 1995, 37: 547-558.
    [11] Dimbylow, P. J., and Mann, S. M.. SAR calculations in an anatomically based realistic model of the head for mobile communication transceivers at 900 MHz and 1.8 GHz [J] Physics in Medicine and Biology, 1994, 39: 1537-1553
    [12] Gandhi, O. P., Lazzi, G., and Furse, C. M. Electromagnetic absorption in the human head and neck for mobile telephones at 835 and 1900 MHz [J] IEEE Trans. Microwave Theory and Techniques, 1996, 44(10): 1884-1897
    [13] Jensen, M. A., and Rahmat-Samii, Y.EM interaction of handset antennas and humans in personal communications [C] Proceedings of the IEEE, 1995, 83: 7-17
    [14] Luebbers, R., Chen, L., Uno, T., and Adachi, S. FDTD calculation of radiation patterns, impedance and gain for a monopole antenna on a conducting box [J] IEEE Trans. on Antennas and Propagation, 192, 40: 1577-1582
    [15] Han Yunan, Lu Yinghua, Du Juan, et al. 3D-FDTD computation of SAR distribution in an anatomical model of human head exposed to the EM field radiated by CRT computer monitors[C]//16th International Conference on Computer Communication. Beijing:[s.n.], 2004: 1618-1621.
    [16] 韩宇南,吕英华,周磊,张金玲.用于人体中心无线网络的平面倒F天线仿真[J]//滨州学院学报.2006,22(6):26-29
    [17] HAN Yu-nan, LU Ying-hua, LIU Ning, HE Peng-fei. SAR Distribution in Visible Human Head Exposure to the Field Radiated by CRT Computer Monitors[C]//5th International Conference on Microwave and Millimeter Wave Technology. April 18-21, 2007, Guilin, China: 219-222.
    [18] 韩宇南,吕英华,张金玲,张洪欣.蓝牙平面倒F天线辐射对人体比吸收率仿真[J]//电波科学学报(已录用)
    [19] 韩宇南,吕英华,徐铎,张金玲.人体中心网络平面倒F天线设计与测试[J]//滨州学院学报
    [20] Han Yu-nan, Lu Ying-hua, Zhang Jin-ling, Zhu Xiao-lu. The interaction between PIFA for Bluetooth applications and a Hi-Fi human body model[C]// Asia-pacific conference on environmental electromagnetics, Dalian, China2006: 331-335
    [21] Gandhi, O. P., Chen, S. B., Yuan, X., and Chen, J. Y. Dosimetry for time-varying magnetic fields in MR imaging [C] Abstracts of the Sixteenth Annual Meeting of the Bioelectromagnetics Society, Copenhagen, Denmark, June 12-17, 1994: 16
    [22] Karwowski A. Improving accuracy of FDTD modelling in biological applications [C] MIKON-2004. 15th International Conference on Microwaves, Radar and Wireless Communications. 2004, 3: 857-860
    [23] Angela P. Moneda, Melina P. Ioannidou, Dimitris P. Chrissoulidis radio-wave exposure of the human head: analytical study based on a versatile eccentric spheres model including a brain core and a pair of eyeballs[J]. IEEE Tran. Biom. Eng. 2003, 50(6): 667-676.
    [1] G. Theriault, M. Goldherg, A. B. Miller, B. Armstrong, P. Guenel, J. Deadman, E. Imbemon, T. To, A. Chevalier, D. Cyr, and C. Wall. Cancer Risks Associated with Occupational Exposure to Magnetic Fields among Electric Utility Workers in Ontario and Quebec, Canada, and France: 1970-1989[J]. American Journal of Epidemiology. 1994. 139(6): 550-572.
    [2] M. Feychting, A. Ahlbom. Magnetic fields and cancer in children residing near Swedish high-voltage power lines[J]. Amer. J. Epidemiol. 1993, 138(7): 467-481,.
    [3] 刘赟,翁恩琪.极低频电磁场对健康影响的流行病学调查及人体测试研究进展[J].上海环境科学.2003.22(6):430-434
    [4] M.L. McBride, R. P. Gallagher, G. Theriault, B. G. Armstrong, S. Tamaro, J. J. Spinelli, J. E. Deadman, B. Fincham, D. Robson, and W. Chaoi. Power-frequency electric and magnetic fields and risk of childhood leukemia in Canada[J]. Am. J. Epidemiol. 1999, 149(9): 831-842.
    [5] L. M. Green, A. B. Miller, P. J. Villeneuve, D. A. Agnew, M. L. Greenberg, J. Li, and K. E. Donnelly. A case-control study of childhood leukemia in southern Ontario, Canada and exposure to magnetic fields in residences[J]. Int. J. Cancer. 1999, 82(2): 161-170.
    [6] Reports for clinical and in vivo laboratory findings[R]. Phoenix, AZ, 98-4400, Apr. 6-9, 1998.
    [7] National Research Council, Possible Health Effects of Exposure to Residential Electric and Magnetic Fields[M]. Washington, DC: Na-tional Academy Press, 1997.
    [8] National Institute of Environmental Health Sciences(NIEHS). Assessment of health effects from exposure to power-line frequency electric and magnetic fields[R]. Brooklyn Park, MN, 1998.
    [9] Reports for epidemiological research findings[R]. San Antonio, TX, Jan. 12-24, 1998.
    [10] J. E. Moulder. Power-frequency fields and cancer[J]. Crit. Rev. Biomed. Eng. 1998, 26(1-2): 1-116.
    [11] National Institute of Environmental Health Sciences (NIEHS). Health effects from exposure to power-line frequency electric and magneticfields[R].Durham, NC, NIH Pub.99-4493, May 1999.
    [12] EMF RAPID, Press Release. Environmental Health Institute Report Concludes Evidence is 'Weak' that EMF's Cause Cancer [R](15 June 1999), Available: National Institute for Environmental Health Sciences http://www.niehs.nih.gov/oc/news/emffin.htm[OL].
    [13] International Agency for Research on Cancer, Monographs on the Evaluation of C arcinogenic Risks to Humans, vol.80. Static and Extremely Low Frequency Electric and Magnetic Fields[R]. (26 June 2001), Available: International Agency for Research on Cancer http://www-cie.iarc.fr/htdocs/announcements/vol80.htm[OL].
    [14] Ronold W. P. King. Fields and Currents in the Organs of the Human Body When Exposed to Power Lines and VLF Transmitters[J]. IEEE Trans. Biomed. Eng. 1998,45(4): 520-530.
    [15] Abd-Allah, M. A.. Magnetic field-induced currents in human body in the proximity of power lines[C]. Power Engineering Society General Meeting, IEEE. 2003,3:13-17.
    [16] Stuchly, M. A., Shengkai Zhao. Magnetic field-induced currents in the human body in proximity of power lines [J]. IEEE Trans. Power Delivery. 1996, 11 (1): 102-109.
    [17] Maria A S, Trevor W D. Interaction of low-frequency electric and magnetic fields with the human body[J]. Procee-dings of the IEEE,2000,88(5):643-664.
    [18] Yunan Han, Yinghua Lu, Jinling Zhang, Biao Yang. A 3-D impedance method to compute current induced in human body when exposed to power lines[C]//IEEE 2005 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. Beijing:[s.n.],2005: 470-473.
    [19] 韩宇南,吕英华,张金玲,张洪欣,秦鹏钧.阻抗方法及其并行实现[J]//北京邮电大学学报,2007,6(35):34-38
    [20] HAN Yu-nan, LU Ying-hua, ZHANG Hong-xin. A 3-D Impedance Method to Compute extremely low frequency EMF Exposure[J]//The journal of China universities of posts and telecommunications, 2007(已录用)
    [21] Transmission Line Reference Book. 345kV and Above" 2nd Edition, Electric Power Research Institute[M]. Palo Aflo, CA. 1982: 30-62&341-342.
    [22] Report of the IEEE Magnetic Fields Task Force of the AC Fields Working Group of the Corona and Field Effects Subcommittee of the Transmission and Distribution Committee. Magnetic fields from electric power lines theory and comparison to measurements[R]. IEEE Trans. Power Deliv. 1988, 3(4):2127-2136
    [23] Report of a Committee of the Health Council of the Netherlands. Exposure to Electromagnetic Fields (0 Hz-10 MHz)[R].The Hague:[s.n.],2000
    [24] C. Johnk, EnPineerinP Electromaenetic Fields and Waves[M]. New York Wiley, 1975.
    [25] Ryan, D. A. Nelson, K. I. Smith, and J. M. Ziriax. Effects of frequency, permittivity and voxel size on predicted specific absorption rate values in biological tissue during electromagnetic-field exposure[J]. IEEE Trans. Microwave Theory Tech. 2000, 48(11):2050-2058
    [26] C. Gabriel. Compilation of the dielectric properties of body tissues at RF and microwave frequencies[R]. Brooks Air Force Technical Report, Al/OE-TR-1996-0037, 1996
    [27] S. Gabriel, R. W. Lau, and C. Gabriel. The dielectric properties of biological tissues: Ⅲ Parametric models of the dielectric spectrum for tissues[J]. Phys. Med. Biol. 1996, 41(11):2271-2293.
    [1] Mark S. George, Ziad Nahas, F. Andrew Kozel, Xingbao Li, Kaori Yamanaka, Alexander Mishory and Daryl E. Bohning. Mechanisms and the current state of transcranial magnetic stimulation [J]. CNS Spectrums,2003, 8(7):496-514.
    [2] Wassermann E.M., Lisanby S.H. Therapeutic application of repetitive transcranial magnetic stimulation: a review[J]. Clinical Neurophysioiogy, 2001, 112(8): 1367-1377.
    [3] Belmaker RH, Einat H, Levkovitz Y, Segal M, Grisaru N. TMS effects in animal models of depression and mania[M]. In: George MS, Belmaker RH, editors. Transcranial magnetic stimulation in neuropsychiatry, Washington, DC: American Psychiatric Press, 2000:99-114.
    [4] O. P. Gandhi, J. F. DeFord, and H. Kanai. Impedance method for calculation of power deposition patterns in magnetically induced hyperthermia[J]. IEEE Trans. Biomed. Eng., 1984, 31(10): 644-651.
    [5] 韩宇南,吕英华,张金玲,张洪欣,秦鹏钧.阻抗方法及其并行算法实现[J]//北京邮电大学学报,2007,30(sup):19-22
    [6] HAN Yu-nan, LU Ying-hua, ZHANG Jin-ling, ZHANG Hong-xin. A Parallel 3-D impedance method to compute the Induce Current in Human Head by TMS[C] // 2007 IEEE/ICME International Conference on Complex Medical Engineering. Beijing: [s.n.],2007.(已录用)
    [7] C. Gabriel. Compilation of the dielectric properties of body tissues at RF and microwave frequencies[R]. Brooks Air Force Technical Report, A1/OE-TR-1996-0037, 1996.
    [8] Ryan, D. A. Nelson, K. I. Smith and J. M. Ziriax. Effects of frequency, permittivity and voxel size on predicted specific absorption rate values in biological tissue during electromagnetic-field exposure[J]. IEEE Trans Microwave Theory Tech. 2000, 48: 2050-2058.
    [1] Specifications of Bluetooth System[S/OL], Profiles, Version 1.1 http://www.bluetooth.com
    [2] M. Ali, G. J. Hayes. Analysis of integrated inverted-F antennas for Bluetooth applications[C]. IEEE Antennas and Propagation Conf. Wireless Communication Dig., Waltham, MA, Nov. 2000: 21-24.
    [3] IEEE Std C95.3-2002. IEEE recommended practice for measurements and computations of radio frequency electromagnetic fields with respect to human exposure to such fields, 100 kHz-300GHz[S]. Dec. 2002.
    [4] ICNIRP. ICNIRP statement—Health issues related to the use of hand-held radiotelephones and base transmitters[S] Health Phys., vol. 70, no. 4, Apr. 1996: 587-593.
    [5] L. Catarinucci, P. Palazzari, L. Tarricone. Human exposure to the near field of radiobase antennas—A full-wave solution using parallel FDTD[J]. IEEE Trans. Microwave Theory Tech., vol. 51, Mar. 2003: 935-940.
    [6] Jianqing WANG, Osamu FUJIWARA. EM Interaction between a 5 GHz Band Antenna Mounted PC and a Realistic Human Body Model[J]. IEICE Transactions on Communications, 2005 E88-B(6): 2604-2608.
    [7] J. Wang, O. Fujiwara. Comparison and evaluation of electromagnetic absorption characteristics in realistic human head models of adult and children for 900 MHz mobile telephones[J]. IEEE Trans. Microwave Theory Tech., vol. 51, Mar. 2003: 966-971
    [8] 韩宇南,吕英华,张金玲,张洪欣.蓝牙平面倒F天线辐射对人体比吸收率仿真[J]//电波科学学报(已录用)
    [9] Han Yu-nan, Lu Ying-hua, Zhang Jin-ling, Zhu Xiao-lu. The interaction between PIFA for Bluetooth applications and a Hi-Fi human body model[C]// Asia-pacific conference on environmental electromagnetics, Dalian, China2006:331-335
    [10] 耿友林,朱秀芹,吴信宝,焦培南,凡俊梅.各向异性脑组织内的电磁场分布[J].电波科学学报 2000.9:328-333.
    [11] 焦培南,李乐伟,肖抗抗,李超峰.长椭球介质人头模型中的场分布[J].电波科学学报2000.3:60-64.
    [12] XFDTD. REMCOM公司http://www.remcom.com[OL]和未尔锐科技有限公司http://www.vi-re.com/[OL].
    [13] P. A. Mason, W. D. Hurt, et al. Effects of frequency, permittivity and voxel size on predicted specific absorption rate values in biological tissue during electromagnetic-field exposure[J]. IEEE Trans. Microwave Theory Tech., vol. 48, Nov. 2000: 2050-2058.
    [14] C. Gabriel. Compilation of the dielectric properties of body tissues at RF and microwave frequencies[R]. Brooks Air Force Technical Report, A1/OE-TR-1996-0037, 1996.
    [1] W. Van Eck. Electromagnetic Radiation from Video Display Units: An Eavesdrop ping Risk?[C] Computer & Security4(1985): 269-286.
    [2] 石长生.计算机信息电磁泄漏[J].电子科学导报.1999,10:2-5
    [3] P. Smulders. The Threat of Information Theft by Reception of Electromagnetic Radiation form RS-232 Cables[J], Computers & Security, 1990, 9: 53-58.
    [4] Fabian, W. Beyond cryptography: threats before and after[C]. Security Technology, 1998. Proceedings, 32nd Annual 1998 International Carnahan Conference on, 12-14 Oct. 1998: 97-107
    [5] Fred Long, Robert C. Seacord, Scott A. Hissam, John E. Robert. Securing Internet Sessions With Sorbet [C], ICECCS '99. Fifth IEEE International Conference on Engineering of Complex Computer Systems, 18-21 Oct. 1999: 2-8.
    [6] Kourai, K and Chiba, S. A secure access control mechanism against Internet crackers [C], Distributed Computing Systems, 2001.21st International Conference on, 16-19 April 2001: 743-746.
    [7] J. McNammara. The Complete Unofficial TEMPEST Information Page [EB/OL], http://www.eskimo.com/~joelm/tempest,2001.
    [8] D. Whitworth. Information Security and Electromagnetic Emission Control, Relating to Installations and integrated Approach [C], Symposium on Electromagnetic Security for Information Protection, Rome, Italy, 21-22, Dec, 1991: 31-38.
    [9] R. Briol. Emanation—How to Keep Your Data Confidential, Symposium on Electromagnetic Security for Information Protection[C], Rome, Italy, 21-22, Dec, 1991: 225-234.
    [10] RJ. Anderson, MG Kuhn. Tamper Resistance—a Cautionary Note[C], Proceedings of the Second USENIX Workingshop on Electromagnetic Commerce, Nov, 1996: 1-11.
    [11] 王欣刚.计算机视频泄漏信息截获技术的实用化研究[D],长春:中国科学院长春光学精密机械与物理研究所,2002,4.
    [12] Markus G. Kuhm and Ross J. Anderson. Soft Tempest: Hidden Data Transmission Using Electromagnetic Emanations[C], in David Aucsmith(ED), Information Hidding, second International Workshop, Portland, Oregon, USA, 15-17, April, 1998; Springer LNCS vol. 1525: 124-142.
    [13] J. Loughry, David. A. Umphress. Information Leakage from Optical Emanations [EB/OL], http://www.applied-math.org/optical-tempest.pdf, 2002.
    [14] G. Kuhn. Optical Time-Domain Eavesdropping Risks of CRT Displays [EB/OL], http://www.cl.cam.ac.uk/~mgk25/ieee02-optical.pdf, 2002.Gandhi O P, DeFord J F, Kanai H. Impedance method for calculation of power deposition patterns in magnetically induced hyperthermia[J]. IEEE Trans Biomed, 1984, 31(10): 644-651.
    [15] 张洪欣,吕英华,韩宇南,邱玉春.计算机视频电磁辐射识别效应研究[J].//电波科学学报学报.2004,19(5):553-559.
    [16] 张洪欣,吕英华,韩宇南,贺鹏飞.多导体连接器孔隙电磁辐射效应研究[J].//哈尔滨工程大学学报.2004,25(4):517-520.
    [17] 张洪欣,吕英华,黄永明,于学萍.基于FDTD方法的同轴电缆孔缝辐射效应研究[J].电波科学学报学报.2003,18(2).
    [18] 张洪欣,吕英华,包永芳.基于FDTD/MOM方法的同轴电缆孔缝辐射效应研究[M].北京邮电大学学报.2004,27(2).
    [19] 张洪欣,吕英华,邱玉春,赵亮.计算机视频电磁信息泄漏效应研究[M].通信学报.2005,24(4).
    [20] 吕英华、韩宇南、邱玉春.计算机网络电磁辐射的测量与评估研究[C].//中国计算机学会信息保密专业委员会论文集 第十四卷 湖南 长沙.
    [21] IEEE Std 1140-1994 IEEE Standard Procedures for the Measurement of Electric and Magnetic Fields From Video Display Terminals (VDTs) From 5 Hz to 400 kHz[S].
    [22] GB9254-1998信息技术设备的无线电骚扰限值和测量方法[S].
    [23] VDU Report of an Advisory Group on Non-ionising Radiation[R]. Reprinted from Radiological Protection Bulletin No 154. June 1994: 6-10.
    [24] H.M. Ryan, C. Williams. A review of the biological EMF/health effects controversy Electromagnetic Compatibility[C]. Ninth International Conference on (Conf. Publ. No. 396) 5-7 Sep 1994: 1-5.
    [25] Han Fang. Radiation Emission From CRT of Computer VDU[C]. IEEE International Symposiumon EMC, Washington D.C., 1990: 483—286.
    [26] Dong Shiwei, Xu Jiadong, Zhang Haobin, etal. On Compromising Emanations from Computer VDU and Its Intercep-tion[C]. Proceedings of EMC 2002, 2002 3rd International Symposiumon Electromagnetic Compatibility, Beijing, China: 2002.692~695.
    [27] Zhang Hong-xin Lu Ying-hua Chen Da-qing Qiu Yu-chun A Study on the Recognizability of Information from Computer in the Electromagnetic Leakage[C]. Asia-Pacific Conference on Environmental Electromagnetics CEEM' 2003: 65-72.
    [28] S.戴维斯 著 长工 译 计算机数据显示器[M]科学出版社 1977.
    [29] S.谢尔 著 孙大高 译 电子显示器[M] 科学出版社1984.
    [30] 郭硕鸿 电动力学[M]高等教育出版社 1989.
    [31] 邱扬,任华胜,田锦,张昆.计算机视频系统的信息电磁泄漏分析[J].西安电子科技大学学报(自然科学版).2002,29(5):693-697.
    [32] Angela P. Moneda, Melina P. Ioannidou, Dimitris P. Chrissoulidis radio-wave exposure of the human head: analytical study based on a versatile eccentric spheres model including a brain core and a pair of eyeballs[J]. IEEE Tran. Biom. Eng. 2003, 50(6): 667-676.
    [33] Han Yunan, Lu Yinghua, Du Juan, et al. 3D-FDTD computation of SAR distribution in an anatomical model of human head exposed to the EM field radiated by CRT computer monitors[C] / 16th International Conference on Computer Communication. Beijing:[s.n.], 2004: 1618-1621.
    [34] Han Yunan, Lu Yinghua, Zhang Hongxin. A model for electromagnetic leakage of information from electron beam in CRT's acceleration region[C] // Asia-Pacific Radio Science Conference. Qingdao:[s.n.], 2004: 512-515.
    [35] HAN Yu-nan, LU Ying-hua, LIU Ning, HE Peng-fei. SAR Distribution in Visible Human Head Exposure to the Field Radiated by CRT Computer Monitors[C]// 5th International Conference on Microwave and Millimeter Wave Technology. April 18-21, 2007, Guilin, China: 219-222
    [36] 韩宇南,吕英华,杜鹃,王海兰.计算机显示器CRT的电磁辐射对人脑产生的生物效应研究[C]//全国非电离辐射与电离辐射生物效应及防护学术研讨会,中国西安,2004.8:207-208
    [37] 韩宇南,吕英华,贺鹏飞,张洪欣.阴极射线管加速区电子束信息泄漏建模分析[C].第十四届全国电磁兼容学术会议CIC EMC成都2004.5:85-89
    [38] 韩宇南,吕英华,张洪欣,阳彪.室内电磁环境中计算机系统的电磁辐射测量[J]//新电子 2005年9月
    [1] Specifications of Bluetooth System[S/OL], Profiles, Version 1.1 http://www.bluetooth.com
    [2] H. G. Schantz, G. Wolenec, and E. M. Myszka. Frequency notched UWB antennas[C], in Proc. IEEE UWBST Conf. Present., 2003: 214-218.
    [3] P. Lukowicz, U. Anliker, J. Ward, G. Troster, E. Hirt, C. Neufelt. AMON: a wearable medical computer for high risk patients[C], proceedings of sixth international symposium on wearable computers, 2002 (ISWC 2002)., 7-10 Oct. 2002: 133-134.
    [4] T. Zasowski, F. Althaus, M. Stager, A. Wittneben, and G. Troster. UWB for noninvasive wireless body area networks: channel measurements and results[C], in Proc. IEEE Conference on Ultra Wideband Systems and Technologies, Reston, Virginia, Nov. 2003:285-289.
    [5] L.Schwiebert, S.K.S Gupta, J.Weinmann, A.Salhieh, V.Shankar, V.Annamalai. On-body path gain variations with changing body posture and antenna position[C], in Antennas and Propagation Society International Symposium, 2005 IEEE, Vol. 1B, 3-8 July 2005:731-734.
    [6] L.Schwiebert, S.K.S Gupta, J.Weinmann, A.Salhieh, V.Shankar. Comparison between two different antennas for UWB on-body propagation measurements[J], in Antennas and Wireless Propagation Letters. 2005, 4:31-34.
    [7] Hall, P.S., Hao Y. Antennas and propagation for body centric wireless communications[C]. in Wireless Communications and Applied Computational Electromagnetics, 2005. IEEE/ACES International Conference on , 3-7 April 2005:586-589 http://ieeexplore.ieee.org/ie15/9896/31518/01469656.pdf[OL]
    [8] 朱晓维 何晓晓 刘进.用于3G系统移动终端的平面倒F天线[M].移动通信.期号.2002,12:66-68
    [9] Ali, M.; Hayes, G.J.. Analysis of integrated inverted-F antennas for Bluetooth applications. Antennas and Propagation for Wireless Communications[C], 2000 IEEE-APS Conference on 6-8 Nov. 2000: 21-24
    [10] Chuan-Dong Zhao. Analysis on the properties of a coupled planar dipole UWB antenna[J]. IEEE antennas and wireless propagation letter. 2004, 3:317-320.
    [11] 韩宇南,吕英华,张金玲,张洪欣.蓝牙平面倒F天线辐射对人体比吸收率仿真[J1//电波科学学报(己录用)
    [12] Han Yu-nan, Lu Ying-hua, Zhang Jin-ling, Zhu Xiao-lu. The interaction between PIFA for Bluetooth applications and a Hi-Fi human body model[C] // Asia-pacific conference on environmental electromagnetics, Dalian, China2006:331-335
    [13] 韩宇南,吕英华,徐铎,张金玲.人体中心网络平面倒F天线设计与测试[J]//滨州学院学报
    [14] 韩宇南,吕英华,周磊,张金玲.用于人体中心无线网络的平面倒F天线仿真[J]//滨州学院学报(己录用)
    [15] ZHANG Chun-Qing,WANG Jun-Hong,HAN Yu-nan. Coupled planar dipole UWB antenna design for wearable computer[C] // 5th International Conference on Microwave and Millimeter Wave Technology. April 18-21, 2007, Guilin, China: 159-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700