基于小波多分辨探地雷达正演及偏移处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
探地雷达是探测地下结构和特性的一种地球物理勘探方法。由于它具有高效、快速、无损、抗干扰能力强等优点,已广泛的应用在工程中的各个领域,成为浅层勘探的有力工具。但是,目前探地雷达技术尚存改进之处,如目前探地雷达的探测技术还滞留在二维阶段,雷达数据的解释技术也建立在凭经验对雷达图像的识别和手工圈定雷达异常体的基础上,明显存在很强的主观性,而深入了解电磁波传播规律,开展探地雷达二、三维正演及偏移技术的研究,会降低资料错误解释的概率,为三维探地雷达技术开展及雷达资料的准确解释提供依据。本论文主要研究两个方面的内容,即探地雷达的正演及探地雷达偏移处理研究。
     在探地雷达正演模拟中,作者在研究小波变换的基本理论及Daubechies小波特性的基础上,选用伽辽金法着重对Maxwell的两个旋度方程进行离散化,并运用K.S.Yee的空间网格模型,导出了基于DB2小波基的MRTD算法,同时详细地推导该算法的探地雷达2D、3D差分公式、数值稳定性条件、色散关系等。然后,通过分析,得知MRTD算法与传统的FDTD算法相比具有较好的色散关系,它大大减少雷达模拟计算中的网格数目,节约内存空间,提高了探地雷达正演模拟效率。在此基础上,作者开发了探地雷达MRTD法正演模拟程序,对复杂二、三维雷达模型进行了数值模拟试验,突破了过去仅能对简单、规则雷达模型进行正演的局限,同时也验证了MRTD算法用于探地雷达正演计算的有效性。
     在探地雷达偏移处理的研究中,作者首先分析了传统有限差分法偏移具有倾角限制、计算效率低,克希霍夫积分偏移法偏移噪声大、高频干扰严重,频率波数域偏移法不适应速度变化的缺点。为了更好地实现雷达偏移的目的,作者系统地总结小波多分辨与探地雷达偏移处理之间关系,利用小波多尺度压缩雷达波场外推矩阵,推导出探地雷达小波域二维波动方程逆时偏移算法,并以实例的形式,说明了小波域二维波动方程逆时偏移算法的具体优势:如偏移后雷达剖面中的噪声较Kirchhoff积分偏移法少、波形归位更准确、对速度模型适应性强、对雷达记录的信噪比要求低、无倾角限制等优点。在雷达波场多分辨分解过程设置阈值还可提高偏移计算速度,也可达到滤去部分高频噪声的特点。然后,从三维雷达波动方程出发,利用爆炸反射原理和浮动坐标变换,并通过应用方程分裂及小波多分辨理论,推导出探地雷达小波域三维差分法波动方程偏移算法。然后把该算法应用于三个球体空洞的3D正演结果中,通过对比偏移处理前后的雷达资料,得知该三维偏移算法能使3D正演剖面中的反射波归位、绕射波收敛,从而大大提高了雷达剖面的横向分辨率,更有利于探地雷达资料的地质解释,最后,作者在工程实践中,开展了探地雷达三维探测的野外工作方法、数据处理以及三维数据表达的研究工作,取得了较好的效果,为探地雷达的三维探测技术的开展打下了基础。
Ground penetrating radar is a geophysical exploration method whichdetects the underground structure and characteristics. Because of theadvantages such as high efficiency, quick speed, undamaged, highresolution, and strong anti-jamming features, it has been applied to everyaspect in engineering domain, and it has been a powerful tool of shallowlayer exploration. But nowadays, the technical of GPR also need to beimproved, because it exists apparently subjective, such as, the detectiontechnical of GPR is still detained in two-dimension moment, and theexplanation technical is also build on the experiences to identifyingradar image and blocking out radar anomalous body handful. Thoroughlyunderstanding electromagnetic wave propagation rules, and launching theresearch of GPR two or three-dimension forward simulation wouldreduce the probability of the wrong explanation to the data, and providethe reference to develop the three-dimensional GPR technical and theaccurate explanation to radar data. This paper could be divided into twoparts, whose first part introduces the GPR forward simulation, and secondpart introduces the GPR migration processing.
     In the GPR forward simulation, based on the basic wavelets theoriesand the characteristic of Daubechies wavelets, the author chooses theGalerkin method to discrete the two Maxwell rotation equations. And italso uses the K.S.Yee grid to deduce the MRTD algorithm based on theDB2 wavelets basis. At the same time, it deduces the GPR two orthree-dimension finite difference formula, numerical stability, dispersionrelation of this algorithm detailed. And then, through analysis, it isknown that compared to the normal FDTD algorithm, MRTD algorithmhas better dispersion relation which could reduce the grid number in radarsimulation calculation, save memory space, improve the efficiency ofGPR forward simulation. Based on this, the author explores MRTDforward simulation program of GPR, which could do the data simulationexperiment to the complex two or three radar models. This programbreaks the limitation which is only could forward simple and regulationradar model, at the same time, it conforms the validity of MRTD algorithm which is used to GPR forward simulation.
     In the research of GPR migration processing, the author firstlyanalyzes the traditional finite difference method has some disadvantages,such as obliquity limitation, lowly calculation efficiency, big migrationnoise of Kirchhoff's method of integration migration, seriouslyinterference of high frequency, and the F-K migration inadaptable withthe changeable of velocity. For better to realize the radar migration, theauthor systematically summarizes the relationship between waveletsmulti-resolution and GPR migration processing, and uses the wavelet tomulti-scale compress extrapolate matrix of radar wave field. Then theauthor deduces inverse time migration algorithm of GPR two-dimensionwave equation in wavelets domain, and takes the real example to explainthe concrete advantages of inverse time migration algorithm of GPRtwo-dimension wave equation in wavelets domain, such as smaller noisecomparing to Kirchhoff's method of integration migration, more accuracyof waveform returning to original position, highly adaptation to velocitymodel, no obliquity limitation and lowly requirement for Signal-to-Noiseof radar data. It could improve the migration algorithm velocity if setdomain data during the decompose course of radar wave fieldmulti-resolution, and it could also filtrate some high frequency noise.Secondly, setting from the three-dimension radar wave equation, usingthe bursting reflection theory and floating coordinate transform, withequation splitting and multi-resolution of wavelets theory, the authordeduces the migration algorithm of GPR three-dimension FD waveequation in wavelets domain. Then the author puts this algorithm tothree-dimension forward result of three sphere cavern. Through comparethe radar data before and after the migration processing, it is known thisthree-dimension migration algorithm could make the reflection wavereturn to original position, and make the diffraction wave converge in thethree-dimension sections. The lateral resolution of radar sections could behighly enhanced, and it can instruct the geology expiation of GPRsections better. At last, the author does the research of GPRthree-dimension field working method, data processing andthree-dimension expression in the program practice, and gets the goodeffect, which sets the base for three-dimension technology of GPR.
引文
[1] 陈义群,肖柏勋.论探地雷达现状与发展[J].工程地球物理学报,2005,2(2):149~155
    [2] 李大心.探地雷达方法与应用[M].北京:地质出版社,1994
    [3] 冯德山.地质雷达二维时域有限差分正演:[硕士学位论文].长沙:中南大学,2003
    [4] 肖兵.探地雷达成像技术研究:[博士学位论文].长沙:中南工业大学,1996
    [5] 高立兵,王赟,夏明军.GPR技术在考古勘探中的应用研究,2000,15(1):62~70
    [6] 刘敦文,徐国元,黄仁东,等.金属矿采空区探测新技术[J].中国矿业,2000,9(4):34~37
    [7] 薛桂玉,余志雄.地质雷达技术在堤坝安全监测中的应用[J].大坝与安全,2004,14(1):13~19
    [8] 戴前伟、冯德山.探地雷达在高速公路桥址溶洞探测中的应用[J].勘察科学技术,2002,118(4):61~63
    [9] 徐升才,刘峰.探地雷达在城市道路厚度检测中的研究与应用[J].华东交通大学学报,2000,17(4):24~28
    [10] 曾校丰,许维进,钱荣毅,等.水库坝体结构层的地质雷达高分辨率探测[J].地球物理学进展,2000,15(4):104~109
    [11] 李钊.21世纪地雷达战装备[J].中国工程科学,2000,2(12):1~8
    [12] 刘立业.GPR天线和目标的电磁特性分析及数据解译方法研究:[博士学位论文].长沙:国防科学技术大学,2005
    [13] 戴前伟,冯德山,王启龙,等.时域有限差分法在地质雷达二维正演模拟中的应用[J],地球物理学进展,2004,19(4):898~902
    [14] 冯德山,戴前伟,左德勤,地质雷达二维时域有限差分正演[J],勘察科学技术,2004,132(6):35~37
    [15] 王惠濂.探地雷达目的体物理模拟研究结果[J].地球科学—中国地质大学学报,1993,18(3):266~284
    [16] 邓世坤.探地雷达图像的正演合成[J].地球科学—中国地质大学学报,1993,18(3):39~47+122
    [17] 沈飚,孙忠良,曲孝良.探地雷达波波动方程研究及其正演模拟[J].东南大学学报,1994,24(2):115-117
    [18] 底青云,王妙月.雷达波有限元仿真模拟[J].地球物理学报,1999,42(6):818~825
    [19] Yee K S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media [J]. IEEE Trans. Antennas Propagate. 1966, 14, 302-307
    [20] Roberts R L, Daniels J. Finite-difference time domain (FDTD) forward modeling of GPR data. 5th Int. Conf. Ground Penetrating Radar, Expanded Abstracts. Univ. of Waterloo, 1994, 185-204
    [21] Goodman D. Ground-penetrating radar simulation in engineering and archaeology [J].. Geophysics 1994, 59, 224-232
    [22] Bergmann T, Robertsson J O. A, Holliger K. Numerical properties of staggered finite-difference solutions of Maxwell's equations for ground-penetrating radar modeling [J]. Geophysical Research Letters, 1996, 23(1), 45-48
    [23] Carcione, Jose M. Radiation patterns for 2-D GPR forward modeling[J]. Geophysics, 1998, 63(2): 424-430
    [24] Kowalsky M B, Dietrich P, Teutsch G, et al. Forward modeling of ground-penetrating radar data using digitized outcrop images and multiple scenarios of water saturation[J]. Water Resources Research, 2001, 37(6), 1615-1625
    [25] 王长清,祝西里.电磁场计算中的时域有限差分法[M].北京:北京大学出版社,1994
    [26] 高本庆.时域有限差分法[M].北京:国防工业出版社,1995
    [27] 何兵寿,张会星.地质雷达正演中的频散压制和吸收边界条件改进方法[J].地质与勘探,2000,36(3):59~63
    [28] 何兵寿,李艳芳,张会星.理想频散关系在地质雷达剖面正演合成中的应用[J].物探化探计算技术,2000,22(2):113~116
    [29] 方广有,张忠治,汪文秉.FDTD法分析无载频脉冲探地雷达特性[J].电子学报,1999,27(3):74~78
    [30] 方广有,张忠治,汪文秉.脉冲探地雷达的模拟计算[J].微波学报,1998,14 (4):288~294
    [31] 陆基孟.地震勘探原理(第三版)[M].北京:石油大学出版社,2001
    [32] 李世华,杨有发.物探数据处理[M].北京:地质出版社,1995
    [33] 马在田.地震成像技术有限差分法偏移[M].北京:石油工业出版社,1989
    [34] 贺振华,王才经,李建朝,等.反射地震资料偏移处理与反演方法[M].重庆:重庆大学出版社,1989
    [35] 李广场.线性坐标变换波动方程偏移在探地雷达资料处理中的应用[J].工程地球物理学报,2005,2(2):119~122
    [36] 黄伟,邓世坤.偏移方法用于探地雷达图像处理的有效性研究[J].地质科技情报,2001,20(4):99~102
    [37] 李文忠.F-K偏移技术在地质雷达资料处理方面的应用[J].物探化探计算技术,1998,20(3):280~283
    [38] 邓世坤,克希霍夫偏移法在探地雷达图像处理中的应用[J].地球科学—中国地质大学学报,1993,18(3):303~308
    [39] 赵永辉,吴健生,万明浩,等.有限差分法探地雷达波动方程偏移成像[J].物探化探计算技术,2001,23(1):47~51
    [40] 李成方.偏移处理在探地雷达数据处理中的研究:[硕士学位论文].成都:成都理工大学,2002
    [41] 底青云,许琨,王妙月.衰减雷达波有限元偏移[J].地球物理学报,2000,43(2):257-263
    [42] 裴建新.衰减介质中地质雷达数据正演模拟和叠前偏移方法研究:[硕士学位论文].青岛:中国海洋大学,2004
    [43] J F Claerbout著,许云译.地震成像理论及方法[M].北京:石油工业出版社,1991
    [44] Mosher C C, Foster D J, Wu R S. Phase shift migration with wave packet algorithms, Mathematical methods in geophysical imaging Ⅳ, (ed. Hassanzadeh, S.), Proc. SPIE, v. 1996, 2822, 2-16
    [45] Wu R S, Luo M, Chen S and Xie X B. Acquisition aperture correction in angle-domain and true-amplitude imaging for wave equation migration. In: SEG 74th Annual Meeting. Expanded abstracts: SEG, 2004. 937~940
    [46] Mosher C C, Wu R S and Foster D J. Phase shift migration using orthogonal beamlet transforms. In: SEG 72nd Annual Meeting. Expanded abstracts: SEG, 2002. 1332~1335
    [47] Woodward W J. Wave equation tomography [J]. Geophysics, 1992, 57(1): 15-26
    [48] Fortuny G, Joaquim. A novel 3-D subsurface radar imaging technique [J]. IEEE Transactions on Geosciences and Remote Sensing, 2002, 40(2), 443-452.
    [49] Young Sun-shin. A collection formulation of wave equation migration [J]. Computer Aided Seismic Analysis and Discrimination. 1981, 11(19): 47-53.
    [50] 李鸣祉.地震勘探资料数字处理[M].江苏:中国矿业大学出版社,1989
    [51] 黄德济,贺振华,包吉山.地震勘探资料数字处理[M].北京:地质出版社,1990
    [52] 何樵登,熊维纲.应用地球物理教程[M].北京:地质出版社,1991
    [53] G Beylkin. On the representation of operators in bases of compactly supported Wavelets [J]. SIAM Journal on Numerical Analysis, 1992, 29(6), 1716~1740
    [54] F J Dessing, C P A Wapenaar. Efficient migration with one-way operators in the wavelet domain. In: SEG 65th Annual Meeting. Expanded abstracts: SEG, 1995. 1240~1243
    [55] G Beylkin, M J Mohlenkamp. Numerical operator calculus in higher dimensions [J]. Proceedings of the National Academy of Sciences, 2002, 99(16), 10246~10251
    [56] G Beylkin, J M Keiser. On the Adaptive Numerical Solution of Nonlinear Partial Differential Equations in Wavelet Bases [J]. Journal of Computational Physics, 1997, 132, 10246~10251
    [57] Wang Bin, Pann K. Kirchhoff migration of seismic data compression by matching pursuits decomposition. In: SEG 66th Annual Meeting. Expanded abstracts of the Technical Program: SEG, 1996. 1642-1645
    [58] Wu R S, Yang F, Wang Z, et al. Migration operator compression by wavelet transform: beamlet migration. In: SEG 67th Annual Meeting. Expanded abstracts: SEG, 1997. 1646~1649
    [59] Han Q. and Wu R S. Depth imaging in strongly heterogeneous VTI media. In: SEG 74th Annual Meeting. Expanded abstracts: SEG, 2004.1061-1064
    [60] Luo M, Wu R S and Xie X B. Beamlet migration using local cosine basis with shifting windows. In: SEG 74th Annual Meeting. Expanded abstracts: SEG, 2004. 945~948
    [61] Xie X B, Jin S and Wu R S. Wave equation based illumination analysis. In: SEG 74th Annual Meeting. Expanded abstracts: SEG, 2004. 933~936
    [62] Zhang Y H and Wu R S. CRS stack and redatuming for rugged surface topography: A synthetic data example. In: SEG 74th Annual Meeting. Expanded abstracts: SEG, 2004. 2040~2043
    [63] Chen S C and Wu R S. Estimating the effects of number of shots and propagator apertures to prestack depth migration through the mapping of acquisition dip-response. In: SEG 73rd Annual Meeting. Expanded abstracts: SEG, 2003. 1017~1019
    [64] Luo M Q and Wu R S. 3D beamlet prestack depth migration using the local cosine basis propagator. In: SEG 73rd Annual Meeting. Expanded abstracts: SEG, 2003. 985~988
    [65] Wang Y Z and Wu R S. 3D local cosine bearnlet propagator. In: SEG 73rd Annual Meeting. Expanded abstracts: SEG, 2003. 981~984
    [66] Foster D J, Wu R S and Mosher C C. Coherent-state solutions of the wave equation. In: SEG 72nd Annual Meeting. Expanded abstracts: SEG, 2002. 1348~1351
    [67] Wang Y and Wu R S. Beamlet prestack depth migration using local cosine basis propagator. In: SEG 72nd Annual Meeting. Expanded abstracts: SEG, 2002. 1340~1343
    [68] Wu R S, Chen L and Wang Y. Synthetic beam-sources and plane-sources for prestack beamlet migration. In: SEG 72nd Annual Meeting. Expanded abstracts: SEG, 2002. 1336-1339
    [69] 马坚伟,杨慧珠,朱亚平.多尺度有限差分法模拟复杂介质波传问题[J].物理学报,2001,50(8):1415~1420
    [70] 马坚伟,朱亚平,杨慧珠,等.多尺度有限差分法求解波动方程[J].计算力学学学报,2002,19(4):379~383
    [71] 马坚伟,杨慧珠.多尺度辛格式求解复杂介质波传问题[J].应用数学和力学, 2004,25(5):523~528
    [72] 马坚伟,杨慧珠,朱亚平.多尺度有限差分法模拟复杂介质波传问题[J].物理学报,2001,50(8):1415~1420
    [73] 徐义贤,张三宗.平面源电磁法资料的多尺度偏移理论.地球科学,2001,26:5~9
    [74] 陈凌.小波束域波场的分解、传播及在地震偏移成像中的应用:[博士学位论文].北京:中国地震局地球物理研究所,2004
    [75] Chen L and Wu R S. Target-oriented prestack beamlet migration using Gabor-Daubechies frames. In: SEG 72nd Annual Meeting. Expanded abstracts: SEG, 2002. 1356~1359
    [76] 张三宗.小波域全程波动方程偏移:[硕士学位论文].武汉:中国地质大学,2004
    [77] 张海江.小波多分辨波动方程正演模拟与偏移成像:[博士学位论文].北京:中国石油天然气总公司石油勘探开发科学研究院,2000
    [78] 袁修贵.多分辨分析理论与深度成像和地震数据处理:[博士学位论文].长沙:中南大学,2004
    [79] 杨福生.小波变换的工程与应用[M].北京:科学出版社,1999
    [80] 彭玉华.小波变换与工程应用[M].北京:科学出版社,1999
    [81] 廖云鹏.基于小波变换的心电信号处理:[硕士学位论文].长沙:中南大学,2004
    [82] 崔锦泰.程正兴译.小波分析导论[M].西安:西安交通大学出版社,1995
    [83] 程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,1998
    [84] (美)Albert Boggess著,芮国胜,康健等译.小波与傅里叶分析基础[M].北京:电子工业出版社,2004
    [85] 刘明才.小波分析及其应用[M].北京:清华大学出版社,2005
    [86] Ingrid Daubechies著.李建平,杨万年译.小波十讲[M].北京:国防工业出版社,2004
    [87] Dai Qian-wei, Feng De-shan, He Ji-shan. Finite difference time domain method forward simulation of complex geoelectricity ground penetrating model [J], Journal of Central South University of Technology (English Edition), 2005, 12(4): 478~482
    [88] 闫照文,李朗如,袁斌,等.电磁场数值分析的新进展[J].微电机,2000,33(4):33~35
    [89] 魏兴昌.小波分析在电磁场数值计算中的应用:[博士学位论文].西安:西安电子科技大学,2000
    [90] 詹晖.电磁场数值计算中的时域多分辨方法:[硕士学位论文].西安:西安电子科技大学,2004
    [91] Carcione, Jose M. Radiation patterns for 2-D GPR forward modeling[J]. Geophysics, 1998, 63(2): 424-430
    [92] Yarovoy A G, Vazouras C N, Fikioris J G; et al. Numerical simulations of the scattered field near a statistically rough air-ground interface[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(3), 780-789
    [93] Chen How-wei, Huang Tai-min. Finite-difference time-domain simulation of GPR data [J]. Journal of Applied Geophysics. 1998, 40(1-3): 139-163
    [94] Krumpholz M, Linda PB Katehi. A study of dielectric resonators based on two-domain schemes based on multiresolution analysis [J]. IEEE MTT, 1996, 44(4), 555-571
    [95] 孔繁敏,郭毅峰,李康,等.MRTD算法在集成平面光波导组件分析中的应用[J].光子学报,2004,33(9):1068~1071
    [96] Guangyou F. FDTD and optimization approach to time-domain inversing problem for underground multiple objects[J]. Microwave and Optical Technology Letters, 2001, 31(5), 384-387
    [97] Lambot S, Slob E C, Van B, et al. Modeling of ground-penetrating radar for accurate characterization of subsurface electric properties[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11), 2555-2568
    [98] 成礼智,郭汉伟.小波离散变换理论及工程实践[M].北京:清华大学出版社,2005
    [99] 成礼智,王红霞,罗永.小波的理论与应用[M].北京:科学出版社,2004
    [100] Zhizhang chen, Jiazong Zhang, An unconditionally stable 3-D ADI-MRTD method free of the CFL stability condition [J]. IEEE Microwave and wireless components letters, 2001, 11(8), 349~351
    [101] M f Fujiji, W J R Hoefer. A three-dimensional hart-wavelet-based multiresolusion analysis similar to the FDTD method-derivation an application [J]. IEEE Trans on MTT, 1998, 46(12), 2463~2475
    [102] 秦治安,周桂英.基于多分辨分析的时域算法的一种改进[J].辽宁工学院学报,2000,20(5):66-68
    [103] 尹玉,吴先良.基于时域多分辨分析方法的散射场计算[J].安徽大学学报,2005,29(3):54~57
    [104] 袁正宇,李征帆.基于多分辨率的时域方法在微波集成电路中的应用[J].上海交通大学学报,1999,33(1):65~68
    [105] 陆金甫,关冶.偏微分方程数值解法[M].北京:清华大学出版社,2004
    [106] 包秀龙,章文勋.时域多分辨率法分析二维光子带隙结构的色散结构[J].东南大学学报,2003,33(2):123~126
    [107] 李康,孔凡敏,郭毅峰,等.MRTD和高阶FDTD算法的数值色散特性的分析[J].系统仿真学报,2005,17(9):2089~2091+2095
    [108] 包秀龙.基于时域方法的光子带隙(PBG)结构的研究:[博士学位论文].南京:东南大学,2002
    [109] 王秉中.计算电磁学[M].北京:科学出版社,2002
    [110] 马双武,高攸纲.时域有限差分法中几种吸收边界条件的比较与数值验证[J].长沙大学学报,1999,13(4):1~4
    [111] 王长清.FD-TD法中的吸收边界条件.无线电电子学汇刊.1988,49~57
    [112] Mur. Abosorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations[J]. IEEE Trans. Electromagnetic Compatibility, 1981, 23(4): 377~382
    [113] 李莉,高攸纲.色散媒质中的完全匹配层吸收边界[J].电波科学学报,1999,14(1):1-6
    [114] 陈彬,方大纲.完全匹配层(PML)吸收边界条件的理论分析[J].微波学报,1996,12(2):109-115
    [115] 方大纲,陈彬.完全匹配层(PML)的研究进展[J].南京理工大学学报,1996,20(6):572-576
    [116] 康利鸿,刘克成.周期结构FDTD算法的各向异性PML边界条件[J].电子学报,2000,28(12):111~112+104
    [117] 郝彬,王江爱,姚纪欢,等.三维FDTD中完全匹配层的应用[J].宝鸡文理学院学报,1999,19(3):47-51
    [118] 孔繁敏,李康,刘新,等.波动方程FDTD算法的PML吸收边界条件的实现与验证[J].微波学报,2004,20(1):1-5
    [119] 陈明阳,于荣金.PML吸收边界的时域有限差分法的数值色散研究[J].光电子·激光,2001,12(2):204-206+211
    [120] 郭毅峰,孔繁敏,李康,等.MRTD算法的APML实现及其在光波导仿真中的应用[J].光电子·激光,2004,15(2):238~241
    [121] 郭汉伟,梁甸农.电磁场数值计算中多分辨分析[J].系统工程与电子技术,2002,24(8):53~55+74
    [122] 郭汉伟,梁甸农,刘培国,等.电磁场计算中FDTD与MRTD[J].国防科技大学学报,2001,23(5):84~88
    [123] Kowalsky M B, Dietrich P,et al. Forward modeling of ground-penetrating radar data using digitized outcrop images and multiple scenarios of water saturation[J]. Water Resources Research, 2001, 37(6), 1615-1625.
    [124] 喻振华,冯德山,戴前伟,等.复杂地电模型的探地雷达时域有限差分正演[J].物探与化探计算技术,2005,27(4):11~15+5
    [125] 张安学,蒋延生,汪文秉,等.探地雷达扫频三维成像方法[J].电波科学学报,2000,15(3):313~316
    [126] 胡平.探地雷达数值模拟技术的应用研究:[博士学位论文].北京:中国地质大学,2005
    [127] M T坦纳,N S奈德尔著,马在田译.波动方程偏移引论[M].北京:石油工业出版社,1984
    [128] 石油化学工业部石油地球物理勘探局计算中心站编译.常用地震资料处理程序[M].北京:石油化学工业出版社,1978
    [129] 牟永光.地震勘探资料数字处理方法[M].北京:石油工业出版社,1981
    [130] (美)EA鲁宾逊著,汪贤驯,吴晖译.地球物理数据偏移[M].北京:石油工业出版社,1985
    [131] 杜世通.地震波动力学[M].北京:石油大学出版社,1996
    [132] Xie X B and Wu R S. Three-dimensional illumination analysis using wave equation based propagator. In: SEG 73rd Annual Meeting. Expanded abstracts: SEG, 2003.989~992
    [133] Jin S, Mosher C C and Wu R S. 3-D prestack wave equation common offset pseudo-screen depth migration. In: SEG 70th Annual Meeting. Expanded abstracts: SEG, 2000. 842~845
    [134] Xie X B and Wu R S. Extracting angle related image from migrated wavefield. In: SEG 72nd Annual Meeting. Expanded abstracts: SEG, 2002. 1360~1363
    [135] Wu R S, Guan H and Wu X Y. Imaging steep sub-salt structures using converted wave paths. In: SEG 71 st Annual Meeting. Expanded abstracts: SEG, 2001. 845~848
    [136] Xie X B and Wu R S. Migration of multicomponent seismic data using elastic screen method. In: SEG 71st Annual Meeting. Expanded abstracts: SEG, 2001. 1069~1072
    [137] Gao J H, Wu R S and Wang B J. A new type of analyzing waveletand its applications for extraction of instantaneous spectrum bandwidth. In: SEG 71 st Annual Meeting. Expanded abstracts: SEG, 2001. 1937~1940
    [138] Guan H, Wu R S and Fu L Y. Removing scattering effects of rugged topography using finite difference method. In: SEG 70th Annual Meeting. Expanded abstracts: SEG, 2000. 2189~2192
    [139] Wang Y and Wu R S. Improvements on seismic data compression and migration using compressed data with the flexible segmentation scheme for local cosine transform. In: SEG70th Annual Meeting. Expanded abstracts: SEG, 2000. 2048~2051
    [140] Wu R S, Wang Y and Gao J. Beamlet migration based on local perturbation theory. In: SEG 70th Annual Meeting. Expanded abstracts: SEG, 2000. 1008~1011
    [141] Xie X B, Mosher C C and Wu R S. The application of wide angle screen propagator to 2D and 3D depth migrations. In: SEG 70th Annual Meeting. Expanded abstracts: SEG, 2000. 878~881
    [142] Fu L Y, Wu R S and Guan H. Removing rugged-topography scattering effects in surface seismic data. In: SEG 69th Annual Meeting. Expanded abstracts: SEG, 1999. 453~456
    [143] Guan H and Wu R S. Parallel prestack migration with the generalized screen propagator method. In: SEG 69th Annual Meeting. Expanded abstracts: SEG, 1999.1520-1523
    [144]Jin S and Wu R S. Common-offset pseudo-screen depth migration. In: SEG 69th Annual Meeting. Expanded abstracts: SEG, 1999. 1516-1519
    [145]Jin S, Wu R S and Peng C. Experimenting with the hybrid pseudo-screen propagation. In: SEG 69th Annual Meeting. Expanded abstracts: SEG, 1999. 1449-1452
    [146]Wang Y and Wu R S. 2-D semi-adapted local cosine/sine transform applied to seismic data compression and its effects on migration. In: SEG 69th Annual Meeting. Expanded abstracts: SEG, 1999. 1918-1921
    [147] Jin S, Wu R S and Peng C. Prestack depth migration using a hybrid pseudo-screen propagator. In: SEG 68th Annual Meeting. Expanded abstracts: SEG, 1998. 1819-1822
    [148]Wang Y and Wu R S. Migration operator decomposition and compression using a new wavelet packet best basis algorithm. In: SEG 68th Annual Meeting. Expanded abstracts: SEG, 1998. 1167-1170
    [149]Wu R S, Dong X L and Gao J H. Application of acoustic wavelet transform to seismic data processing. In: SEG 68th Annual Meeting. Expanded abstracts: SEG, 1998. 1987-1990
    [150]Wu R S and Fu L. A hybrid method for wave propagation simulation in near-surface regions. In: SEG 68th Annual Meeting. Expanded abstracts: SEG, 1998. 1456-1459
    [151]Wu R S, Guan H and Jin S. Can we image steep subsalt structures. In: SEG 68th Annual Meeting. Expanded abstracts: SEG, 1998. 1273-1276
    [152]Foster D J, Lane F D, Mosher C C, et al. Wavelet transforms for seismic data processing. In: SEG 67th Annual Meeting. Expanded abstracts: SEG, 1997. 1318-1321
    [153]Fu L Y and Wu R S. Infinite element-based absorbing boundary technique for elastic wave modeling. In: SEG 67th Annual Meeting. Expanded abstracts: SEG, 1997. 1489-1492
    [154]Wang Y, Wang W B and Wu R S. Propagation of a monopulse in layered and inhomogeneous media using an adaptive multiscale wavelet collocation method. In: SEG 67th Annual Meeting. Expanded abstracts: SEG, 1997. 1501-1504
    [155]Huang L J and Wu R S. Prestack depth migration with acoustic screen propagators. In: SEG 66th Annual Meeting. Expanded abstracts: SEG, 1996. 415-418
    [156]Wu R S and de Hoop M V. Accuracy analysis of screen propagators for wave extrapolation using a thin-slab model. In: SEG 66th Annual Meeting. Expanded abstracts: SEG, 1996. 419-422
    [157]Kao J C, Huang L J and Wu R S. Massively parallel computing of 3D prestack depth migration using phase-screen propagators. In: SEG 66th Annual Meeting. Expanded abstracts: SEG, 1996. 1009~1012
    [158] Xie X B and Wu R S. A complex-screen method for modeling elastic wave reflections. In: SEG 65th Annual Meeting. Expanded abstracts: SEG, 1995. 1269~1272
    [159] Wu R S, Huang L J and Xie X B. Backscattered wave calculation using the De Wolf approximation and a phase-screen propagator. In: SEG 65th Annual Meeting. Expanded abstracts: SEG, 1995. 1293~1296
    [160] Liu Y B and Wu R S. Scattering and attenuation of elastic wave by a visco-elastic cylinder. In: SEG 65th Annual Meeting. Expanded abstracts: SEG, 1995. 1322~1325
    [161] Wu R S and Xie X B. Separation of scattering and absorption in 1D random media: Ⅱ. Numerical experiments on stationary problems. In: SEG 64th Annual Meeting. Expanded abstracts: SEG, 1994. 1302~1305
    [162] Wu R S. Separation of scattering an absorption in 1D random media from spatio-temporal distribution of seismic energy. In: SEG 63th Annual Meeting. Expanded abstracts: SEG, 1993. 1014~1017
    [163] Wu R S, Huang L J. Scattered field calculation in heterogeneous media using phase-screen propagator. In: SEG 62th Annual Meeting. Expanded abstracts: SEG, 1992. 1289~1292
    [164] Huang L J, Wu R S and Araujo F V. Multi-frequency backscattering tomography: Extension to the case of vertically varying background. In: SEG 62th Annual Meeting. Expanded abstracts: SEG, 1992. 766~769
    [165] Wu R S and Araujo F V. Multi-frequency backscattering tomography: the principle and the reconstruction methods. In: SEG 61th Annual Meeting. Expanded abstracts: SEG, 1991. 967~970
    [166] G Beylkin, R Cramer. A Multiresolution Approach to Regularization of Singular Operators and Fast Summation [J]. SIAM Journal on Scientific Computing, 2002, 24(1), 81~117
    [167] A J Berkhout著,马在田,张叔伦译.地震偏移波场外推声波成像[M].北京:石油工业出版社,1983
    [168] 李成方,王绪本,薛克勤,等.偏移技术在GPR资料处理中的研究[J].物探与化探,2004,28(5):451-452
    [169] 刘喜武,刘洪.波动方程地震偏移成像方法的现状与进展[J].地球物理学进展,2002,17(4):582-591
    [170] 马在田.论反射地震偏移成像[J].勘探地球物理进展,2002,25(3):1-5
    [171] 薛桂霞,刘秀娟,邓世坤.雷达波偏移方法研究[J].地球物理学进展,2004,19(4):903-908
    [172] 李广场.有限差分法探地雷达波动方程偏移:[硕士学位论文].南京:河海 大学,2004
    [173] 耿建华,黄海贵,马在田.Kirchhff积分波场延拓基准面静校正方法研究[J].地球物理学进展,1996,24(6):665~669
    [174] 戴前伟,冯德山,何继善,Kirchhff偏移法在探地雷达正演图像处理中的应用[J].地球物理学进展,2005,20(3):849~853
    [175] 张美根,王妙月.各向异性弹性波叠后逆时深度偏移[J].石油物探,2002,41(3):259~263
    [176] 董渊,杨慧珠,杜启振.有限元-有限差分法二维波动逆时偏移初探[J].石油大学学报,2003,27(6):25~29
    [177] 薛桂霞,邓世坤,刘秀娟.逆时偏移在探地雷达信号处理中的应用[J].煤田地质与勘探,2004,32(1):55-56
    [178] D Miller, M Oristaglio, G Beylkin. A new slant on seismic imaging: Migration and Integral geometry [J]. Geophysics, 1987, 52(7), 943~964
    [179] Yafei Wu, George A. McMechan. Wave extrapolation in the spatial wavelet domain with application to poststack reverse-time migration [J]. Geophysics, 1987, 63(2), 589~600
    [180] D Miller, M Oristaglio, G Beylkin. A new slant on seismic imaging: Migration and Integral geometry [J]. Geophysics, 1987, 52(7), 943~964
    [181] 金胜汶,陈必远,马在田.三维波动方程有限差分正演方法[J].地球物理学报,1994,37(6):805~810
    [182] 雷文太,粟毅,黄仕家.探地雷达近场三维距离偏移成像算法[J].电子与信息学报,2003,25(12):1641-1646
    [183] 陈树文,刘洪,李幼铭.三维叠前深度偏移的准三维算法研究[J].地球物理学进展,2001,16(4):23~28
    [184] 熊高君,贺振华,张毅祥,等.三维混合延拓一步法波动方程正演模拟[J].成都理工学院学报,1999,26(1):48~51
    [185] 陈必远,马在田.三维叠前偏移新技术[J].地球物理学报,1994,37(3):400~407
    [186] 张安学,蒋延生,汪文秉.探地雷达扫频三维成像方法[J].电波科学学报,2000,15(3):313-316
    [187] 张海江,刘雯林.波场外推算子的多分辨分解和压缩[J].石油地球物理勘探,2000,35(3):290~297
    [188] 何凯涛,张海江.小波多分辨分析方法在波动方程正演模拟中的应用[J].地球物理学进展,2001,16(2):73~80
    [189] 徐兴新,吴晋,吴相安,等.探地雷达探测堤坝白蚁巢研究[J].昆虫学报,1996,39(1):46~53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700