高双折射聚合物光子晶体保偏光纤设计及制备与表征的初步结果
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
保偏光纤不仅在光通信领域,而且在光纤传感、集成光学信息处理等领域均具有广泛的应用前景。传统应力型保偏光纤,如熊猫型、蝴蝶结型等,模式双折射较低,而且应力单元由掺B_2O_3组成,制备工艺复杂;另外,应力单元应力的大小与温度直接相关,致使其双折射温度稳定性差;并且纤芯掺G_eO_2,致使其抗辐射能力差,无法适应现代通信系统的需求。光子晶体光纤(PhotonicCrystal Fibers,PCFs)由单一材料和周期性空气孔构成,通过调整包层空气孔的大小、间距、形状及排列模式,可以在较大范围内调整纤芯与包层的折射率差,获得高双折射单模运行。与传统保偏光纤相比,光子晶体保偏光纤温度稳定性好,具有更强的偏振稳定性和抗辐射能力,能有效排除偏振模色散,在未来全光网、光纤陀螺、光纤传感、可调谐光纤激光器等领域将起重要作用。
     然而,石英光子晶体保偏光纤受预制棒制备和拉丝工艺的限制,一直阻碍着其实用化进程。2001年,澳大利亚悉尼大学Van Eijkelenborg等人首次报道了采用聚合物开发各种类型光子晶体光纤的研究结果,为光子晶体光纤的成功开发提出了新思路。受澳大利亚悉尼大学的启发,本论文对聚合物光子晶体光纤预制棒制备工艺和拉丝工艺进行了深入研究;并从理论角度对聚合物基材光子晶体保偏光纤进行了结构和参数设计研究;选取甲基丙烯酸甲酯(MMA)为制备材料,采用本体聚合技术和套管法拉丝技术,成功制备了椭圆芯六角对称聚合物光子晶体光纤,并对其进行了光学特性和偏振特性的测试与表征。取得的研究成果如下:
     (1)对光子晶体光纤理论分析方法进行了深入研究,提出采用全矢量平面波展开法(FV-PWM)模拟高双折射光子晶体保偏光纤偏振特性的研究思路。从Maxwell电磁波动方程出发,将介质介电常数和电磁波动方程的解采用傅立叶级数展开,得到光子带隙型光子晶体光纤的平面波分析模型,并将平面波分析模型演化到折射率导模型光子晶体光纤之中。
     (2)采用全矢量平面波展开法,以聚合物为基材,对四种不同结构类型光子晶体光纤,即椭圆芯六角对称聚合物光子晶体光纤、椭圆芯非六角对称聚合物光子晶体光纤、矩形点阵聚合物光子晶体光纤和单模单偏振聚合物光子晶体光纤进行了参数设计和结构优化。
     (3)首次提出了一种新型结构高双折射PCFs——椭圆芯非六角对称结构PCF。以聚合物为基材,采用全矢量平面波法(Full Vector Plane Wave Method,FV-PWM),对该光纤的偏振特性和模场特性进行了模拟。结果发现,该光纤双折射是由芯和包层不对称性共同产生的。其偏振特性与不对称比例因子η=b/Λ存在强烈的依赖关系,(其中b表示y方向的孔间隔,Λ表示x方向的孔间隔,d表示孔直径)。若选取Λ=2.3μm,d/Λ=0.4,不对称比例因子μ=0.4时,该光纤可以在可见光和近红外波段以单模运行方式呈现高达1.294×10~(-3)的双折射,并有效抑制一阶偏振模色散。
     (4)获得了具有自主知识产权的聚合物光子晶体光纤预制棒制备工艺和拉丝工艺。首次在国内将MMA单体的本体聚合技术移植到聚合物光子晶体光纤预制棒制备之中,研究了聚合物光子晶体光纤预制棒制备工艺,给出了聚合反应时间与反应温度之间的关系,成功制备了孔直径d=2mm,孔间隔Λ=5mm,预制棒直径D=70mm的近似椭圆芯六角对称聚合物PCF预制棒;提出预制棒套管拉丝技术,拉制了光纤直径D=125±5μm,孔直径d=3.5μm,孔间隔Λ=9.4μm的椭圆芯六角对称聚合物PCFs,研究了光纤拉丝塔中预制棒拉丝炉、光纤拉丝炉的温度场分布。
     (5)对套管法拉制的椭圆芯聚合物PCF光学特性和偏振特性进行了表征研究。结果表明,该光纤具有机械柔韧性好,数值孔径小,模场直径大和弱双折射效应等特点。其传输损耗在632.8nm波长处为11.5dB/m,且弯曲损耗小,弯曲半径为10mm;双折射B只有4.65×10~(-1)。
     以上研究结果为进一步研究聚合物光子晶体光纤制备技术和测试方法提供了方法上的借鉴和资源上的共享。
     本文工作得到国家自然科学重点基金“宽带低损耗渐变折射率聚合物光纤及其器件的应用基础研究”(编号:60437020)的资助。
Polarization-maintaining fibers (PMFs) have been widely applied for telecommunication, fiber-optic sensor and integrated optics for information process. Generally, conventional stress PMFs, such as Panda and Bow-tie, have low stress birefringence due to stress effects of stress operation cell in core region and complicated fabrication techniques, temperature instability and weak resistance to nuclear radiation owing to GeO_2-doped core and B_2O_3-doped stress regions. So, conventional PMFs are not able to satisfy the requisitions of modern communication system. Photonic crystal fibers (PCFs), consisting of single material and an array air-holes running along the entire fiber length, can be obtained with high birefringence and single mode operation at larger wavelength range by simple tuning the diameter, shape, position and array mode of air-holes. So it is very easy to induce the larger different of refraction index between the fibers' core and the cladding. Compare with conventional PMFs, photonic crystal polarization maintaining fibers (PM-PCFs) have the advantages of higher resistance to nuclear radiation, better stability of temperature and polarization and lower polarization mode dispersion. Hence, PM-PCFs have potential application in the fields of all optical networks, fiber-optic gyroscope, fiber-optic sensor and optical fiber laser.
     However, the application of photonic crystal PMFs based on silicon material is always restricted owing to the complexity of the capillary stack-and-draw fabrication technique. In 2001, Dr. Martijn A. van Eijkelenborg et. al. of University of Sydney of Australia reported the research results to develop various PCFs based on polymer for the first time. These results provide a kind of new idea for developing PCFs. We are enlightened deeply on the research of photonic crystal PMFs by them. In this dissertation, we first concentrate on the fabrication technique and the draw-stretching technology of preform of polymer PCFs. For the more, the optimum structure of polymer PM-PCFs was studied on the basis of theory. The polymer PCF with elliptical core hexangular symmetry structure was fabricated successfully under the method of in-situ monomer polymerization and sleeving draw-stretching based on methyl-methacrylate (MMA) material. Finally, we measure the optical property and polarization characteristics of the fabricated fiber. The main achievements are listed below:
     (1) The idea of adopting full vector plane wave method (FV-PWM) to analyze polarization property of high birefringence PM-PCFs was presented by studying the theory model of PCFs. According to the equation of Maxwell, we divide E and H fields, and the dielectric permittivity by using Fourier series, and set up the theory modal of plane wave to analyze PCFs with band-gap effect. In the end, the theory modal of plane wave was applied in the PCF with index-guiding.
     (2) According to FV-PWM, the four kinds of PCFs were numerical simulated based on polymer. They were the elliptical core hexangular symmetry polymer PCF, the elliptical core non-hexangular symmetry polymer PCF, the rectangular lattice polymer PCF and the single-polarization single-mode polymer PCF.
     (3) A new kind of highly birefringent index-guiding PCF with elliptical core nonhexangular symmetry cladding was proposed for the first time. The polarization characteristics and mode field property of the PCFs being made of polymer material are numerically simulation to adopt FV-PWM. The results showed that the birefringence of the fiber had been induced by asymmetries of both the cladding and the core. Moreover, the polarization characteristics is strongly dependent on the non-symmetry ratio of cladding ofη=b/Λ, here, b is the holes-spacing of y direction,Λis the holes-spacing of x direction, the holes-diameter is defined as d. WhenΛ= 2.3μm, the ratio of holes-diameter and holes-spacing is d/Λ=0.4, and the non-symmetry ratio of claddingη=0.4, the fiber is possible to operate in single mode regime at wavelength ranges of near infrared and visible with high birefringence of 1.294×10~(-3), and limited polarization mode dispersion effectively.
     (4) A new kind of PCF fabrication technique with independence knowledge property right is developed, including the fabrication and the draw-stretching technologies of the preform. The in-situ MMA monomer polymerization technique, for the first time, is transplanted to fabricate PCFs preform in China. A series of investigations have been carried out in the process of fabricating PCF, which included the preform fabricating and draw-stretching, the relationship of time and temperature in the polymerization reaction. The PCF preform with elliptical core hexagonal symmetry structure with diameter of 70 mm, hole-diameter of 2 mm and hole-spacing of 5 mm was developed successfully. Additional, the sleeving draw-stretching technique of preform was set up, and the elliptical core hexagonal symmetry structure polymer PCF with fiber diameter of D=125±5μm, average holes-diameter of 3.5μm and average holes-spacing 9.4μm was fabricated successfully. The temperature field distribution in the oven of preform draw-stretching and fiber draw-stretching were investigated.
     (5) The optical and polarization properties of polymer PCF with elliptical core hexagonal symmetry structure from sleeving draw-stretching technology were characterized. Experimental results showed that the fiber had good characteristics such as better machine flexibility, smaller numerical aperture (NA), larger mode field diameter and weaker birefringence effect. Its transmission loss is 11.5 dB/m at wavelength of 632.8 nm, its bend radii is 10 mm, the bend loss is low when the bend radii more than 10 mm. At the same time, its birefringence is only 4.65×10~(-7) at wavelength of approaching 650 nm.
     The results above-mentioned provide useful reference in both the theoretical and experimental aspects for further studying the fabrication technology and the method of measuring polymer PCFs.
     The work was supported by the Natural Science Foundation of China under Grant No. 60437020.
引文
[1] Juichi Noda. Polarization maintain fibers and their applications[J]. J. Lightwave Tech., 1986,4(8): 1071-1075.
    [2] J. Zhang, S. Guo, W. Jung, et al. Detemination of birefringence and absolute optics axis orientation using polarization-sensitive optical coherence tomography with PM fiber[J]. Opt. Express, 2003, 11:3262-3270.
    [3] Y. J. Song, L. Zhan, S. Hu, et al. Tunable multiwavelength Brillouin-erbium fiber laser with a polarization-maintaining fiber Sagnac loop filter[J]. IEEE Photon. Technol. Lett., 2004,16(9): 2015-2017.
    [4] CAdrian. Panda-style fibers move beyond telecommunication [J]. Laser focus world, 2004, 8:S11-13.
    [5] R. B. Dyott, J. R. Cozens, and D. G. Morris. Preservation of polarization in optical fiber waveguides with elliptical core[J]. Electron Lett. 1979, 15(13):380-382.
    [6] M. P. Varnham, D. N. Payne, R. D. Birch, et al. Single polarization operation of highly birefringence Bow-tie optical fibers[J]. Electron. Lett. 1983,19(7):246-247.
    [7] Buffin, B. Paul. Sensitivity of polarization maintaining optical fiber to temperature variations[J]. SPIE,1991,1478:160-164.
    [8] A. Ortigasa-Blanch, J. C. Knight, W. J. Wadsworth, et al. Highly birefringent photonic crystal fiber[J]. Opt. Lett., 2000, 25:1325-1327.
    [9] K. Suzuki, H. Kubata, S. Kawanishi, et al. High speed-directional polarization division multiplexed optical transmission in ultra low loss (1.3dB/km) polarization maintaining fiber[J]. Electron. Lett., 2001, 37:1399-1401.
    [10] K. Saitoh and M. Koshiba. Single-polarization single-mode photonic crystal fiber[J]. IEEE photonics technol. Lett., 2003,15:1384-1386.
    [11]K. Hiirokazu, K. Satoki, K. Shigeki, et al. Absolutely single polarization photonic crystal fiber[J]. IEEE photonics technol. Lett., 2004,16(1):182-184.
    [12]S. Kunimasa, and K. Masanori. Photonic bandgap fibers with high birefringence[J]. IEEE photonics technol. Lett., 2002,14:1291-1293.
    [13]M. A. van Eijkelenborg, A. Argyros, G. Barton, I. M. Bassett, M. Fellew, G. Henry, N. A. Issa, M. C.J. Large, and S. Manos, W. Padden, L. Poladian, and J. Zagari., Recent progress in microstructured polymer optical fibre fabrication and characterization[J]. Optics Fiber Technology, 2003, 9: 199-209.
    [14]N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large. Fabrication and study of microstructured optical fibers with elliptical holes[J]. Opt. Lett., 2004, 29(12): 1336-1339.
    [15]I. P. Kaminow and V. Ramaswamy. Single polarization optical fibers: Slab model[J].Appl. Phys. Lett., 1979,34(4): 268-271.
    [16]T. Hosaka, K. Okamoto, Y. Sasaki, et al. Single mode fibers with asymmetrical refractive-index pits on both sides of the core[J]. Electron. Lett., 1981, 17(5):191-193.
    [17]T. Okoshi, K. Oyamada, M. Nishimura, et al. Side tunnel fiber: An approach to polarization maintaining optical wavelength scheme[J]. Electron. Lett. 1982, 18(19):824-826.
    [18]T. Katsuyama, H. Matsumura, and T. suganurna. Propagation characteristics of single polarization fibers[J]. Appl. Opt. 1983, 22(11):1748-1753.
    [19]D. N. Payne, A. J. Barlow and J. J. R. Hansen. Development of low-and high birefringence optical fibers[J]. IEEE J. Quantum Electron. 1982,18(4):477-488.
    [20]S. R. Norman, D. N. Payne, M. J. Adams, et al. Fabrication of single mode fibers exhibiting extremely low polarization birefringence[J]. Electron. Lett., 1979,15(11):309-311.
    [21]A. J. Barlow, D. N. Payna, R. Hadley, et al. Production of single mode fibers with negligible intrinsic birefringence and polarization mode dispersion[J]. Electron. Lett. 1981, 17(20):725-726.
    [22]R. Ulrich and A. Simon. Polarization optics of twisted single-mode fibers[J]. Appl. Opt., 1979,18(13):2241-2251.
    [23]J. C. Knight and P. St. J. Russell. New ways to guide light[J]. Science, 2002, 296:276-277.
    [24] J. C. Knight, T. A. Birks, P. St. J. Russel, et al. All-Silica single mode optical fiber with photonic crystal cladding[J]. Opt. Lett., 1997, 22(7):484-485.
    [25]J. C. Knight, J. Broeng, T. A. Birks, et al. Photonic bandgap guidance in optical fibers[J]. Science, 1998, 282:1476-1478.
    [26]R. F. Cregan, B. J. Mangan, J. C. Knight, et al. Single mode photonic band gap guidance of light in air[J]. Science, 1999,285:1537-1539.
    [27]J. Broeng, D. Mogilevtsev, S. Barkou, and A. Bjarklev. Photonic crystal fibers: A new class of optical waveguides[J]. Opt. Fibr. Technol., 1999,5: 305-330.
    [28]R. Ghosh, A. Kumar, J. P. Meunier. Waveguiding properties of holey fibers and effective-V model[J]. IEEE Electron. Lett., 1999, 35(21): 1873-1875.
    [29]B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, T. A. Stresser. Grating resonances in air-silica microstructured optical fibers[J]. Opt. Lett., 1999, 24(21):1460-1462.
    [30]E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys. Rev. Lett., 1987, 58(20):2059-2062.
    [31]S. John. Strong localization of photons in certain disordered dielectric super-lattices [J]. Phys. Rev. Lett., 1987,58(23):2486-2489.
    [32] M. Loncar, D. Nedeljkovic, T. Doll, et al. Waveguiding in planar photonic crystals [J]. Appl. Phys. Lett., 2000, 77:1937-1939.
    [33]Han-Youl Ryu, Soon-Hong Kwon, Yong-Jae Lee, et al. Very-low-threshold photonic band edge lasers from free standing triangular photonic crystal slabs [J]. Appl. Phys. Lett., 2002, 89(19): 3476-3478.
    [34] R. Colombelli, K. Srinivasan, M. Troccoli, et al. Quantum cascade surface-emitting photonic crystal laser [J]. Science, 2003, 302:1374-1377.
    [35]Shanhui Fan, Pierre, R. Villeneuve, J. D. Joannopoulos. High extraction efficiency of spontaneous emission from slabs of photonic crystal [J]. Phys. Rev. Lett., 1997,78:3294-3297.
    [36]E. Yablonovich and T. J. Gmitter. Photonic band structure: The face centered cubic case [J]. Phys. Rev. Lett., 1989,63:1950-1953.
    [37]A. Mekis, J. C. Chen, I. Kurland, et al. High transmission though sharp bends in photonic crystal waveguides [J]. Phys. Rev. Lett., 1996,77:3787-3790.
    [38]S. Y. Lin, E. Chow, V. Hietala, et al. Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal [J]. Science, 1998, 282:274-276.
    [39] D. L. Bullock, Chun-Ching Shin and R. S. Margulies. Photonic band structure investigation of two-dimensional Bragg reflector mirrors for semiconductor laser mode control [J]. J. Opt. Soc. Am. B, 1993,10: 399-340.
    [40]C. J. Herbert, and Michelle S. Malcuit. Optical bi-stability in nonlinear periodic structures [J]. Opt. Lett., 1993,18:1783-1785.
    [41]J. C. Knight, T. A. Birks, P. St. J. Russel. Et al. Pure silica single-mode fiber with hexagonal photonic crystal cladding [C]. Proc. OFC'96,1996, Postdeadline paper.
    [42]A. A. Abromov, W. Halea, R. S. Ndeler, et al. Wingely tunable long-period fiber grating [J]. Electron. Lett., 1999,35(1):81-82.
    [43]T. M. Monro, P. J. Bennett, G. R. Broderickn, et al., New possibilities with holey fibers [C]. Baltimore, Maryland: OFC 2000, ThGl-1.
    [44]T. A. Birks, J. C. Knight and P. St. J. Russell. Endlessly single mode photonic crystal fiber [J]. Opt. Lett., 1997, 22(13):961-963.
    [45]J K. Ranka, R. S. Windeler and A. J. Stentz. Visible continuum generation in air-silica microstructure optical fiber with anomalous dispersion at 800nm [J]. Opt. Lett., 2000,25:25-27.
    [46] B. J. Mangan, J. C. Knight et al., Experimental study of dual-core photonic crystal fiber [J]. Electron. Lett., 2000,36:1358-1359.
    [47] M. A. van Eijkelenborg, M. C. J. Large, et al. Mistructured polymer optical fiber[J]. Opt. Express, 2001,9(7):319-327.
    [48]T. A. Birks, D. Mogilevtsev, J. C. Knight, et al. The analogy between photonic crystal fibers and step index fibres [C]. Optical Fiber Communication Conference, OSA, Washington, D. C. 1998 FG14:114-116.
    [49]K. Ranka et al. Optical properties of high-delta microstructure optical fibers [J]. Opt. Lett., 2000,25:796-798.
    [50] J. C. Knight, T. A. Birka, R. F. Cregan, et al. Large mode area photonic crystal fiber [J]. Elect. Lett., 1998,34:1347-1348.
    [51]J. C. Baggett, T. M. Monro, K. Furusawa, et al. Comparative study of large mode holey and conventional fibers [J]. Opt. Lett., 2001, 26:1045-1047.
    [52] M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen. Single mode photonic crystal fiber with an effective area of 600 square-microns and low bending loss [J]. Electron Lett., 2003,39:1082-1083.
    
    [53] Crystal A/S. Double cladding high NA Yb PCF. http://www.Crystal-fibre.com.
    [54]P. Petropoulos, T. M. Monro, W. Belardi, et al. 2r-regenerative all-optical switch based on a high nonlinear fiber [J]. Opt. Lett., 2001, 26:16-18.
    [55]J. H. Lee, Z. Yusoff, W. Belardi, et al. A holey fiber Raman amplifier and all optical modulator [C]. Proc. ECOC'2001, Postdeadline Paper PD. A. 1.1.
    [56]K. P. Hansen, J. R. Jensen, D. Birkedal, et al. Pumping wavelength dependence of super continuum generation in photonic crystal fibers [C]. Proc. of OFC2002, 2002PD. Paper FA9.
    [57] J. E. Sharping, M. Florentino, P. Kumar, et al. All-optical switching based on cross-phase modulation in microstructure fiber [J]. IEEE Photon. Technol. Lett., 2002,14:77-79.
    [58]J. H. Lee, Z. Yusoff, W. Belardi, et al. A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber [J]. IEEE Photon. Technol. Lett., 2003,15:437-439.
    [59]J. C. Knight, J. Arriaga, et al., Anomalous dispersion in photonic crystal fiber [J]. IEEE Photo. Technol. Lett., 2000,12(7):807-809.
    
    [60] D. Mogilevtsev, T. A. Birk. Group velocity dispersion in photonic crystal fiber [J]. Opt. Lett., 1998, 23(21): 1662-1664.
    [61] A. Ferrando, E. Silvestre, P. Andres, J. J. Miret, et al. Designing the properties of dispersion flattened photonic crystal fibers [J]. Opt. Express., 2001,9:687-697.
    [62] W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, et al. Soliton propagation in photonic crystal fiber at 850nm [J]. Electron. Lett., 2000,36:53-55.
    [63] S. Kazunori, K. Hirokazu, K. Satoki, et al. Optical properties of low loss polarization maintaining photonic crystal fiber[J]. Opt. Express, 2001, 9(13): 676-680.
    [64]N. A. Mortensen, J. R. Folkenberg, P. M. W. Skovgard, et al. Numerical aperture of single mode photonic crystal fibers [J]. IEEE Photon. Technol. Lett., 2002, 14: 1094-1096.
    [65] W. J. Wadsworth, R. M. Percival, G. Bouwmans, et al. High power air-clad photonic crystal fiber laser [J]. Opt. Express, 2003,11:48-53.
    [66] P. J. Roberts, T. J. Shepherd. The guidance properties of multi-core photonic crystal fibers [J]. J. Opt. A, 2001, 3: 33-40.
    [67]R. F. Cregan, J. C. Knight, P. St. J. Russell, et al. Distribution of spontaneous emission from an Er3+-dopped photonic crystal fiber [J]. IEEE. J. Lightwave Technol., 1999,17: 2138-2141.
    [68] W. J. Wadworth, J. C. Knight, W. H. Reeve, et al. Yb3+ dopped photonic crystal fiber laser [J]. Electron. Lett. 2000, 36:1452-1454.
    [69] P. Glas and D. Fisher. Cladding pumped large mode area Nd-doped holey fiber laser [J]. Opt. Express, 2002,10:286-290.
    [70] K. Furusawa, T. M. Monor, P. Petropoulous, et al. A mode locked laser Yb3+ dopped holey fiber [J]. Electron. Lett., 2001, 37:560-561.
    [71]K. Furusawa, A. N. Malinowski, J. H. Price, et al. Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding [J]. Opt. Express, 2001,9: 714-720.
    [72]H. Lim, F. O. Ilday, and F. W. Wise. Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control [J]. Opt. Express, 2002, 10:1497-1502.
    [73]W. J. Wadsworth, R. M. Percival, G. Bouwmans, et al. High power air-clad photonic crystal fiber laser [J]. Opt. Express. 2003,11:48-53.
    [74]J. Limpert, T. Schreiber, S. Nolte, et al. High-power air clad large mode area photonic crystal fiber laser [J]. Opt. Express. 2003,11:818-823.
    [75]B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale. Microstructured optical fiber devices [J]. Opt. Epress, 2001,9(13):698-713.
    [76] C. Cryan, K. Tatah, R. Strack. Multi-component all glass photonic bandgap fiber. US Patent No. Us 6598428Bl(Date of Patent: Jul. 29, 2003)
    [77] V. R. K. Kumar, A. K. George, W. H. Rrrves, et al. Extruded soft glass photonic crystal fiber for ultrabroad super-continuum generation [J]. Opt. Express, 2002,10:1520-1525.
    [78]J. M. Pottage, D. Bird, T. D. Hedley, et al. Robust photonic band gaps for hollow core guidance in PCF made from high index glass [J]. Opt. Express., 2003, 11:2854-2860.
    [79]V. V. Ravi, K. Kumar, A. K. George, et al. Tellurite photonic crystal fiber [J]. Opt. Express. 2003, 10: 2641-2645.
    [80] P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, et al. Highly nonlinear and anomalously dispersive lead silicate glass holey fibers [J]. 2003,11:3568-3573.
    [81]G. Barton, M. A. van Eijkelenborg, G. Henry, M. C.J. Large, and J. Zagari. Fabrication of microstructured polymer optical fibers [J]. Optics Fiber Technology, 2004, 10: 325-335.
    
    [82] 于荣金. 塑料通信光纤[J]. 光电子. 激光, 2002, 13(3): 315-320.
    [83]A. Argyros, I. M. Bassett, M. A. van Eijkelenborg, M. C.J. Large and J. Zagari. Ring structures in microstructured polymer optical fibres [J]. Opt. Express, 2001, 9(13):813-820.
    [84]M. A. van Eijkelenborg. Imaging with microstructured polymer fiber [J]. Opt. Express, 2004,12(2):342-346.
    [85]R. Haynes, J. Bland-Hawthorn, M. C. J. Large, K. F. Klein, G. Nelson, New age fibers: the children of the photonic revolution[5], http://www.aao.gov.au
    [86] 苑立波.光子晶体结构空芯塑料光纤,中国:CN 1396467A[P],2003-02-12.
    [87] Guan Tie-shan, Chen Ming-yang, Zhang Zhi-long, and Yu rong-jin. Numerical simulation and analysis of losses in air-core plastic photonic bandgap fibers [J]. Chin. Phy. Lett., 2005, 3(6):313-316.
    [88] T. P. Hansen, 5. Broeng, E. B. Libori, et al. Highly birefringent index-guiding photonic crystal fibers [J]. IEEE Photon. Tech. Lett., 2001, 13(5): 588-590.
    [89] M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. wojcik, W. Urbanczyk, E Berghmans, and H. Thienpont. Phase and group modal birefringence of triple-defect photonic crystal fibres [J]. J. of Opt. A: Pure and Applied Opt., 2005, 7:763-766.
    [90] C. Kerbage, and B. J. Eggleton. Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber [J]. Opt. Express, 2002, 10(5): 246-255.
    [91] Chen X, Li M J, Michael T. Gallagher, et al. Highly birefringent hollow core photonic bandgap fiber [J]. Opt. Express, 2004, 12(16): 3888-3893.
    [92] M. G. Franczyk, J. C. Knight, T. A. Birks, P. St. J. Russell, A. Ferrando. Birefringent photonic crystal fiber with square lattice [5]. Proceedings of SPIE Vol. 5576 (SPIE, Bellingham, WA, 2004)
    [93] I. K. Hwang, Y. J. Lee, and Y H. Lee. Birefringence induced by irregular structure in photonic crystal fiber [J]. Opt. Express, 2003, 11(22): 2799-2806
    [94] Steel M J and Osgood R M. Elliptical hole photonic crystal fibers [J]. Opt. Lett. 2001, 26(4): 229-231.
    [95] T. Schreiber, E Roser, O. Schmidt, J. Limpert. Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity [J]. Opt. Express, 2005, 13(19):7621-7630
    [96] Liu Y C and Lai Y. Optical birefringence and polarization dependent loss of square and rectangular lattice holey fibers with elliptical air holes: numerical analysis [J]. Opt. Express, 2005, 13(1): 225-235.
    [97] Lou Shu-qin, Ren Guo-bin,Yan Feng-ping, et al. Optical properties of Near Elliptical Core polarization maintaining photonic crystal fiber [J]. Proc. of SPIE, 2005, 5623: 840-849.
    [98] Lou Shu-qin, Wang Zhi. Ren Guo-bin, and Jian Shui-sheng. Polarization-maintaining photonic crystal fiber [J]. Chinese Physics, 2004, 13(7):1052-1058.
    [99] Lou Shu-qin, Wang Zhi. Ren Guo-bin, and Jian Shui-sheng. Propagation properties of an index guiding high birefringence fiber [J]. Chinese Physics, 2004, 13(9):1493-1499.
    [100] Chen Ming-yang, and Yu Rong-jin. Polarization properties of elliptical-hole rectangular lattic photonic crystal fibres[J]. J. of Opt. A: Pure Appl. Opt., 2004, 6:512-515
    [101] Chen Ming-yang, Yu Rong-jin, and Zhao An-ping. Polarization properties of rectangular lattice photonic crystal fibers [J]. Opt. Communications, 2004, 241: 365-370.
    [102] Kuang L B, Shi Z D, Zhu L. Holey fibers and the research of their birefringence [J]. Laser Journal(激光杂志), 2004, 25(5): 5-9(in Chinese).
    [103] T. A. Birks, J C Knight, and P. S. J. Russell. Endlessly single mode photonic crystal fibre [J]. Opt. Lett., 1997,22(11):961-963.
    [104] T. P. White, B. T. Kuhlmey, R. C.Mcphedran et al. Multipole method for microstructured optical fibers[J]. Opt. Soc. Am. B, 200219(10):2322-2330.
    [105] Shangping Guo, Sacharia Albin. Simple plane wave implementation for photonic crystal calculations [J]. Opt. Express, 2003,11(1): 167-175.
    [106] M. Koshiba. Full vector analysis of photonic crystal fibers using finite element method [J]. 1E1CE Electron, E85-C, 2002, 4:881-888.
    [107] Min Qiu. Analysis of guided modes in photonic crystal fibers using Finite Difference Time Domain method [J]. Micro. And Opt. Tech. Letters, 2001, 30(5): 40-42.
    [108] Fabrizio Fogli, Luca Saccomandi, Paolo Bassi, Gaetano Bellance, Stefano Trillo. Full vectorial BPM modeling of Index Guiding photonic crystal fibers and couplers [J]. Opt. Express, 2002,10(1): 54-59.
    [109] M. J. Steel, H. L. Rao, D. Herrmann, et al. Simulation tools for calculating loss in microstructured optical fibers [J]. Proc. of SPIE, 2003, 4998: 97-104.
    [110] Y. Z. He and F. G. Shi. Finite-Difference Imaginary-Distance Beam Propagation Method for Modeling of the Fundamental Mode of Photonic Crystal Fibers [J]. Optics Communications, 2003,225:151-156.
    [111] Saitoh and M. Koshiba. Full-Vectorial Imaginary Distance Beam Propagation Method Based on a Finite Element Scheme: Application to Photonic crystal fibers [J]. IEEE J. of Quantum Electronics, 2002,38(7): 927-933.
    [112] T. Fujisawa and M. Koshiba. Finite Element Characterization of chromatic dispersion in nonlinear holey fibers [J]. Opt. Express, 2003,11(13):1481-1489.
    [113] S. Guenneau, F. Zolla, S. Lasquellee, et al. Modeling of Photonic crystal optical fibers with Finite Elements. IEEE Transactions on Magnetics[J]. 2002, 38(21): 1261-1264.
    [114] A. Peyrilloux, S. Fevrier, J. Marcou, et al. Comparison between the Finite Element Method, The Localized Function method and a Novel Equivalent Averaged Index Method for modeling Photonic crystal fibers [J]. J. Opt. A: Pure Appl. Opt., 2002,4: 257-262.
    [115] Z. Zhu and T. G. Brown. Full-Vectorial Finite-Difference Analysis of Microstructured optical fibers [J]. Opt. Express, 2002,10(17): 853-864.
    [116] V. Rastogi and K. S. Chiang. Holey optical fiber with Circularly distributed holes analyzed by the radial Effective-Index Method [J]. Opt. Lett., 2003, 28(24): 2449-2451.
    [117] J. C. Knight, T. A. Birks, P. St. J. Russell, et al. Properties of photonic crystal fiber and the Effective Index Model [J]. J. of Opt. Soc. Of America A, 1998, 15(3): 748-752.
    [118] K. M. Ho, C. T. Chan, and C. M. Soukoulis. Existence of Photonic Gap in periodic dielectric structures. Phys. Rev. Lett., 1990, 65: 3152-3155.
    [119] R. D. Meada, A. M. Rappe, K. D. Brommer, et al. Accurate theoretical analysis of photonic band-gap materials [J]. Phys. Rev. B, 1993,48(11): 8434-8437.
    [120] S. G. Johnson and J. D. Joannopoulos. Block-Iterative Frequency-Domain Methods for Maxwell's Equations in a Planewave basis [J]. Opt. Express, 2001, 8(3): 173-190.
    [121] Z. Wang, G. B. Ren, S. Q. Lou, et al. Supercell Lattice mothod for Photonic Crystal Fibers [J]. Opt. Express, 2003,11 (9):980-991.
    [122] B. T. Kuhlmey, T. P. White, G. Renversez, et al. Multipole Method for Microstructured optical fibers. II. Implementation and results [J]. J. Opt. Soc. Am. B, 2002,19(10):2331-2340.
    [123] T. P. White, R. C. Mcphedran and C. M. D. Sterke. Confinement Losses in Microstructured Optical Fibers [J]. Opt. Lett., 2001, 26(21): 1660-1662.
    [124] T. P. White, R. C. Mcpherdran, L. C. Botten, et al., Calculations of Air-Guided Modes in Photonic Crystal Fibers using the Multipole Method [J]. Opt. express, 2001, 19(13):721-732.
    [125] F. Brechet, J. Marcou, D. P. Ganoux, and P. Roy. Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method [J]. Opt. Fiber Technol., 2000, 6: 181-191.
    [126] Kunimass Saitoh, and Masanori Koshiba. Photonic bandgap fibers with high birefringence [J]. IEEE Photonics Tech. Lett., 2002, 14: 1291-1293.
    [127] M. Koshiba and Y. Tsuji. Curvilinear hybrid edge/ nodal elements with triangular shape for guided-wave problems [J]. IEEE J. of Lightwave Technol., 2000, 18:737-734.
    [128] N. A. Issa and L. Poladian. Vector wave expansion method for leaky modes of microstructured optical fibers [J]. J. of Lightwave Technol., 2003, 21(4): 1005-1012.
    [129] L. Poladian and N. A. Issa. Fourier decomposition algorithm for leak modes of fibers with arbitrary geometry [J]. Opt. Express, 2002, 10(10): 499-454.
    [130] R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos. Accurate theoretical analysis of photonic band-gap materials [J]. Phys. Rev. B 1993, 48: 8434-8439.
    [131] A. Ferrando, E. Silvestre, J. J. Miret, P. Andrs, M. V. Andrs. Full-vector analysis of a realistic photonic crystal fiber [J]. Opt. Lett., 1999, 24: 276-279.
    [132] Z. Zhu and T. G. Brown, Analysis of the space filling modes of photonic crystal fibers [J]. Opt. Express, 2001, 8: 547-513.
    [133] Y. Ohtsu, Y. Kakoike. Studies on the light of cusing plastic rod. 16: mechanism of gradient-index formation in photocopolymerization of multiple monomer systems [J]. Appl. Opt., 1984, 23(11): 1774-1778.
    [134] Yasuhiro Koike. Graded—index plastic optical fiber composed of methyl phenylacetate copolymers [J]. Applied Optics, 1988, 27(18): 2686—2691.
    [135] 江源,邹宁宁.聚合物光纤[M].北京:化学工业出版社,2002:69-105.
    [136] 李曙光,冀玉领,周桂耀等.多孔微结构光纤中飞秒激光脉冲超连续谱的产生[J].物理学报,2004,53(2):478-483.
    [137] Xuezhong Wang, Lili Wang, Liyong Ren, and Yani Zhang. Design and Fabrication of reacting extruder for preparation of high quality microstructured polymer optical fibers [C]. Proceeding of 14 ICPOF, 139-141.
    [138] Lili Wang and Xinghua Chen. Extrusion Technique of Microstructured polymer optical fiber perform [C]. Proceeding of 141CPOF, 2005, HongKong. 85-87.
    [139] Yani Zhang, Lili Wang, Liyong Ren, Xuezhong Wang, Wei Zhao and Runcai Miao. Fabrication of microstructured polymer optical fiber perform [C]. AOMATF Xian China 2005第二届SPIE国际先进光学制造与检测学术会议.
    [140] 赵振河.高分子化学和物理[M].北京:中国纺织出版社,2003:18-48.
    [141] 王善奇.高分子化学原理[M].北京:北京航空航天大学出版社,1993:65.
    [142] 卢江,梁晖.高分子化学[M].北京:化学工业出版社,2005:80-90.
    [143] Y. Koike, N. Tanio, et al., Light Scattering and heterogeneities in low-loss poly (methyl methacrylate) glasses [J]. Macrolecules, 1992, 25(18):4807-4815.
    [144] C. B. Lin. Poly(methyl methacrylate) interpenetrating cell model [J]. Polymer, 1996, 37(3): 2793-2800.
    [145] 王丽莉 王学忠 赵卫.微结构聚合物光纤制造方法及其装置,中国:200410073247.2[P].2004-11-10.
    [146] 张亚妮,王丽莉,任立勇,赵卫,苗润才.高保偏聚合物光子晶体光纤的化学制备技术研究[J].光子学报,2006,35(9):1349-1353.
    [147] Liyong Ren, Yani Zhang, Xuezhong Wang, Yulin Li, Wei Zhao and Lili Wang. Fabrication and characteristics of rhodamine-doped Micro-structured Polymer Optical Fibers [C]. Proceeding of 14 ICPOF, 2005, 9, HongKong, 143-146.
    [148] N. P. Bansal, R. H. Doremus. Handbook of glass properties, New York Academic, 1986.
    [149] H.M. Reeve, A.M. Mescher, A.F. Emery, Steady-state heat transfer and draw force for POF manufacture [C], in: 12th Int. Conf. on Polymer Optical Fiber (POF 2003), Seattle, USA, 15-17 September, 2003, p. 220.
    [150] S. Wu, Surface and interfacial tensions of polymer melts. Ⅱ. Poly-(methylmethacrylate), poly(n-butylmethacrylate), and polystyrene [J]. J. Phys. Chem. 1970, 74:632-638.
    [151] J. Zagari, A. Argyros and N. A. Issa, G. Barton, G. Henry, M. C. J. Large, L. Poladian, and M. A. van Eijkelenborg. Small core single mode microstructured polymer optical fiber with large external diameter [J]. Opt. Lett., 2004, 29(8):818-820.
    [152] R. P. Kusy. The ductile-brittle transition of acrylic [J]. Journal of Non-Crystalline Solids, 1977, 24: 141-144.
    [153] K. Matsushige, S. V. Radcliffe, and E. Baer. Pressure and temperature effects on Brittle to ductile transition in Ps and PMMA [J]. Journal of Appl. Polymer Sci., 1976, 20: 1853-1866.
    [154] M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbanczyk, Jan Wojcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont. Experimental and theoretical investigations of birefringent holey fibers with a triple defect [J]. Applied Optics, 2005, 44(3): 2652-2658.
    [155] Ren G B, Wang Z, Lou S Q, et al. Mode classification and degeneracy in photonic crystal fibers [J]. Opt. Express, 2003, 11: 1310-1321.
    [156] Steel M J, White T P, Sterke C M, et al. Symmetry and degeneracy in Microstructured Optical Fibers [J]. Opt. Lett., 2001, 26: 488-490.
    [157] Zhang Ya-ni, Miao Runcai, Ren Li-yong, Wang Han-yi, Wang Li-li and Zhao Wei. Polarization properties of elliptical core non-hexagonal symmter polymer photonic crystal fiber [J]. Chinese Physics, 2007, 16(5): 510-516.
    [158] Mortensen N A, Folkenberg J R, Nielsen M D and Hansen K P. Modal cutoff and the V Parameter in photonic crystal fibers [J]. 2003, Opt. Lett., 28(20): 1879-1881.
    [159] Dyott R, Elliptical fiber waveguides (Norwood, MA: Artech House) 1995.
    [160] M. J. Steel, R. M. Osgood Jr. Polarization and dispersion properties of elliptical-hole photonic crystal fibers [J]. J. Lightwave Technol., 2001, 19:495-503.
    [161] K. Okamoto. Stress-induced birefringence fibers designed for single-polarization single-mode operation [J]. J. Lightwave Technol., 1989, 9:817-820.
    [162] K. Saitoh, M. Koshiba. Single-polarization single-mode photonic crystal fibers [J]. IEEE Photon. Technol. Lett., 2003, 15:1384-1386.
    [163] K. Saitoh, M. Koshiba. Confinement losses in air-guiding photonic bandgap fibers [J]. IEEE Photon. Technol. Lett., 2003, 15(20):236-238.
    [164] Yani Zhang, Kang Li, Lili Wang, Liyong Ren, Wei Zhao, and Runcai Miao, Casting preforms for microstructured polymer optical fibre fabrication [J]. Opt. Express, 2006, 14(12):5541-5547.
    [165] 李海,宋元胜,吴玉容等,光纤通信原理及应用[M].北京:中国水利出版社,2005:187-220.
    [166] 廖延彪, 光纤光学[M]. 北京: 清华大学出版社 2000:93-101.
    [167] A. J. Barlow, J. J. Ramskov-Hansen, and D. N. Payne, Birefringence and polarization mode-dispersion in spun single-mode fibers [J]. Applied Optics, 20(17): 2962-2968.
    [168] A J Barlow, Optical-fiber birefringence measurement using a photo-elastic modulator [J]. J. Lightwave Technol. 1985, LT-3, 135-145.
    [169] M. Legre, M. Wegmuller, N.Gisin, Investigation of the ratio between phase and group birefringence in optical single-mode fibers [J]. J. Lightwave Technol. 2003, 21:3374-3378.
    [170] M. Wegmuller, M. Legre, N. Gisin, Distributed beatlength measurement in single-mode fibers with optical frequency-domain reflectometry [J]. IEEE J. Lightwave Technol. 2002, 20: 828-835.
    [171] Zhang P G and D. I. Halliday, Measurement of the beat length in high-birefringent optical fiber by way of magneto-optic modulation [J]. J Lightwave Technol. 1994,12:597-603.
    [172] Y. Ohtsuka, T. Ando, Y. Imai, and M. Imai, Modal birefringence measurements of polarization maintaining single mode fibers without and with stretching by optical heterodyne inter- ferometry [J] J. Lightwave Technol. 1987, LT-5, 602-607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700