枇杷幼果在低温胁迫下基因的差异表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了研究枇杷耐受低温的分子机理,以早熟易受冻害的早钟六号幼果为研究对象,利用mRNA差异显示(DDRT-PCR)技术,对枇杷在低温胁迫下的基因表达情况进行研究。
     对SDS法进行改良,探索出快速、高效的提取枇杷幼果总RNA的方法,采用此方法提取的RNA适合mRNA差异显示分析。
     通过优化试验,建立了适合枇杷幼果低温胁迫下DDRT-PCR分析的最佳体系,在20μl体系中,确定了各组分为:模板cDNA 1.0μl,锚定引物0.5μM,随机引物0.5μM,dNTPs 50μM,10×PCR buffer 2μl,Taq酶1U,退火温度40℃。在此基础上对枇杷幼果在0℃低温胁迫6h下mRNA的变化进行分析,共分离到19条差异表达的基因片段,经Reverse Northern杂交获得了4个阳性的枇杷低温诱导相关基因片段(编号为CSIGE 1~4—Cold Stress Induced Genes in Eriobotrya japonica 1~4)。对4个阳性差异片段进行测序,序列已提交GenBank,CSIGE 1~4登录号依次为GT617703、GT617704、GT617705和GT617706。
     序列相似性分析表明:①CSIGE 1序列与Homo sapiens chromosome 8 clone Rp11-420F14 map p21-p11有高度同源性,是抗低温胁迫基因,这说明植物与动物基因组具有某些共同的编码序列,可能在基因表达方面具有一些共同的机制;②CSIGE 2与蓖麻乙醇脱氢酶(ADH)、拟南芥NADP依赖型氧化还原酶、大豆受水杨酸胁迫诱导相关基因等有不同程度的同源性,CSIGE 3与葡萄和黄瓜受逆境胁迫的EST有部分同源,该基因表达量的调节对枇杷响应低温逆境起到某种作用;③CSIGE 4序列未搜索到与任何基因有相似性,可能为新基因。
In order to analyze the molecular mechanism of cold tolerance in loquat, with early-maturing and susceptible-to-frost-damage Zao Zhong No.6 loquat fruit as the research object, DDRT-PCR technique was used to study the gene expression during the course of cold stress in loquat.
     The SDS method was improved to find out a kind of fast and efficient extraction method of total RNA in loquat fruit, and the RNA extracted using this method was suitable for DDRT-PCR analysis.
     By optimizing the test, the best DDRT-PCR analysis system for loquat fruit during the course of cold stress was established, In 20μl system, each component was identified as:Template cDNA 1.0μl,Primer 0.5μM,dNTPs 50μM, 10×PCR buffer 2μl, Taq enzyme 1U, annealing temperature 40℃. On the basis of this system, the mRNA changes of loquat fruit was analyzed under the condition of 0℃treated for 6 h. Nineteen differentially expressed gene segments induced by cold stress were obtained and four of them was confirmed as positive clones by Reverse Northern dot blotting(It was named CSIGE 1~4—Cold Stress Induced Genes in Eriobotrya japonica 1~4).
     The four positive fragments were sequenced and have been submitted to GenBank. CSIGE 1~4 followed by the accession number of GT617703, GT617704, GT617705, GT617706.
     The result of sequence similarity analysis showed that:①CSIGE 1 sequence has highly homologous to Homo sapiens chromosome 8 clone Rp11-420F14 map p21-p11, which was a cold-resistance gene. This shows that plant and animal genomes have certain common coding sequence, maybe they have some common gene expression mechanism;②CSIGE 2 has different degrees of homology with some genes, such as alcohol dehydrogenase(ADH) in ricinus communis,NADP-dependent oxidoreductases in arabidopsis thaliana, salicylic acid stress-related genes in soybean.,CSIGE 3 has some homologous to ESTs stressed by adversity in vitis vinifera and cucumber, the regulation of their expression play some roles in response to cold stress in loquat;③CSIGE 4 did not show homologous to any genes, which may be new genes.
引文
[1]邱武陵,章恢志.中国果树志,龙眼枇杷卷[M].中国林业出版社, 1996:
    [2]陈有民.园林树木学[M].北京:中国林业出版社, 1990: 415-416.
    [3]徐燕,薛立,屈明.植物抗寒性的生理生态学机制研究进展[J].林业科学, 2007, 43(004): 88-94.
    [4]彭筱娜,易自力,蒋建雄.植物抗寒性研究进展[J].生物技术通报, 2007, 4.
    [5] Ashworth E N, Pearce R S. Extracellular freezing in leaves of freezing-sensitive species[J]. Planta, 2002, 214(5): 798-805.
    [6]高述民,程朋军,郭惠红,等.日本桃叶珊瑚的冷驯化及抗寒机制研究[J].西北植物学报, 2003, 23(012): 2113-2119.
    [7] Xin Z, Browse J. Cold comfort farm: the acclimation of plants to freezing temperatures[J]. Plant cell and Environment, 2000, 23(9): 893-902.
    [8]和红云,田丽萍,薛琳.植物抗寒性生理生化研究进展[J].天津农业科学, 2007, 13(002): 10-13.
    [9]吴楚,王政权.膜脂变化与植物抗寒性及HII相位形成的关系[J].湖北农学院学报, 2002, 2(1): 84-88.
    [10]利容千,王建波.植物逆境细胞及生理学[M].武汉, 2002: 144-146.
    [11]周丽英,杨丽涛.植物抗寒冻基因工程研究进展[J].植物学通报, 2001, 18(003): 325-331.
    [12]曾韶西,王以柔.低温胁迫对黄瓜子叶抗坏血酸过氧化物酶活性和谷胱甘肽含量的影响[J].植物生理与分子生物学学报, 1990.
    [13] Delauney A J, Verma D P S. Proline biosynthesis and osmoregulation in plants[J]. The Plant Journal, 1993, 4(2): 215-223.
    [14]陈杰忠,徐春香.低温对香蕉叶片中蛋白质及脯氨酸的影响[J].华南农业大学学报, 1999, 20(003): 54-58.
    [15] Khedr A H A, Abbas M A, Wahid A A A, et al. Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress[J]. Journal of Experimental Botany, 2003, 54(392): 2553.
    [16] Colmer T D, Epstein E, Dvorak J. Differential solute regulation in leaf blades of various ages in salt-sensitive wheat and a salt-tolerant wheat x Lophopyrum elongatum (Host) A. Love amphiploid[J]. Plant Physiology, 1995, 108(4): 1715.
    [17]李永华,邹琦.植物体内甜菜碱合成相关酶的基因工程[J].植物生理学通讯, 2002, 38(005): 500-504.
    [18]马千全,邹琦,李永华,等.根施甜菜碱对水分胁迫下小麦幼苗水分状况和抗氧化能力的改善作用[J].作物学报, 2004, 30(004): 321-328.
    [19]于同泉,谷建田.逆境中植物体内甜菜碱的积累及其生物学意义[J].北京农学院学报, 1994, 9(2): 161-167.
    [20]简令成,孙龙华.柑橘叶片细胞结构的适应性变化[J].园艺学报, 1984, 11(2): 79-83.
    [21] Levitt J. Responses of plants to environmental stresses, Volume 1, chilling freezing, and high temperature stresses[J]. Academic Press: New York, 1980.
    [22]简令成,吴素萱.植物抗寒性的细胞生物学研究--小麦越冬过程中细胞内物质的变化[J].植物学报, 1965, 13(3): 198-207.
    [23]万清林,刘鸣远.芸香抗寒生理的初步研究[J].植物研究, 1997, 17(002): 190-194.
    [24]何军贤,曾燕,易静,等.低温对水稻幼苗叶绿体光化学功能及类囊体膜蛋白水平的影响[J].中国水稻科学(Chinese JR ice S ci), 1999, 13(2): 99-103.
    [25] Van Breusegem F, Slooten L, Stassart J, et al. Effects of overproduction of tobacco MnSOD in maize chloroplasts on foliar tolerance to cold and oxidative stress[J]. Journal of Experimental Botany, 1999, 50(330): 71.
    [26] Fryer M J, Andrews J R, Oxborough K, et al. Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature[J]. Plant Physiology, 1998, 116(2): 571.
    [27] Prasad T K. Role of catalase in inducing chilling tolerance in pre-emergent maize seedlings[J]. Plant Physiology, 1997, 114(4): 1369.
    [28]刘鸿先,曾韶西,王以柔.低温对不同耐寒力黄瓜幼苗子叶各细胞器官中SOD的影响[J].植物生理学报, 1985, 11(1): 48-57.
    [29]王华,王飞.低温对杏品种花及幼果的伤害和若干生理指标的影响[J].江苏农业学报, 1999, 15(004): 237-240.
    [30]曾韶西,王以柔,刘鸿先.低温胁迫对水稻幼苗抗坏血酸含量的影响[J].植物生理学报, 1987, 13(4): 365-370.
    [31]曾韶西,王以柔,李美茹,等.诱导水稻幼苗提高抗冷性期间膜保护系统的变化[J].热带亚热带植物学报, 1994.
    [32]陈贻竹. B.帕特森;低温对植物叶片中超氧物歧化酶,过氧化氢酶和过氧化氢水平的影响[J].植物生理与分子生物学学报, 1988.
    [33]潘晓云,曹琴东,王根轩.膜脂过氧化作为扁桃品种抗寒性鉴定指标研究[J].生态学报, 2002, 22(011): 1902-1911.
    [34]敖光明,刘瑞凝.细胞生物学[M].北京农业大学出版社, 1987:
    [35]刘俊英,姚科云,冯耀飞,等.低温胁迫对雪松膜脂过氧化及保护酶的影响[J].山西农业大学学报:自然科学版, 2004, 24(004): 396-400.
    [36]金戈,王洪春.未结冰低温胁迫下小麦叶细胞质膜透性的变化进程及性质[J].植物生理学报, 1991, 17(003): 295-300.
    [37]孙艳,周存田.低温胁迫对黄瓜耐冷性相关生理指标的影响[J].陕西农业科学, 1997, (002): 22-23.
    [38]陈贵林,肖凯.低温胁迫下西葫芦嫁接苗伤流液中激素含量的变化[J].植物生理学通讯, 1998, 34(006): 452-453.
    [39] Chen T H H, Howe G T, Bradshaw Jr H D. Molecular genetic analysis of dormancy-related traits in poplars[J]. Weed Science, 2002, 50(2): 232-240.
    [40] Chen H H, Li P H, Brenner M L. Involvement of abscisic acid in potato cold acclimation[J]. Plant Physiology, 1983, 71(2): 362.
    [41] Ishikawa M, Robertson A J, Gusta L V. Effect of temperature, light, nutrients and dehardening on abscisic acid induced cold hardiness in Bromus inermis Leyss suspension cultured cells[J]. Plant and Cell Physiology, 1990, 31(1): 51.
    [42]任华中,黄伟.低温弱光对温室番茄生理特性的影响[J].中国农业大学学报, 2002, 7(001): 95-101.
    [43]钟克亚,叶妙水,胡新文,等.转录因子CBF在植物抗寒中的重要作用[J].遗传, 2006, 28(002): 249-254.
    [44] Cushman J C, Bohnert H J. Genomic approaches to plant stress tolerance[J]. Current Opinion in Plant Biology, 2000, 3(2): 117-124.
    [45] Cao Q, Kong W F, Wen P F. Plant freezing tolerance and genes expressed in Cold Acclimation[J]. Acta Ecol Sin, 2004, 24: 806-811.
    [46] Breyne P, Zabeau M. Genome-wide expression analysis of plant cell cycle modulated genes[J]. Current Opinion in Plant Biology, 2001, 4(2): 136-142.
    [47] Jia Y, del Rio H S, Robbins A L, et al. Cloning and sequence analysis of a low temperature-induced gene from trifoliate orange with unusual pre-mRNA processing[J]. Plant Cell Reports, 2004, 23(3): 159-166.
    [48] Cai Q, Moore G A, Guy C L. An unusual group 2 LEA gene family in citrus responsive to low temperature[J]. Plant molecular biology, 1995, 29(1): 11-23.
    [49] Houde M, Danyluk J, LalibertéJ F, et al. Cloning, characterization, and expression of a cDNA encoding a 50-kilodalton protein specifically induced by cold acclimation in wheat[J]. Plant Physiology, 1992, 99(4): 1381.
    [50] Zhang C, Lang P, Dane F, et al. Cold acclimation induced genes of trifoliate orange (Poncirus trifoliata)[J]. Plant Cell Reports, 2005, 23(10): 764-769.
    [51]丁秀英,张军.低温胁迫下IPT诱导水稻幼苗根中的RNA差别显示分析[J].作物学报, 2001, 27(006): 935-940.
    [52]殷奎德,张兴梅.冷胁迫诱导,咖啡因抑制的水稻根新基因片段的分离及表达分析[J].生物工程学报, 2002, 18(004): 468-471.
    [53]郭丽琼,林俊芳,等.应用cDNA-AFLP技术分离草菇冷诱导表达基因[J].园艺学报, 2005, 32(001): 54-59.
    [54]龙桂友.柑橘低温诱导相关基因的克隆与表达分析[D].湖南农业大学:博士学位论文2007.
    [55]刘汉梅,张怀渝,等.玉米抗寒基因的克隆与表达研究[J].玉米科学, 2007, 15(002): 26-30.
    [56] Danyluk J, Sarhan F. Differential mRNA transcription during the induction of freezing tolerance in spring and winter wheat[J]. Plant and Cell Physiology, 1990, 31(5): 609.
    [57] Kurkela S, Borg-Franck M. Structure and expression of kin2, one of two cold-and ABA-induced genes of Arabidopsis thaliana[J]. Plant molecular biology, 1992, 19(4): 689-692.
    [58] Hon W C, Griffith M, Chong P, et al. Extraction and isolation of antifreeze proteins from winter rye (Secale cereale L.) leaves[J]. Plant Physiology, 1994, 104(3): 971.
    [59]费云标,孙龙华.沙冬青高活性抗冻蛋白的发现[J].植物学报:英文版, 1994, 36(008): 649-650.
    [60]卢存福,简令成.低温诱导唐古特红景天细胞分泌抗冻蛋白[J].生物化学与生物物理进展, 2000, 27(005): 555-559.
    [61]邰付菊,李扬,等.低温胁迫下棉花子叶蛋白质差异表达的双向电泳分析[J].华中师范大学学报:自然科学版, 2008, 42(002): 262-266.
    [62]黄寿波,李国景.我国枇杷冻害的农业气象指标及其防御技术[J].湖北气象, 2000, (004): 17-20.
    [63]周政华,胡小三.秋冬干旱对大五星枇杷生长结果的影响[J].特产研究, 2006, 28(001): 34-38.
    [64]中国农业科学院郑州果树研究所,等.中国果树栽培学[M].北京:农业出版社, 1984,12:1070.
    [65]张春晓,葛孝煌.枇杷冻害与叶片花器水分的关系[J].福建果树(3), 1993, 18: 21.
    [66]罗华建,刘星辉.干旱对枇杷生长的影响[J].中国南方果树, 2004, 33(003): 26-27.
    [67]郑国华,张贺英.低温胁迫下解放钟枇杷幼果细胞超微结构的变化[J].莆田学院学报, 2008, 15(002): 52-55.
    [68]郑国华,张贺英.低温胁迫对枇杷幼果细胞超微结构及膜透性和保护酶活性的影响[J].热带作物学报, 2008, 29(006): 730-737.
    [69]郑国华,张贺英.不同低温胁迫下早钟6号枇杷幼果细胞超微结构的变化[J].福建农林大学学报:自然科学版, 2008, 37(005): 473-476.
    [70]郑国华,张贺英,钟秀容.低温胁迫下枇杷叶片细胞超微结构及膜透性和保护酶活性的变化[J].中国生态农业学报, 2009, 17(004): 739-745.
    [71]陈正洪.枇杷冻害的研究(Ⅰ):枇杷花果冻害的观测试验及冻害因子分析[J].中国农业气象, 1991, 12(004): 16-20.
    [72]王长春,柯冠武.枇杷叶片抗冻性测定法的初步研究[J].福建果树, 1991, (001): 14-16.
    [73]陈由强,高一平.低温胁迫下枇杷幼叶细胞内Ca2+水平及细胞超微结构变化[J].武汉植物学研究, 2000, 18(002): 138-142.
    [74]陈清轩.筛选差异表达基因的方法进展[J].阜阳师范学院学报(自然科学版), 2004, (01).
    [75]崔大祥,闫小君,苏成芝.差异表达基因克隆技术的进展[J].生命的化学, 1999, 19(005): 241-243.
    [76]曾燕如,张鸣.差异显示的改进及其在木本植物研究中的应用[J].中国生物工程杂志, 2003, 23(002): 33-36.
    [77] Liang P, Pardee A B, Bachem C W B, et al. Differential Display of eukaryotic messenger RNA by means[J]. Nature Biotechnology, 1999, 257: 3.
    [78]朱靖,杜立新.反转录差异显示技术及其方法的改进[J].动物医学进展, 2005, 26(001): 19-21.
    [79]赵锦荣,阎小君.差异显示反转录PCR技术研究进展[J].生物化学与生物物理进展, 2000, 27(001): 28-32.
    [80] Zimmermann J W, Schultz R M. Analysis of gene expression in the preimplantation mouse embryo: use of mRNA differential display[J]. Proc Natl Acad Sci USA, 1994, 91(12): 5456-5460.
    [81] Hadman M, Adam B L, Wright G L, et al. Modifications to the differential display technique reduce background and increase sensitivity[J]. Analytical biochemistry, 1995, 226(2): 383-386.
    [82] Ab L P P. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction[J]. Science, 1992, 257: 967-971.
    [83] Poirier G M, Pyati J, Wan J S, et al. Screening differentially expressed cDNA clones obtained by differential display using amplified RNA[J]. Nucleic acids research, 1997, 25(4): 913.
    [84] Liang P, Pardee A. Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization[J]. Nucleic acids research, 1993, 21(14): 3269.
    [85]张今今.中国葡萄属野生种抗白粉病基因cDNA克隆及序列分析[D].西北农林科技大学, 2003.
    [86]梁德勇,王晓民,崔振中,等.银染mRNA差异显示方法的条件优化[J].中国神经科学杂志, 1999, 15(2): 151-155.
    [87]张慧蓉,龚义勤,柳李旺,等.萝卜mRNA差异显示技术反应体系的优化及应用[J].江苏农业科学, 2007, 1.
    [88] Liang P, Zhu W, Zhang X, et al. Differential display using one-base anchored oligo-dT primers[J]. Nucleic acids research, 1994, 22(25): 5763-5764.
    [89] Liang P. Factors ensuring successful use of differential display[J]. Methods, 1998, 16(4): 361-364.
    [90] Bauer D, Muuller H, Reich J, et al. Identification of differentially expressed mRNA species by an improved disply technique (DDRT-PCR)[J]. Nucleic acids research, 1993, 21(18): 4272.
    [91] Martin K J, Pardee A B. Principles of differential display [J]. Methods in enzymology, 1999, 303: 234-258.
    [92] Liang P. A decade of differential display [Review][J]. Biotechniques, 2002, 33(2): 338-344.
    [93] Joshi C P, Kumar S, Nguyen H T. Application of modified differential display technique for cloning and sequencing of the 3′region from three putative members of wheat HSP70 gene family[J]. Plant molecular biology, 1996, 30(3): 641-646.
    [94] Ayala M, Balint R F, Gavilondo J V. New primer strategy improves precision of differential display[J]. Biotechniques, 1995, 18: 842-850.
    [95]孙志栋,王学德,倪西源,等.棉花微卫星DNA扩增产物检测方法的优化研究[J].分子植物育种, 2004, 2(004): 593-596.
    [96] Sokolov B P, Prockop D J. A rapid and simple PCR-based method for isolation of cDNAs from differentially expressed genes[J]. Nucleic acids research, 1994, 22(19): 4009.
    [97]崔凯荣,邢更生.利用mRNA差别显示技术分析枸杞体细胞胚发生早期基因的差别表达[J].遗传, 1998, 20(005): 16-19.
    [98] Guimaraes M J, Lee F, Zlotnik A, et al. Differential display by PCR: novel findings and applications[J]. Nucleic acids research, 1995, 23(10): 1832-1833.
    [99] Mou L, Miller H, Li J, et al. Improvements to the differential display method for gene analysis[J]. Biochemical and biophysical research communications(Print), 1994, 199(2): 564-569.
    [100] Vogeli-Lange R, Burckert N, Boller T, et al. Rapid selection and classification of positive clones generated by mRNA differential display[J]. Nucleic acids research, 1996, 24(7): 1385.
    [101] Zhang H, Zhang R, Liang P. Differential screening of gene expression difference enriched by differential display[J]. Nucleic acids research, 1996, 24(12): 2454.
    [102]刘红,任笑蒙.一种快速筛选阳性克隆的方法—反向Northern印迹杂交技术[J].基础医学与临床, 2002, 22(003): 278-280.
    [103] Zeiner M, Gehring U. Cloning of 5' cDNA regions by inverse PCR[J]. Biotechniques, 1994, 17(6): 1050-1054.
    [104] Van Driessche E, Beeckmans S, Dejaegere R, et al. Thiourea: the antioxidant of choice for the purification of proteins from phenol-rich plant tissues[J]. Analytical biochemistry, 1984, 141(1): 184-188.
    [105]薄海侠. mRNA差异显示法研究密叶杨×胡杨NaHCO3胁迫下基因的表达[D].东北林业大学, 2003.
    [106] Torres G A M, Pflieger S, Corre-Menguy F, et al. Identification of novel drought-related mRNAs in common bean roots by differential display RT-PCR[J]. Plant Science, 2006, 171(3): 300-307.
    [107]欧文军,李开绵,王文泉.小桐子基因组DNA的提取及ISSR-PCR反应体系的优化[J].中国农学通报, 2008, 24(005): 409-413.
    [108]赵谦,杜虹,庄东红. ISSR分子标记及其在植物研究中的应用[J]. Molecular Plant, 2007, 5(6): 123-129.
    [109] Zhu J K, Hasegawa P M, Bressan R A. Molecular aspects of osmotic stress in plants[J]. Critical reviews in plant sciences (USA), 1997.
    [110] Jin Junhua Z T, et al. Effect of caloric restriction on expressions of senescence-associated genesof IMR-90 cells[J]. Chin J Geriatr, 2007,7, (7): 520-524.
    [111]刘晓忠,高煜珠.涝渍逆境下玉米根系乙醇脱氢酶活性与耐涝性的关系[J].江苏农业学报, 1991, 7(004): 1-7.
    [112]石之光,叶磊,巩鹏涛,等.乙醇脱氢酶(ADH)家族生物信息学分析[J]. Genomics, 2009, 28(3): 429-432.
    [113]徐小琳,徐岩,穆晓清. NAD (P)依赖型氧化还原酶分离纯化技术进展[J].工业微生物, 2005, 35(001): 49-54.
    [114]王跃进,张今今.葡萄银染mRNA差异显示分析体系的建立及优化[J].农业生物技术学报, 2005, 13(002): 254-255.
    [115]黄浩,柳李旺,龚义勤,等.萝卜总RNA提取与mRNA差异显示技术[J].植物生理学通讯, 2004, 40(004): 483-486.
    [116]王关林,方宏筠.植物基因工程[M].北京:科学出版社, 2002: 215.
    [117] Hajela R K, Horvath D P, Gilmour S J, et al. Molecular cloning and expression of cor (cold-regulated) genes in Arabidopsis thaliana[J]. Plant Physiology, 1990, 93(3): 1246.
    [118]康国斌,雍伟东.低温诱导的黄瓜ccr18基因的cDNA克隆及其表达特性分析[J].植物学报:英文版, 2001, 43(009): 955-959.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700