番木瓜类胡萝卜素生物合成途径部分酶基因cDNA的克隆与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
番木瓜(Carica papaya L.)是热带、亚热带地区广泛种植的果树,是类胡萝卜素的重要植物资源。类胡萝卜素是具有广泛生物功能的一大类重要的植物色素。本研究以红肉番木瓜‘马来10号’果肉为材料,利用RACE和RT-PCR技术克隆类胡萝卜素生物合成途径中八氢番茄红素脱氢酶基因(phytoene desaturase,PDS)、ζ-胡萝卜素脱氢酶基因(ζ-carotene desaturase,ZDS)和番茄红素β-环化酶基因(lycopene-β-cyclase,LCY-B)的cDNA序列,并采用半定量RT-PCR法分析该途径中八氢番茄红素合成酶基因(phytoene synthase,PSY)、PDS、ZDS和LCY-B四基因在果实不同发育时期的表达水平。本研究为阐明番木瓜果肉颜色形成的分子机理奠定了基础,也在分子水平充实了类胡萝卜素生物合成的理论研究。
     1利用RACE和RT-PCR技术克隆番木瓜PDS基因cDNA全长
     利用GenBank已登录的番木瓜PDS基因片段,通过RACE技术获得其5′端和3′端序列,从而得到番木瓜PDS基因cDNA(GenBank登录号为DQ666830)全长2202bp,最大开放读码框为1752bp,编码583个氨基酸,预测相对分子量为65110.0,等电点为6.26,5′端有223bp的非翻译区,3′端包含227bp的非编码序列;根据cDNA全长推导氨基酸序列与番茄、温州蜜柑、玉米等高等植物PDS基因的氨基酸序列进行同源性对比分析并构建系统进化树。
     2利用RACE和RT-PCR技术克隆番木瓜ZDS基因cDNA全长
     根据GenBank已登录的番木瓜ZDS基因3′端序列,通过RACE技术获得其5′端序列,得到番木瓜ZDS基因cDNA(GenBank登录号为DQ666829)全长1951bp,最大开放读码框为1659bp,编码552个氨基酸,预测分子量为60888.8,等电点为7.52,5′端有25bp长的非翻译区,3′端包含267bp的非编码序列;根据cDNA全长推导氨基酸序列与温州蜜柑、拟南芥、玉米等高等植物ZDS基因的氨基酸序列进行同源性分析并构建系统进化树。
     3利用RT-PCR技术克隆番木瓜LCY-B基因的ORF
     依据GenBank已登录的番木瓜LCY-B基因的DNA全长,通过RT-PCR技术获得其ORF序列(GenBank登录号为FJ599643)为1613bp,最大开放读码框为1512bp,编码503个氨基酸,预测分子量为56736.5,等电点为6.62,5′端有76bp长的非翻译区,3′端包含25bp的非编码序列;根据cDNA全长推导氨基酸序列与温州蜜柑、番茄、水仙等高等植物LCY-B基因的氨基酸序列进行同源性分析并构建系统进化树。
     4利用半定量RT-PCR分析番木瓜PSY、PDS、ZDS和LCY-B基因的表达
     以番木瓜Actin基因为阳性对照,检测番木瓜PSY、PDS、ZDS和LCY-B四基因在果实膨大结束期、果皮破色期、果皮50%转黄期和果皮全黄期四个时期的表达水平,结果表明四基因在四个时期均有表达,且在果实发育期表达量都呈先升后降的趋势,说明了这些酶基因在番木瓜类胡萝卜素代谢中不可缺少。四个酶基因的表达水平基本在同一时期达到最大且在果实成熟后期均趋于下降,说明它们有着密切的协作关系。
Papaya(Carica papaya L.) is a fruit crop cultivated in tropical and sub-tropical regions worldwide and rich in carotenoids. Carotenoids are a large class of plant pigments,which have a wide range of biological functions. In this study, the cDNA sequence of phytoene desaturase(PDS)、ζ-carotene desaturase(ZDS) and lycopene-β-cyclase(LCY-B) of carotenoid biosynthetic pathway in red flesh of‘NO.10 ma lai′papaya were cloned by RACE and RT-PCR, and the expresstion patterns of phytoene synthase(PSY)、PDS、ZDS and LCY-B in different developmental stages of papaya fruits were analyzed by semi quantitative RT-PCR.This study could provid the the theoretical basis for the molecular mechanism of carotenoids biosynthesis and of differnial flesh color in papaya.
     1 Cloning and analysis of the full length cDNA of CpPDS by RACE and RT-PCR
     Obtained the 5′and 3′end sequence by RACE,using CpPDS fragment from GenBank.And the full length cDNA of CpPDS(Genbank accession number DQ666830) is 2202bp, it contains a largest ORF that is 1752bp encoding 583 amino acids (Mw= 65110.0, pI=6.26),a 5′untranslated region of 223 bp and a 3′flanking sequence of 227 bp. The deduced amino acid sequence of CpPDS was compared with the sequences of other higher plants such as Solanum lycopersicum, Citrus unshiu, Zea mays,and so on.
     2 Cloning and analysis of the full length cDNA of CpZDS by RACE and RT-PCR
     Obtained the 5′nucleotide sequence by RACE, using CpZDS 3′nucleotide seqence from GenBank. And the full length cDNA of CpZDS(Genbank accession number DQ666829) is 1951bp, it contains a largest ORF that is 1659bp encoding 552 amino acids (Mw=60888.8, pI=7.52),a 5′untranslated region of 25 bp and a 3′flanking sequence of 267 bp. The deduced amino acid sequence of CpZDS was compared the sequences of other higher plants such as Citrus unshiu, Arabidopsis thaliana, Zea mays, and so on.
     3 Cloning and analysis of the ORF of CpLCY-B by RT-PCR
     Obtained the ORF(Genbank accession number FJ599643) by RT-PCR, using the full length DNA of CpLCY-B from GenBank.And the nucleotide sequence is 1613bp, it contains a largest ORF that is 1512bp encoding 503 amino acids (Mw=56736.5, pI=6.62),a 5′untranslated region of 76 bp and a 3′flanking sequence of 25 bp. The deduced amino acid sequence of CpLCY-B was compared with the sequences of other higher plants such as Citrus unshiu, Solanum lycopersicum, Narcissus pseudonarcissus, and so on.
     4 Analysis the expression of CpPSY, CpPDS, CpZDS and CpLCY-B by sqRT-PCR
     The expression patterns of CpPSY, CpPDS, CpZDS and CpLCY-B in the expansion stage, color break stage, 50% ripening stage and full ripening stage were carried out and CpActin was used as positive control. sqRT-PCR indicated that all of the four enzyme genes expressed in different developmental stages of papaya fruit with higher expression level the intermediate stages. So it shows that these enzyme genes are indispensable in carotenoids metabolism, and this is the manifestation of their importance. The levels of the four genes′expression reach the maximum during the same period and all in the downward trend in full ripening stage .It shows that they have close collaborative relationship.
引文
[1] Fraser PD, Bramley PM. The biosynthesis and nutritional uses of carotenoids[J]. Progress in Lipid Research, 2004, 43: 228-265.
    [2] Johnson E A, Schroeder W A. Microbial carotenoids[J]. Advance in Biochemical Engineering Biotechnology, 1995, 53: 118-178.
    [3] Fraser PD, Truesdale MR, Bird CR, et al. Carotenoid biosynthesis during tomato fruit development[J]. Plant Physiol, 1994, 105: 405-413.
    [4] Thenhan D I . Antioxidant vitamins and cancer prevention [J] Journal of Micronutrient Analysis, 1990, 7: 279-299.
    [5] Bartley E, Scolnik P A. Plant carotenoids: Pigments for photoprotection, visual attraction and human health [J]. Plant Cell, 1995, 9: 1027-1038.
    [6]陶俊,张上隆.类胡萝卜素合成的相关基因及其基因工程[J].生物工程学报, 2002(5): 276-281.
    [7]惠伯棣.类胡萝卜素化学及生物化学[M].北京:中国轻工业出版社, 2004.
    [8]李福枝,刘飞,曾晓希等.天然类胡萝卜素的研究进展[J].食品工业科技. 2007, 28(9): 227-232.
    [9]何玮毅.双T-DNA共转化获得转基因番木瓜的研究[D].福建农林大学博士论文. 2009.
    [10]申艳红.番木瓜若干果实成熟相关基因克隆及遗传转化的研究[D].福建农林大学博士论文. 2009.
    [11]林冠雄,周常清,游恺哲等.我国番木瓜育种研究与展望[J].广东农业科学, 2005(4): 22-24.
    [12]王玉平.饮食营养谁最佳[J].农牧产品开发, 1999(5): 44.
    [13]百度百科http: //baike. baidu. com/view/28901. htm.
    [14]廖敏娜.番木瓜β-胡萝卜素合成途径部分酶基因的克隆与分析[D].福建农林大学硕士论文. 2006.
    [15] Rachel LSkelton, Qingyi Yu, Rajeswari , et al. Tissue differential expression of lycopeneβ-cyclase gene in papaya. [J]. Cell Research, 2006, 16: 731-739.
    [16] Yamamoto H. Differences in carotenoid composition between red- and yellow-fleshed papaya[J]. Nature, 1964, 201: 1049-1050.
    [17] Philip T and Chen TS. Quantitative analyses of major carotenoid fatty acid esters in fruitsby liquid chromatography: persimmon and papaya[J]. Journal of Food Science, 1988, 53(6): 1720-1722.
    [18] Hirschberg J. Carotenoid biosynthesis in flowering plants[J]. Current Opinion in Plant Biology, 2001, 4: 210-218.
    [19] Chandrika UG, Jansz ER, Wickramasinghe SN, et al. Carotenoids in yellow-and red-fleshed papaya(Carica papaya L)[J]. Fournal of the Science of Food and Agriculture, 2003, 83: 1279-1282.
    [20]陈选阳.甘薯β-胡萝卜素合成途径系列酶基因的克隆及相关研究[D].福建农林大学博士论文. 2005.
    [21] Cunningham FX Jr, Gantt E. Genes and enzymes of carotenoid biosynthetic pathway in plants[J]. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 557-583.
    [22] Fraser P D, Kiano J W, Truesdale M R, et al. Phytoene synthase-2 enzymes activity in tomato does not contribute to carotenoid synthesis in ripening fruit[J]. Plant Molecular Biology, 1999, 40: 687-697.
    [23] Kuntz M, Romer S, Suire C, et al. Identifica-tion of cDNA for the plastidlocated geranylgeranyl pyrophosphate synthase from Capsi-cum annuum: correlative increase in enzyme activity and transcript level during fruit ripening[J]. Plant J, 1992, 2(1): 25-34.
    [24] Zhu C, Yamamura S, Koiwa H, Nishihara M, Sandmann G. cDNA cloning and expre- ssion of carotenogenic genes during flower development in Gentiana lutea[J]. Plant Mol Biol, 2002, 8(3): 227-285.
    [25] Lichtenthaler HK, Schwender J, Disch A, Rohmer M. Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway[J]. FEBS Lett, 1997, 400: 271-274.
    [26] Lichtenthaler HK, Rohmer M, Schwender J. Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants[J]. Physiol Plant, 1997, 101: 643-652.
    [27] Cunningham FX Jr, Lafond TP, Gantt E: Evidence of a role for LytB in the nonmevalonate pathway of isoprenoid biosynthesis[J]. J Bacteriol, 2000, 182: 5841-5848.
    [28] The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature, 2000, 408: 796-815.
    [29] Shewmaker CK, Sheehy JA, Daley M, et al. Seed specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects[J]. Plant J, 1999, 20: 401-412.
    [30] Norris SR, Barrette TR, DellaPenna D. Genetic dissection of carotenoid synthesis in Arabidopsis defines plastoquinone as an essential component of phytoene desaturation[J]. Plant Cell, 1995, 7: 2139-2149.
    [31] Bartley GE, Scolnik PA, Beyer P. Two Arabidopsis thaliana carotene desaturases, phytoene desaturase andζ-carotene desaturase, expressed in Escherichia coli, catalyze a poly-cis pathway to yield pro-lycopene[J]. Eur J Biochem, 1999, 259: 396-403.
    [32] Krubasik P, Sandmann G. A carotenogenic gene cluster from Brevibacterium linens with novel lycopene cyclase genes involved in the synthesis of aromatic carotenoids[J]. Mol Gen Genet, 2000, 263: 423-432.
    [33] Krubasik P, Sandmann G. Molecular evolution of lycopene cyclases involved in the formation of carotenoids with ionone end groups[J]. Biochem Soc Trans, 2000, 28: 806-810.
    [34]朱长甫,陈星,王英典.植物类胡萝卜素生物合成及其相关基因工程中的应用[J].植物生理与分子生物学学报, 2004, 30(6): 609-618.
    [35] Cunningham FX Jr, Gantt E. Genes and enzymes of carotenoid biosynthetic pathway in plants[J]. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 557-583.
    [36] Ray JA, Bird CR, Maunders M, et al. Sequence of pTOM5 a ripening related cDNA from tomato[J]. Nucl Acid Res, 1987, 24: 10587.
    [37] Bird CR, Ray JA, Fletcher JD, et al. Using antisense RNA to study gene function: Inhibition of carotenoid biosynthesis in transgenic tomatoes[J]. Bio/Technol, 1991, 9: 635-639.
    [38] Bramley P, Teulieres C, Blain I, et al. Biochemical characterization of transgenic tomato plant in which carotenoid synthesis has been inhibited throught has been expression of antisense RNA to pTOM5[J]. Plant J, 1992, 2: 343-349.
    [39] Bartley GE, Viitanen PV, Bacot KO, et al. A tomato gene expressed during fruit ripening encodes an enzyme of the carotenoid biosynthesis pathway[J]. J Biol Chem. 1992, 267: 5036-5039.
    [40] Bartley GE, Scolnik PA. cDNA cloning, expression during development and geno- me mapping of PSY2, a second tomato gene encoding phytoene synthase[J]. J Biol Chem, 1993, 268: 25718-25721.
    [41] Palaisa KA, Morgante M, Williams M, et al . Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci[J]. Plant Cell. 2003, 15(8): 1795-l806.
    [42] Chamovitz D, Pecker I, Hirschberg J. The molecular basis of resistance to the herbicide norflurazon[J]. Plant Mol Biol, 1991, 16: 967-974.
    [43] Bartley GE, Viitanen PV, Pecker I , et al. Molecular cloning and expression in photosynthetic bacteria of asoybean cDNA coding for phytoene desaturase, an enzyme of the carotenoid biosynthesis pathway[J]. Proc Natl Acad Sci USA, 1991, 88: 6532-6536.
    [44] Pecker I, Chamovitz D, Linden H, et al. A single polypeptide catalyzing the conversion of phytoene toζ-carotene is transcriptionally regulated during tomato fruit ripening[J]. Proc Natl Acad Sci USA, 1992, 89: 4962-4966.
    [45] Just BJ, Santos CA, Fonseca ME, et al. Carotenoid biosynthesis structural genes in carrot (Daucus carota): isolation, sequence-characterization, single nucleotide polymorphism (SNP) markers and genome mapping[J]. Theor Appl Genet , 2007 , 114(4): 693-704.
    [46] Schledz M, al-Babili S, von Lintig J, et al. Phytoene synthase from Narcissus pseudonarcissus: functional expression, galactolipid requirement, topological distribution in chromoplasts and induction during flowering[J]. Plant J, 1996, 10(5): 781-92.
    [47] Simkin AJ, Moreau H, Kuntz M, et al. An investigation of carotenoid biosynthesis in Coffea canephora and Coffea arabica[J]. J Plant Physiol, 2008, 165(10): 1087-106.
    [48] Kita M, Kato M, Ban Y, Honda C, et al. Carotenoid accumulation in Japanese apricot (Prunus mume Siebold & Zucc. ): molecular analysis of carotenogenic gene expression and ethylene regulation[J]. J Agric Food Chem, 2007, 55(9): 3414-20.
    [49] Han H, Li Y, Zhou S. Overexpression of phytoene synthase gene from Salicornia europaea alters response to reactive oxygen species under salt stress in transgenic Arabidopsis[J]. Biotechnol Lett, 2008, 30(8): 1501-7.
    [50] Zhu C, Yamamura S, Koiwa H, et al. cDNA cloning and expression of carotenogenic genes during flower development in Gentiana lutea[J]. Plant Mol Biol, 2002 , 48(3):277-85.
    [51] Al-Babili S, von Lintig J, Haubruck H, et al. A novel, soluble form of phytoene desaturase from Narcissus pseudonarcissus chromoplasts is Hsp70-complexed and competent for flavinylation, membrane association and enzymatic activation[J]. Plant J, 1996 , 9(5): 601-12.
    [52] Scolnik PA, Bartley GE. Phytoene desaturase from Arabidopsis[J]. Plant Physiol,1993, 103(4): 1475.
    [53] Moehs CP, Tian L, Osteryoung KW, et al. Analysis of carotenoid biosynthetic gene expression during marigold petal development[J]. Plant Mol Biol, 2001, 45(3): 281-93.
    [54] Kita M, Komatsu A, Omura M, et al. Cloning and expression of CitPDS1, a gene encoding phytoene desaturase in citrus[J]. Biosci Biotechnol Biochem, 2001, 65(6): 1424-8.
    [55] Hable WE, Oishi KK. Maize phytoene desaturase maps near the viviparous5 locus[J]. Plant Physiol, 1995 , 108(3): 1329-30.
    [56] Ohyanagi H, Tanaka T, Sakai H, et al. The Rice Annotation Project Database (RAP-DB): hub for Oryza sativa ssp. japonica genome information[J]. Nucleic Acids Res, 2006, 34(Database issue): D741-4.
    [57] Albrecht M, Klein A, Hugueney P, et al. Molecular cloning and functional expression in E. coli of a novel plant enzyme mediating zeta-carotene desaturation[J]. FEBS Lett. 1995, 372(2-3): 199-202.
    [58] Conti A, Pancaldi S, Fambrini M, et al. A deficiency at the gene coding for zeta-carotene desaturase characterizes the sunflower non dormant-1 mutant[J]. Plant Cell Physiol, 2004 Apr;45(4): 445-55.
    [59] Cunningham FX Jr, Gantt E: One ring or two? Determination of ring number in carotenoids by lycopeneε-cyclases[J]. Proc Natl Acad Sci USA, 2001, 98: 2905-2910.
    [60] Cunningham FX Jr, Pogson B, Sun Z, et al. Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation[J]. Plant Cell, 1996 , 8(9): 1613-26.
    [61] Del Villar-Martinez, et al. Carotenogenic gene expression and ultrastructural changes during development in marigold[J]. J Plant Physiol, 2005 , 162(9): 1046-56.
    [62] Cunningham FX Jr, Gantt E. ne ring or two? Determination of ring number in carotenoids by lycopene epsilon-cyclases[J]. Proc Natl Acad Sci USA, 2001 , 98(5): 2905-10.
    [63] Tuskan GA, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)[J]. Science, 2006 , 313(5793): 1596-604.
    [64]卢圣栋.现代分子生物学实验技术[M].北京:高等教育出版社, 1993: 50.
    [65]徐昌杰,张上隆.植物类胡萝卜素的生物合成及其调控[J].植物生理学通讯, 2000, 36 (1): 64-70.
    [66]卢秉国.龙眼子叶胚发育相关的基因克隆及序列分析[D].福建农林大学博士学位论文, 2009, 4.
    [67]王少丽,盛承发,乔传令. cDNA末端快速扩增技术及其应用[J].遗传, 2004, 26(3): 419-423
    [68]郑阳霞,李焕秀,严泽生. RACE技术及其在植物基因研究中的应用[J].安徽农业科学, 2008, 36(7): 2674-2676.
    [69]沈元月. RACE技术研究进展与展望[J].生物技术通报, 2008: 131-134.
    [70] J.萨姆布鲁克, D. W.拉塞尔.分子克隆实验指南[M].第3版.北京:科学出版社, 2002: 644-651.
    [71]唐克轩,开国银,张磊,等. RACE的研究及其在植物基因克隆上的应用[J].复旦学报(自然科学版), 2002, 41(6): 704-709.
    [72] Liu Yongzhong, Tang Peng, et al. Fruit Coloration Difference Between Fengwan, a Late-Maturing Mutant and Its Original Cultivar Fengjie72-1 of Navel Orange (Citrus sinensis Osbeck)[J]. Journal of Plant Physiology and Molecular Biology, 2006, 32 (1): 31-36.
    [73] Pecker L, Gabbay R, Cunningham Jr FX, et al. Cloning and characterization of the cDNA for lycopene beta-cyclase from tomato reveals decrease in its expression during fruit ripening[J]. Plant Mol Biol, 1996;30: 807-819.
    [74] National Center for Biotechnology Information[DB/OL]. http: //www. ncbi. nlm. nih. gov/
    [75]申艳红,陈晓静.改良热硼酸小量法提取番木瓜果肉总RNA[J].中国南方果树, 2009, 38: 7-9.
    [76]郑丽霞,林晓东,朱芳德,等.龙眼FLO/LFY同源基因cDNA片段的克隆[J].中山大学学报(自然科学版), 2004, 43: 60-64.
    [77]王云梅.橄榄叶黄酮合成相关的基因的cDNA克隆[D].福建农林大学硕士学位论文, 2009.
    [78] Marchler Bauer A, Anderson J B, Derbyshire M K, et al. CDD: a conserved domain database for interactive domain family analysis[J]. Nucleic Acids Res, 2007, 35: 237-240.
    [79] Gasteiger E, Hoogland C, Gattiker A, et al. Protein Identification and Analysis Tools on the ExPASy Server. (In)John M. Walker(ed): The Proteomics Protocols Handbook, Humana Press[M]. 2005, 571-607.
    [80]百度百科http: //baike. baidu. com/view/630506. htm?fr=ala0_1_1
    [81]章希娟,许鸿川,游向荣等.龙眼胚胎F3H基因的cDNA克隆及序列分析[J].园艺学报, 2008, 35(11): 1581-1586
    [82]陈观水,潘大仁,周以飞等.甘薯NPR1基因半定量RT-PCR检测方法的建立[J].福建农林大学学报(自然科学版), 36(1): 56-59.
    [83] Giovanni Giorio, Adriana Lucia Stigliani and Caterina D′Ambrosio. Agronomic performance and transcriptional analysis of carotenoid biosynthesis in fruits of transgenic HighCaro and control tomato lines under field conditions[J]. Transgenic Res, 2007, 16: 15-28.
    [84] Luke C. Devitt, Kent Fanning, Ralf G. Dietzgen, et al. Isolation and functional characterization of a lycopeneβ-cyclase gene that controls fruit colour of papaya (Caricapapaya L. )[J]. Journal of Experimental Botany, 2010, 61(1): 33-39.
    [85] Andrea L. Blas, Ray Ming, et al. Cloning and characterization of the fruit flesh color gene in papaya[J]. Plant Physiology, 2010, 152: 2013-2022.
    [86]高新征,言普,沈文涛等.番木瓜pds基因时空表达的荧光定量PCR分析[J].广西农业科学, 2009, 40: 610-613.
    [87]陈段芬,彭镇华,高志民.中国水仙八氢番茄红素脱氢酶基因(PDS)的克隆及表达分析[J].分子植物育种, 2008, 6(3): 574-578.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700