肿瘤相关巨噬细胞促进宫颈癌淋巴管生成的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分宫颈癌组织中巨噬细胞的存在及其分布特点
     目的
     探讨肿瘤相关巨噬细胞(tumor-associated macrophages, TAMs)在宫颈癌组织中的存在及其分布特点。
     方法
     免疫组化双染法检测61例早期宫颈浸润癌标本,27例CIN标本和29例正常宫颈标本中CD68阳性的巨噬细胞和D2-40阳性的微淋巴管的存在和分布,并对宫颈癌中巨噬细胞的分布与临床病理特征间进行分析。
     结果
     1.巨噬细胞在宫颈癌癌巢中的数量明显多于在正常宫颈组织的数量(P<0.05)。在癌间质中的数量明显多于在正常宫颈组织和CIN组织中的数量(P均<0.05),而在癌周或癌旁中的数量和正常宫颈组织相比无明显差异(P>0.05)。
     2.微淋巴管在宫颈癌组织中主要位于癌间质和癌周,而在癌巢区罕见。微淋巴管在癌间质中的分布明显高于正常宫颈组织和CIN组织(P均<0.05)。
     3.对巨噬细胞密度(macrophage density, MD)和微淋巴管密度(lymphatic vessel density, LVD)的Pearson相关分析发现癌间质中的TAMs和癌间质中的LVD(P=0.0002),以及癌间质中的TAMs和癌周的LVD存在显著正相关(P=0.0322)。在癌巢TAMs和癌间质LVD,癌周TAMs和癌周LVD,或癌旁TAMs和癌旁LVD间未发现明显相关性(P>0.05)。
     4.有淋巴转移的宫颈癌患者癌问质MD水平显著高于无淋巴转移的宫颈癌患者的癌间质MD水平(P=0.033)。肿瘤长径大于等于2cm的宫颈癌患者癌间质MD水平显著高于肿瘤长径小于2cm者(P=0.006)。TAMs数量与病例年龄、FIGO分期、侵犯深度、组织分化、或组织学类型间无明显相关性(P>0.05)。
     结论
     宫颈癌间质中的TAMs明显增加,且与淋巴管密度和淋巴转移相关。
     第二部分宫颈癌微环境中巨噬细胞的来源
     目的
     探讨宫颈癌肿瘤间质中增加的TAMs的来源。
     方法
     1.用transwell小室实验观察宫颈癌细胞Hela、Siha和C33A对经佛波酯诱导THP-1单核细胞转化而成的巨噬细胞的迁移影响,模拟巨噬细胞的募集。
     2.在宫颈癌组织中利用免疫组化和免疫荧光的方法用Ki67抗体原位检测宫颈癌组织中的巨噬细胞的增殖活性。
     结果
     1.巨噬细胞体外募集实验结果显示同空白对照组和正常宫颈上皮细胞CRL2614组相比,宫颈癌细胞系组巨噬细胞的迁移明显增加(P均<0.001)。
     2.免疫组化双染法和免疫荧光法检测宫颈癌组织中巨噬细胞的Ki67增殖活性的实验结果一致显示,CD68阳性着色的细胞与Ki67阳性着色细胞无重叠,表明宫颈癌组织中的巨噬细胞不具有增殖活性。
     结论
     宫颈癌细胞可以促使附近的巨噬细胞发生定向迁移,宫颈癌癌间质中增加的TAMs可能部分来源于对邻近区域已存在的巨噬细胞的募集。
     第三部分TAMs对宫颈癌细胞的侵袭迁移影响
     目的
     探讨TAMs对宫颈癌细胞的侵袭迁移能力影响。
     方法
     1.用铺有Matrigel基质胶的1transwell小室实验观察TAMs对宫颈癌细胞Hela、Siha和C33A的侵袭能力的影响。
     2.用transwell小室实验观察TAMs对宫颈癌细胞Hela、Siha和C33A的迁移能力影响。
     结果
     1.宫颈癌细胞的transwell侵袭实验结果显示:在TAMs的影响下,相比空白对照组,Hela组、Siha组和C33A组细胞穿透基质胶和微孔运动到对侧的侵袭数目均明显增加(P均<0.001)。
     2.宫颈癌细胞的transwell迁移实验结果显示:在TAMs的影响下,相比空白对照组,Hela组、Siha组和C33A组细胞穿透基质胶和微孔运动到对侧的迁移数目均明显增加(P均<0.001)。
     结论
     TAMs可以促进宫颈癌细胞的侵袭迁移能力。
     第四部分TAMs促宫颈癌淋巴管的形成
     目的
     探讨TAMs对宫颈癌淋巴管形成的影响和机制。
     方法
     1.分别收集正常宫颈上皮细胞、宫颈癌细胞、巨噬细胞和巨噬细胞-宫颈癌细胞共培养的培养上清作为条件培养基,通过人淋巴管内皮细胞HLEC的体外成管实验,了解不同细胞对淋巴管形成的影响。
     2.建立“巨噬细胞-宫颈癌细胞”直接共培养模型,ELISA法检测共培养上清中IL-1p和IL-8的分泌。
     3.通过免疫磁珠分离“巨噬细胞-宫颈癌细胞”直接共培养模型中的细胞,用RT-PCR法检测巨噬细胞和宫颈癌细胞在共培养前后淋巴管生成相关因子(VEGF-C/-D/-A、IL-1β和IL-8)的变化。
     4.建立模拟宫颈癌微环境的“巨噬细胞-宫颈癌细胞-淋巴管内皮细胞”直接共培养模型和作为对照的“巨噬细胞-正常宫颈上皮细胞-淋巴管内皮细胞”直接共培养模型,研究宫颈癌微环境对淋巴管内皮细胞的表面受体VEGFR-3的表达影响。
     结果
     1. HLEC的管腔样结构的形成数量在普通LEC培养基,CRL2614条件培养基,巨噬细胞条件培养基,Hela条件培养基,Siha条件培养基,C33A条件培养基中无明显差别(P>0.05)。只有在巨噬细胞-宫颈癌细胞共培养条件培养基中生长的HLEC形成的管腔样结构才明显增加(P<0.001)。
     2. ELISA结果显示同正常宫颈上皮细胞CRL2614、单独培养的巨噬细胞、单独培养的宫颈癌细胞系相比,巨噬细胞-宫颈癌细胞直接共培养模型中分泌的IL-1p和IL-8水平均明显增加(P均<0.001)。
     3. RT-PCR实验结果显示IL-1p和IL-8在与巨噬细胞共培养之后的宫颈癌细胞系中的mRNA表达均明显增加(P均<0.05)。与宫颈癌细胞系共培养之后的巨噬细胞中VEGF-C和VEGF-A的mRNA表达明显增加,VEGF-D的表达在Hela组显示增加,IL-1p在Hela和Siha组的表达增加(P均<0.05)。
     4.对比“巨噬细胞-正常宫颈上皮细胞-HLEC共培养模型”中的HLEC,“巨噬细胞-宫颈癌细胞-HLEC共培养模型”中的HLEC的VEGFR-3的mRNA表达明显增加(P均<0.05)。
     结论
     微环境中的巨噬细胞通过与宫颈癌细胞的相互作用促进淋巴管的形成。
Part Ⅰ The presence and distribution characters of TAMs in cervical cancer tissues
     Objective
     To explore the presence and distribution characters of tumor-associated macrophages (TAMs) in cervical cancer tissues.
     Methods
     Immunohistochemistry was used for detection of D2-40-positive lymphatic endothelial cells and CD68-positive macrophages in117cervix tissues including sixty-one invasive carcinomas of uterine cervix, twenty-seven cervical intraepithelial neoplasms (CIN), and twenty-nine normal cervix. And the relationship between the number of TAMs and the clinicopathological features in61human cervical cancers were analyzed.
     Results
     1. Macrophages in cervical cancer were enriched in tumor nests and stroma when compared with normal cervix and CIN (P<0.05), whereas no significant differences among peritumor, paratumor and normal cervix were found (P>0.05).
     2. Lymphatic vessels in cervical cancer were mainly located in the tumor stroma and peritumor, but rarely observed in cancer nests. LVD in tumor stroma was apparently higher than that in normal cervix and CIN (all P<0.05).
     3. Pearson tests showed there was a significant positive correlation between stromal TAMs and stromal LVD (P=0.0002), and between stromal TAMs and peritumor LVD (P=0.0322). Significant correlation was not found between tumor nests TAMs and stromal LVD, between peritumor TAMs and peritumor LVD, or between paratumor TAMs and paratumor LVD (P>0.05).
     4. Stromal MD in cases with lymphatic metastasis were increased, when compared with those without lymphatic metastasis (P=0.033). And there were increased stromal TAMs in tumors2cm or greater in diameter, when compared with that in those smaller than2cm in diameter (P=0.006). There was no significant correlation between TAMs and age, FIGO stage, invasion depth, histological differentiation, or histological type.
     Conclusion
     Increased stromal TAMs are significantly correlated with LVD and lymphatic metastasis in cervical cancer.
     Part Ⅱ The source of TAMs in cervical cancer microenviroment
     Objective
     To explore the source of TAMs in the tumor microenviroment of cervical cancer.
     Methods
     1. The influence of cervical cancer cells (Hela, Siha or C33A) on migration of PMA-treated THP-1macrophages was examed by transwell assays, which imitated the macrophages recruitment in vitro.
     2. The proliferation activity of macrophages in cervical cancer tissues was evaluated by double staining with CD68antibody and Ki67antibody by immunohistochemistry (IHC) and immunofluorescence (IF) stains.
     Results
     1. Cervical cancer cells were more potential to promote the migration of macrophages towards them compared with blank control and normal cervix epithelium cell line CRL2614(all P<0.001).
     2. Both IHC and IF showed that macrophages marked by CD68in cervical cancer tissues were Ki67negative.
     Conclusion
     Cervical cancer cells promote the directional migration of existed macrophages, and part of the increased TAMs in tumor nests and stroma might be owned to recruitment of the preexisting macrophages in the surrounding.
     Part Ⅲ The influence of TAMs on the invasion and migration of cervical cancer cells
     Objective
     To explore the influence of TAMs on the invasion and migration of cervical cancer cells.
     Methods
     1. The influence of TAMs on invasion of cervical cancer cells (Hela, Siha or C33A) was assessed by transwell assays with Matrigel supplied.
     2. The influence of TAMs on migration of cervical cancer cells (Hela, Siha or C33A) was assesses by transwell assays.
     Results
     1. The number of invading cervical cancer cells increased in presence of TAMs, compared with blank (P<0.001).
     2. The number of migrating cervical cancer cells increased in presence of TAMs, compared with blank (P<0.001).
     Conclusion
     TAMs promote the invasion and migration of cervical cancer cells.
     Part IV The effect of TAMs and human cervical cancer cells on lymphangiogenesis
     Objective
     To detect the effect of TAMs and human cervical cancer cells on lymphangiogenesis.
     Methods
     1. The tube formation assays in vitro of HLEC were performed in different culture supernatants, including supernatants of CRL2614, cervical cancer cells, macrophages, and macrophage-cervical cancer cell coculture.
     2. ELISA assays were performed to determine the levels of IL-1β and IL-8in the conditioned media from macrophage-cervical cancer cell coculture.
     3.The mRNA expression of imflammatory factors (IL-1β and IL-8) and VEGFs (VEGF-C, VEGF-A and VEGF-D) in macrophages and cervical cancer cells cultured alone or cocultured were analyzed by RT-PCR.
     4. The mRNA expressions of VEGFR-3in HLEC isolated from "macrophage-cervical cancer cell-HLEC model" or "macrophage-CRL2614-HLEC model" was analyzed by RT-PCR.
     Results
     1. There was no significant difference in the number of tube-like structures formed by HLEC between cells cultured in common LEC medium and those cultured in conditioned media from CRL2614, macrophages, Hela, Siha or C33A (P>0.05). Only the conditioned medium from cervical cancer cells-macrophages cocluture resulted in a obvious increase in number of tube-like structures of HLEC (P<0.001).
     2. The levels of IL-1β and IL-8were obviously increased in the macrophage-cervical cancer cell coculture supernatants, when compared with that in culture supernatants of CRL2614, macrophages, or cervical cancer cells(all P<0.001).
     3.RT-PCR showed IL-1β and IL-8increased obviously in cervical cancer cells (Hela, Siha or C33A) cocultured with macrophages, respectively compared with Hela, Siha or C33A (all P<0.05). VEGF-C and VEGF-A increased in macrophages cocultured with cervical cancer cells (Hela, Siha or C33A) compared with macrophages cultured alone. VEGF-D showed increased in Hela group and IL-1β also was found increased in Hela or Siha groups (all P<0.05).
     4. The mRNA expression of VEGFR-3and PDPN were increased in HLEC cocultured with macrophages and Hela/Siha/C33A compared with those cocultured with macrophages and CRL2614(P<0.05).
     Conclusion
     Macrophages and tumor cells act synergistically to promote lymphangiogenesis in cervical cancer.
引文
[1]Hakama M, Coleman MP, Alexe DM, et al. Cancer screening:Evidence and practice in Europe 2008. Eur J Cancer,2008 Jul;44(10):1404-13.
    [2]Baluk P, McDonald DM. Markers for microscopic imaging of lymphangiogenesis and angiogenesis [J].Ann N Y Acad Sci,2008:1131 (The Lymphatic ContinuumRevisited):1-12.
    [3]Aubry K, Barriere G, Chable-Rabinovitch H et al. Molecular mechanisms regulating the angiogenic phenotype in tumors:Clinical impact in the future. Anticancer Res 2007;27;3111-3119.
    [4]Mantovani A, Allavena P, Sica A. Tumour-associated-macrophages as a prototypic type Ⅱ polarised phagocyte population:role in tumour progression [J].Eur J Cancer,2004;40(11):1660-1667.
    [5]Porta C, Subhra Kumar B, Larghi P, Rubino L, Mancino A, Sica A. Tumor promotion by tumor-associated macrophages[J].Adv Exp Med Biol. 2007;604:67-86.
    [6]David M. The many faces of macrophage activation [J].Journal of Leukocyte Biology,2003;73 (2):209-212.
    [7]Dontscho Kerjaschki.The crucial role of macrophages in lymphangiogenesis [J]. The Journal of Clinical Investigation,2005;115 (9) 2316-2319.
    [8]S.F. Schoppmann, P. Birner, J. Stockl, R. Kalt, R. Ullrich, C. Caucig, E. Kriehuber, K. Nagy, K. Alitalo, D. Kerjaschki, Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 161 (2002) 947-956.
    [9]S.F. Schoppmann, A. Fenzl, K. Nagy, S. Unger, G. Bayer, S. Geleff, M. Gnant, R. Horvat, R. Jakesz, P. Birner, VEGF-C expressing tumor-associated macrophages in lymph node positive breast cancer:impact on lymphangiogenesis and survival. Surgery 139 (2006) 839-846.
    [1]A. Mantovani, S. Sozzani, M. Locati, P. Allavena, A. Sica, Macrophage polarization:tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23 (2002) 549-555.
    [2]R.C. Ji, Macrophages are important mediators of either tumor- or inflammation-induced lymphangiogenesis. Cellular and molecular life sciences: CMLS 69 (2012) 897-914.
    [3]S.F. Schoppmann, P. Birner, J. Stockl, R. Kalt, R. Ullrich, C. Caucig, E. Kriehuber, K. Nagy, K. Alitalo, D. Kerjaschki, Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 161 (2002) 947-956.
    [4]S.F. Schoppmann, A. Fenzl, K. Nagy, S. Unger, G. Bayer, S. Geleff, M. Gnant, R. Horvat, R. Jakesz, P. Birner, VEGF-C expressing tumor-associated macrophages in lymph node positive breast cancer:impact on lymphangiogenesis and survival. Surgery 139 (2006) 839-846.
    [5]H. Wu, J.B. Xu, Y.L. He, J.J. Peng, X.H. Zhang, C.Q. Chen, W. Li, S.R. Cai, Tumor-associated macrophages promote angiogenesis and lymphangiogenesis of gastric cancer. Journal of surgical oncology 106 (2012) 462-468.
    [6]S.F. Schoppmann, P. Birner, P. Studer, S. Breiteneder-Geleff, Lymphatic microvessel density and lymphovascular invasion assessed by anti-podoplanin immunostaining in human breast cancer. Anticancer Res 21 (2001) 2351-2355.
    [7]C.S. Williams, R.D. Leek, A.M. Robson, S. Banerji, R. Prevo, A.L. Harris, D.G. Jackson, Absence of lymphangiogenesis and intratumoural lymph vessels in human metastatic breast cancer. J Pathol 200 (2003) 195-206.
    [8]A. Albini, M.B. Sporn, The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 7 (2007) 139-147.
    [1]L.M. Coussens, Z. Werb, Inflammation and cancer. Nature 420 (2002) 860-867.
    [2]A. Mantovani, P. Allavena, A. Sica, F. Balkwill, Cancer-related inflammation. Nature 454 (2008) 436-444.
    [3]A. Mantovani, S. Sozzani, M. Locati, P. Allavena, A. Sica, Macrophage polarization:tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23 (2002) 549-555.
    [4]A. Mantovani, B. Bottazzi, F. Colotta, S. Sozzani, L. Ruco, The origin and function of tumor-associated macrophages. Immunol Today 13 (1992) 265-270.
    [5]J.J. Chen, Y.C. Lin, P.L. Yao, A. Yuan, H.Y. Chen, C.T. Shun, M.F. Tsai, C.H. Chen, P.C. Yang, Tumor-associated macrophages:the double-edged sword in cancer progression. J Clin Oncol 23 (2005) 953-964.
    [6]J.J. Chen, P.L. Yao, A. Yuan, T.M. Hong, C.T. Shun, M.L. Kuo, Y.C. Lee, P.C. Yang, Up-regulation of tumor interleukin-8 expression by infiltrating macrophages:its correlation with tumor angiogenesis and patient survival in non-small cell lung cancer. Clin Cancer Res 9 (2003) 729-737.
    [7]J.-W. Tjiu, J.-S. Chen, C.-T. Shun, S.-J. Lin, Y.-H. Liao, C.-Y. Chu, T.-F. Tsai, H.-C. Chiu, Y.-S. Dai, H. Inoue, P.-C. Yang, M.-L. Kuo, S.-H. Jee, Tumor-Associated Macrophage-Induced Invasion and Angiogenesis of Human Basal Cell Carcinoma Cells by Cyclooxygenase-2 Induction. Journal of Investigative Dermatology 129 (2008) 1016-1025.
    [8]A. Sica, T. Schioppa, A. Mantovani, P. Allavena, Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression:potential targets of anti-cancer therapy. Eur J Cancer 42 (2006) 717-727.
    [1]Z. Shen, T. Kauttu, J. Cao, H. Seppanen, S. Vainionpaa, Y. Ye, S. Wang, H. Mustonen, P. Puolakkainen, Macrophage coculture enhanced invasion of gastric cancer cells via TGF-beta and BMP pathways. Scand J Gastroenterol 48 (2013) 466-472.
    [2]G.Y. Kwon, S.D. Lee, E.S. Park, Mast cell and macrophage counts and microvessel density in invasive breast carcinoma-comparison analysis with clinicopathological parameters. Cancer Res Treat 37 (2005) 103-108.
    [3]M. Erreni, A. Mantovani, P. Allavena, Tumor-associated Macrophages (TAM) and Inflammation in Colorectal Cancer. Cancer Microenviron 4 (2011) 141-154.
    [4]E.P. Toy, M. Azodi, N.L. Folk, C.M. Zito, C.J. Zeiss, S.K. Chambers, Enhanced ovarian cancer tumorigenesis and metastasis by the macrophage colony-stimulating factor. Neoplasia 11 (2009) 136-144.
    [5]S.C. Wang, J.H. Hong, C. Hsueh, C.S. Chiang, Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model. Lab Invest 92 (2012) 151-162.
    [6]J.C. Pahler, S. Tazzyman, N. Erez, Y.Y. Chen, C. Murdoch, H. Nozawa, C.E. Lewis, D. Hanahan, Plasticity in tumor-promoting inflammation:impairment of macrophage recruitment evokes a compensatory neutrophil response. Neoplasia 10 (2008) 329-340.
    [7]E. Giraudo, M. Inoue, D. Hanahan, An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 114 (2004) 623-633.
    [8]G.I. Murray, M.E. Duncan, E. Arbuckle, W.T. Melvin, J.E. Fothergill, Matrix metalloproteinases and their inhibitors in gastric cancer. Gut 43 (1998) 791-797.
    [9]F. Bruyere, L. Melen-Lamalle, S. Blacher, G. Roland, M. Thiry, L. Moons, F. Frankenne, P. Carmeliet, K. Alitalo, C. Libert, J.P. Sleeman, J.M. Foidart, A. Noel, Modeling lymphangiogenesis in a three-dimensional culture system. Nat Methods 5 (2008) 431-437.
    [10]J.J. Chen, Y.C. Lin, P.L. Yao, A. Yuan, H.Y. Chen, C.T. Shun, M.F. Tsai, C.H. Chen, P.C. Yang, Tumor-associated macrophages:the double-edged sword in cancer progression. J Clin Oncol 23 (2005) 953-964.
    [1]K. Maruyama, M. Ii, C. Cursiefen, D.G. Jackson, H. Keino, M. Tomita, N. Van Rooijen, H. Takenaka, P.A. D'Amore, J. Stein-Streilein, D.W. Losordo, J.W. Streilein, Inflammation-induced lymphangiogenesis in the cornea arises from CD1 lb-positive macrophages. J Clin Invest 115 (2005) 2363-2372.
    [2]D. Kerjaschki, The crucial role of macrophages in lymphangiogenesis. J Clin Invest 115 (2005) 2316-2319.
    [3]S.F. Schoppmann, P. Birner, J. Stockl, R. Kalt, R. Ullrich, C. Caucig, E. Kriehuber, K. Nagy, K. Alitalo, D. Kerjaschki, Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 161 (2002) 947-956.
    [4]S.F. Schoppmann, A. Fenzl, K. Nagy, S. Unger, G. Bayer, S. Geleff, M. Gnant, R. Horvat, R. Jakesz, P. Birner, VEGF-C expressing tumor-associated macrophages in lymph node positive breast cancer:impact on lymphangiogenesis and survival. Surgery 139 (2006) 839-846.
    [5]M.G. Achen, M. Jeltsch, E. Kukk, T. Makinen, A. Vitali, A.F. Wilks, K. Alitalo, S.A. Stacker, Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci U S A 95 (1998) 548-553.
    [6]T. Tammela, G. Zarkada, E. Wallgard, A. Murtomaki, S. Suchting, M. Wirzenius, M. Waltari, M. Hellstrom, T. Schomber, R. Peltonen, C. Freitas, A. Duarte, H. Isoniemi, P. Laakkonen, G. Christofori, S. Yla-Herttuala, M. Shibuya, B. Pytowski, A. Eichmann, C. Betsholtz, K. Alitalo, Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454 (2008) 656-660.
    [7]R.C. Ji, Macrophages are important mediators of either tumor- or inflammation-induced lymphangiogenesis. Cellular and molecular life sciences: CMLS 69 (2012) 897-914.
    [8]M.X. Da, Z. Wu, H.W. Tian, Tumor lymphangiogenesis and lymphangiogenic growth factors. Arch Med Res 39 (2008) 365-372.
    [9]C. Cursiefen, L. Chen, L.P. Borges, D. Jackson, J. Cao, C. Radziejewski, P.A. D'Amore, M.R. Dana, S.J. Wiegand, J.W. Streilein, VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 113 (2004) 1040-1050.
    [10]S. Nakao, T. Kuwano, C. Tsutsumi-Miyahara, S. Ueda, Y.N. Kimura, S. Hamano, K.H. Sonoda, Y. Saijo, T. Nukiwa, R.M. Strieter, T. Ishibashi, M. Kuwano, M. Ono, Infiltration of COX-2-expressing macrophages is a prerequisite for IL-1 beta-induced neovascularization and tumor growth. J Clin Invest 115 (2005) 2979-2991.
    [11]M.M. Rosenkilde, T.W. Schwartz, The chemokine system--a major regulator of angiogenesis in health and disease. APMIS 112 (2004) 481-495.
    [12]D.J. Waugh, C. Wilson, The interleukin-8 pathway in cancer. Clin Cancer Res 14 (2008)6735-6741.
    [13]K. Watari, S. Nakao, A. Fotovati, Y. Basaki, F. Hosoi, B. Bereczky, R. Higuchi, T. Miyamoto, M. Kuwano, M. Ono, Role of macrophages in inflammatory lymphangiogenesis:Enhanced production of vascular endothelial growth factor C and D through NF-kappaB activation. Biochem Biophys Res Commun 377 (2008)826-831.
    [14]K. Maruyama, J. Asai, M. Ii, T. Thorne, D.W. Losordo, P.A. D'Amore, Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. Am J Pathol 170 (2007) 1178-1191.
    [15]S. Kido, Y. Kitadai, N. Hattori, K. Haruma, T. Kido, M. Ohta, S. Tanaka, M. Yoshihara, K. Sumii, Y. Ohmoto, K. Chayama, Interleukin 8 and vascular endothelial growth factor--prognostic factors in human gastric carcinomas? Eur J Cancer 37 (2001) 1482-1487.
    [1]Muller WA, Randolph GJ (1999) Migration of leukocytes across endothelium and beyond:molecules involved in the transmigration and fate of monocytes. J Leukoc Biol 66:698-704
    [2]Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451-483
    [3]Kerjaschki D (2005) The crucial role of macrophages in lymphangiogenesis. J Clin Invest 115:2316-2319
    [4]Maruyama K, Ii M, Cursiefen C, Jackson DG, Keino H, Tomita M, Van Rooijen N, Takenaka H, D'Amore PA, Stein-Streilein J, Losordo DW, Streilein JW (2005) Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 115:2363-2372
    [5]Dadras SS, Paul T, Bertoncini J, Brown LF, Muzikansky A, Jackson DG, Ellwanger U, Garbe C, Mihm MC, Detmar M (2003) Tumor lymphangiogenesis: a novel prognostic indicator for cutaneous melanoma metastasis and survival. Am J Pathol 162:1951-1960
    [6]Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, Banerji S, Huarte J, Montesano R, Jackson DG, Orci L, Alitalo K, Christofori G, Pepper MS (2001) Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 20:672-682
    [7]Skobe M, Hamberg LM, Hawighorst T, Schirner M, Wolf GL, Alitalo K, Detmar M (2001) Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma. Am J Pathol 159:893-903
    [8]Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R, Jackson DG, Nishikawa S, Kubo H, Achen MG (2001) VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 7:186-191
    [9]Alitalo K, Tammela T, Petrova TV (2005) Lymphangiogenesis in development and human disease. Nature 438:946-953
    [10]Baluk P, Tammela T, Ator E, Lyubynska N, Achen MG, Hicklin DJ, Jeltsch M, Petrova TV, Pytowski B, Stacker SA, Yla"-Herttuala S, Jackson DG, Alitalo K, McDonald DM (2005) Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Invest 115:247-257
    [11]Ji RC (2006) Lymphatic endothelial cells, lymphangiogenesis, and extracellular matrix. Lymphat Res Biol 4:83-100
    [12]Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:605-612
    [13]Ji RC (2007) Lymphatic endothelial cells, inflammatory lymphangiogenesis, and prospective players. Curr Med Cheml4:2359-2368
    [14]Ji RC (2008) Lymphatic endothelial cells, lymphedematous lymphangiogenesis, and molecular control of edema formation. Lymphat Res Biol 6:123-137
    [15]Tabas I (2010) Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol 10:36-46
    [16]Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, Machura K, Park JK, Beck FX, Mu"ller DN, Derer W, Goss J, Ziomber A, Dietsch P, Wagner H, van Rooijen N, Kurtz A, Hilgers KF, Alitalo K, Eckardt KU, Luft FC, Kerjaschki D, Titze J (2009) Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-Cdependent buffering mechanism. Nat Med 15:545-552
    [17]Wuest TR, Carr DJ (2010) VEGF-A expression by HSV-1-infected cells drives corneal lymphangiogenesis. J Exp Med 207:101-115, S1-2
    [18]Coffelt SB, Hughes R, Lewis CE (2009) Tumor-associated macrophages: effectors of angiogenesis and tumor progression. Biochim Biophys Acta 1796:11-18
    [19]Mancino A, Lawrence T (2010) Nuclear factor-kappaB and tumor-associated macrophages. Clin Cancer Res 16:784-789
    [20]Stout RD, Suttles J (2004) Functional plasticity of macrophages:reversible adaptation to changing microenvironments. J Leukoc Biol 76:509-513
    [21]Cho CH, Koh YJ, Han J, Sung HK, Jong Lee H, Morisada T, Schwendener RA, Brekken RA, Kang G, Oike Y, Choi TS, Suda T, Yoo OJ, Koh GY (2007) Angiogenic role of LYVE-1-positive macrophages in adipose tissue. Circ Res 100:e47-e57
    [22]Edwards JP, Zhang X, Frauwirth KA, Mosser DM (2006) Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 80:1298-1307
    [23]Gibbs DF, Shanley TP, Warner RL, Murphy HS, Varani J, Johnson KJ (1999) Role of matrix metalloproteinases in models of macrophage-dependent acute lung injury. Evidence for alveolar macrophage as source of proteinases. Am J Respir Cell Mol Biol 20:1145-1154
    [24]Chizzolini C, Rezzonico R, De Luca C, Burger D, Dayer JM (2000) Th2 cell membrane factors in association with IL-4 enhance matrix metalloproteinase-1 (MMP-1) while decreasing MMP-9 production by granulocyte-macrophage colony-stimulating factor-differentiated human monocytes. J Immunol 164:5952-5960
    [25]Sorimachi K, Akimoto K, Ikehara Y, Inafuku K, Okubo A, Yamazaki S (2001) Secretion of TNF-alpha, IL-8 and nitric oxide by macrophages activated with Agaricus blazei Murill fractions in vitro. Cell Struct Funct 26:103-108
    [26]Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23-35
    [27]Gratchev A, Guillot P, Hakiy N, Politz O, Orfanos CE, Schledzewski K, Goerdt S (2001) Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein betaIG-H3. Scand J Immunol 53:386-392
    [28]Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677-686
    [29]Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953-964
    [30]Mosser DM (2003) The many faces of macrophage activation. J Leukoc Biol 73:209-212
    [31]Hagemann T, Biswas SK, Lawrence T, Sica A, Lewis CE (2009) Regulation of macrophage function in tumors:the multifaceted role of NF-kappaB. Blood 113:3139-3146
    [32]Chen L, Hamrah P, Cursiefen C, Zhang Q, Pytowski B, Streilein JW, Dana MR (2004) Vascular endothelial growth factor receptor-3 mediates induction of corneal alloimmunity. Nat Med 10:813-815
    [33]Chung ES, Chauhan SK, Jin Y, Nakao S, Hafezi-Moghadam A, van Rooijen N, Zhang Q, Chen L, Dana R (2009) Contribution of macrophages to angiogenesis induced by vascular endothelial growth factor receptor-3-specific ligands. Am J Pathol 175:1984-1992
    [34]Hamrah P, Chen L, Cursiefen C, Zhang Q, Joyce NC, Dana MR (2004) Expression of vascular endothelial growth factor receptor-3 (VEGFR-3) on monocytic bone marrow-derived cells in the conjunctiva. Exp Eye Res 79:553-561
    [35]Gordon EJ, Rao S, Pollard JW, Nutt SL, Lang RA, Harvey NL (2010) Macrophages define dermal lymphatic vessel caliber during development by regulating lymphatic endothelial cell proliferation. Development 137:3899-3910
    [36]Bo¨hmer R, Neuhaus B, Bu'hren S, Zhang D, Stehling M, Bo"ck B, Kiefer F (2010) Regulation of developmental lymphangiogenesis by Syk(?) leukocytes. Dev Cell 18:437-449
    [37]Marttila-Ichihara F, Turja R, Miiluniemi M, Karikoski M, Maksimow M, Niemela¨ J, Martinez-Pomares L, Salmi M, Jalkanen S (2008) Macrophage mannose receptor on lymphatics controls cell trafficking. Blood 112:64-72
    [38]Linehan SA, Martinez-Pomares L, Stahl PD, Gordon S (1999) Mannose receptor and its putative ligands in normal murine lymphoid and nonlymphoid organs:in situ expression of mannose receptor by selected macrophages, endothelial cells, perivascular microglia, and mesangial cells, but not dendritic cells. J Exp Med 189:1961-1972
    [39]Martens JH, Kzhyshkowska J, Falkowski-Hansen M, SchledzewskiK, Gratchev A, Mansmann U, Schmuttermaier C, Dippel E, Koenen W, Riedel F, Sankala M, Tryggvason K, Kobzik L, Moldenhauer G, Arnold B, Goerdt S (2006) Differential expression of a gene signature for scavenger/lectin receptors by endothelial cells and macrophages in human lymph node sinuses, the primary sites of regional metastasis. J Pathol 208:574-589
    [40]Irjala H, Alanen K, Gre'nman R, Heikkila¨ P, Joensuu H, Jalkanen S (2003) Mannose receptor (MR) and common lymphatic endothelial and vascular endothelial receptor (CLEVER)-1 direct the binding of cancer cells to the lymph vessel endothelium. Cancer Res 63:4671-4676
    [41]Harel-Adar T, Mordechai TB, Amsalem Y, Feinberg MS, Leor J, Cohen S (2011) Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. Proc Natl Acad Sci USA 108:1827-1832
    [42]Karikoski M, Irjala H, Maksimow M, Miiluniemi M, Granfors K, Hernesniemi S, Elima K, Moldenhauer G, Schledzewski K, Kzhyshkowska J, Goerdt S, Salmi M, Jalkanen S (2009) Clever-1/Stabilin-1 regulates lymphocyte migration within lymphatics and leukocyte entrance to sites of inflammation. Eur J Immunol 39:3477-3487
    [43]Salmi M, Koskinen K, Henttinen T, Elima K, Jalkanen S (2004) CLEVER-1 mediates lymphocyte transmigration through vascular and lymphatic endothelium. Blood 104:3849-3857
    [44]Angeli V, Ginhoux F, Llodra J, Quemeneur L, Frenette PS, Skobe M, Jessberger R, Merad M, Randolph GJ (2006) B celldriven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24:203-215
    [45]Ji RC, Eshita Y, Xing L, Miura M (2010) Multiple expressions of lymphatic markers and morphological evolution of newly formed lymphatics in lymphangioma and lymph node lymphangiogenesis. Microvasc Res 80:195-201
    [46]Ji RC (2006) Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis:new insights into intratumoral and peritumoral lymphatics. Cancer Metastasis Rev 25:677-694
    [47]Ji RC (2009) Lymph node lymphangiogenesis:a new concept for modulating tumor metastasis and inflammatory process. Histol Histopathol 24:377-384
    [48]Horst AK, Bickert T, Brewig N, Ludewig P, van Rooijen N, Schumacher U, Beauchemin N, Ito WD, Fleischer B, Wagener C, Ritter U (2009) CEACAM1? myeloid cells control angiogenesis in inflammation. Blood 113:6726-6736
    [49]Kang J, Yoo J, Lee S, Tang W, Aguilar B, Ramu S, Choi I, Out HH, Shin JW, Dotto GP, Koh CJ, Detmar M, Hong YK (2010) An exquisite cross-control mechanism among endothelial cell fate regulators directs the plasticity and heterogeneity of lymphatic endothelial cells. Blood 116:140-150
    [50]Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S, Peri F, Wilson SW, Ruhrberg C (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116:829-840
    [51]Schmidt T, Carmeliet P (2010) Blood-vessel formation:Bridges that guide and unite. Nature 465:697-699
    [52]Tammela T, Zarkada G, Wallgard E, Murtoma¨ki A, Suchting S, Wirzenius M, Waltari M, Hellstro'm M, Schomber T, Peltonen R, Freitas C, Duarte A, Isoniemi H, Laakkonen P, Christofori G, Yla¨-Herttuala S, Shibuya M, Pytowski B, Eichmann A, Betsholtz C, Alitalo K (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454:656-660
    [53]Kerjaschki D, Huttary N, Raab I, Regele H, Bojarski-Nagy K, Bartel G, Kro¨ber SM, Greinix H, Rosenmaier A, Karlhofer F, Wick N, Mazal PR (2006) Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med 12:230-234
    [54]El-Chemaly S, Malide D, Zudaire E, Ikeda Y, Weinberg BA, Pacheco-Rodriguez G, Rosas IO, Aparicio M, Ren P, MacDonald SD, Wu HP, Nathan SD, Cuttitta F, McCoy JP, Gochuico BR, Moss J (2009) Abnormal lymphangiogenesis in idiopathic pulmonary fibrosis with insights into cellular and molecular mechanisms. Proc Natl Acad Sci USA 106:3958-3963
    [55]Zumsteg A, Baeriswyl V, Imaizumi N, Schwendener R, Ru¨egg C, Christofori G (2009) Myeloid cells contribute to tumor lymphangiogenesis. PLoS One 4:e7067
    [56]Bellingan GJ, Caldwell H, Howie SE, Dransfield I, Haslett C (1996) In vivo fate of the inflammatory macrophage during the resolution of inflammation: inflammatory macrophages do not die locally, but emigrate to the draining lymph nodes. J Immunol 157:2577-2585
    [57]Zeisberger SM, Odermatt B, Marty C, Zehnder-Fja¨llman AH, Ballmer-Hofer K, Schwendener RA (2006) Clodronate-liposome-mediated depletion of tumour-associated macrophages:a new and highly effective antiangiogenic therapy approach. Br J Cancer 95:272-281
    [58]Ahn GO, Tseng D, Liao CH, Dorie MJ, Czechowicz A, Brown JM (2010) Inhibition of Mac-1 (CDllb/CD18) enhances tumor response to radiation by reducing myeloid cell recruitment. Proc Natl Acad Sci USA 107:8363-8368
    [59]Holness CL, Simmons DL (1993) Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood 81:1607-1613
    [60]Fogg DK, Sibon C, Miled C, Jung S, Aucouturier P, Littman DR, Cumano A, Geissmann F (2006) A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311:83-87
    [61]Kermani P, Rafii D, Jin DK, Whitlock P, Schaffer W, Chiang A, Vincent L, Friedrich M, Shido K, Hackett NR, Crystal RG, Rafii S, Hempstead BL (2005) Neurotrophins promote revascularization by local recruitment of TrkB? endothelial cells and systemic mobilization of hematopoietic progenitors. J Clin Invest 115:653-663
    [62]Ji RC, Kurihara K, Kato S (2006) Lymphatic vascular endothelial hyaluronan receptor (LYVE)-1- and CCL21-positive lymphatic compartments in the diabetic thymus. Anat Sci Int 81:201-209
    [63]Brown S, Heinisch I, Ross E, Shaw K, Buckley CD, Savill J (2002) Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment. Nature 418:200-203
    [64]Schledzewski K, Falkowski M, Moldenhauer G, Metharom P, Kzhyshkowska J, Ganss R, Demory A, Falkowska-Hansen B, Kurzen H, Ugurel S, Geginat G, Arnold B, Goerdt S (2006) Lymphatic endothelium-specific hyaluronan receptor LYVE-1 is expressed by stabilin-1?, F4/80?, CD11b? macrophages in malignant tumours and wound healing tissue in vivo and in bone marrow cultures in vitro: implications for the assessment of lymphangiogenesis. J Pathol 209:67-77
    [65]Ji RC, Eshita Y, Kato S (2007) Investigation of intratumoural and peritumoural lymphatics expressed by podoplanin and LYVE-1 in the hybridoma-induced tumours. Int J Exp Pathol 88:257-270
    [66]Guo R, Zhou Q, Proulx ST, Wood R, Ji RC, Ritchlin CT, Pytowski B, Zhu Z, Wang YJ, Schwarz EM, Xing L (2009) Inhibition of lymphangiogenesis and lymphatic drainage via vascular endothelial growth factor receptor 3 blockade increases the severity of inflammation in a mouse model of chronic inflammatory arthritis. Arthritis Rheum 60:2666-2676
    [67]Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860-867
    [68]Schoppmann SF, Birner P, Sto¨ckl J, Kalt R, Ullrich R, Caucig C, Kriehuber E, Nagy K, Alitalo K, Kerjaschki D (2002) Tumorassociated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 161:947-956
    [69]Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71-78
    [70]Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancerrelated inflammation. Nature 454:436-444
    [71]Moussai D, Mitsui H, Pettersen JS, Pierson KC, Shah KR, Sua'rez-Farin-as M, Cardinale IR, Bluth MJ, Krueger JG, Carucci JA (2011) The human cutaneous squamous cell carcinoma microenvironment is characterized by increased lymphatic density and enhanced expression of macrophage-derived VEGFC. J Invest Dermatol 131:229-236
    [72]Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV, Jeltsch M Jackson DG, Talikka M, Rauvala H, Betsholtz C, Alitalo K (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5:74-80
    [73]Bjo¨rndahl MA, Cao R, Burton JB, Brakenhielm E, Religa P,Galter D, Wu L, Cao Y (2005) Vascular endothelial growth factor-a promotes peritumoral lymphangiogenesis and lymphatic metastasis. Cancer Res 65:9261-9268
    [74]Karpanen T, Alitalo K (2008) Molecular biology and pathology of lymphangiogenesis. Annu Rev Pathol 3:367-397
    [75]Achen MG, Jeltsch M, Kukk E, Ma¨kinen T, Vitali A, Wilks AF, Alitalo K, Stacker SA (1998) Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flkl) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci USA95:548-553
    [76]Cursiefen C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C, D'Amore PA, Dana MR, Wiegand SJ, Streilein JW(2004) VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 113:1040-1050
    [77]Hong YK, Lange-Asschenfeldt B, Velasco P, Hirakawa S,Kunstfeld R, Brown LF, Bohlen P, Senger DR, Detmar M (2004) VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alphalbetal and alpha2betal integrins. FASEB J 18:1111-1113
    [78]Barbera-Guillem E, Nyhus JK, Wolford CC, Friece CR, Sampsel JW (2002) Vascular endothelial growth factor secretion by tumor-infiltrating macrophages essentially supports tumor angiogenesis, and IgG immune complexes potentiate the process.Cancer Res 62:7042-7049
    [79]Sica A, Rubino L, Mancino A, Larghi P, Porta C, Rimoldi M, Solinas G, Locati M, Allavena P, Mantovani A (2007) Targeting tumour-associated macrophages. Expert Opin Ther Targets 11:1219-1229
    [80]Attout T, Hoerauf A, De'ne'ce'G, Debrah AY, Marfo-Debrekyei Y, Boussinesq M, Wanji S, Martinez V, Mand S, Adjei O, Bain O, Specht S, Martin C (2009) Lymphatic vascularisation and involvement of Lyve-1? macrophages in the human onchocerca nodule. PLoS One 4:e8234
    [81]Yamashita M, Iwama N, Date F, Shibata N, Miki H, Yamauchi K, Sawai T, Sato S, Takahashi T, Ono M (2009) Macrophages participate in lymphangiogenesis in idiopathic diffuse alveolar damage through CCL19-CCR7 signal. HumPathol 40:1553-1563
    [82]Kim KE, Koh YJ, Jeon BH, Jang C, Han J, Kataru RP, Schwendener RA, Kim JM, Koh GY (2009) Role of CDllb+ macrophages in intraperitoneal lipopolysaccharide-induced aberrant lymphangiogenesis and lymphatic function in the diaphragm. Am J Pathol 175:1733-1745
    [83]Xing L, Ji RC (2008) Lymphangiogenesis, myeloid cells and inflammation. Expert Rev Clin Immunol 4:599-613
    [84]Watari K, Nakao S, Fotovati A, Basaki Y, Hosoi F, Bereczky B, Higuchi R, Miyamoto T, Kuwano M, Ono M (2008) Role of macrophages in inflammatory lymphangiogenesis:enhanced production of vascular endothelial growth factor C and D through NF-kappaB activation. Biochem Biophys Res Commun 377:826-831
    [85]Handa O, Naito Y, Takagi T, Shimozawa M, Kokura S, Yoshida N, Matsui H, Cepinskas G, Kvietys PR, Yoshikawa T (2004) Tumor necrosis factor-alpha-induced cytokine-induced neutrophil chemoattractant-1 (CINC-1) production by rat gastric epithelial cells:role of reactive oxygen species and nuclear factor-kappaB. J Pharmacol Exp Ther 309:670-676
    [86]Drayton DL, Liao S, Mounzer RH, Ruddle NH (2006) Lymphoid organ development:from ontogeny to neogenesis. Nat Immunol 7:344-353
    [87]Halin C, Tobler NE, Vigl B, Brown LF, Detmar M (2007) VEGF-A produced by chronically inflamed tissue induces lymphangiogenesis in draining lymph nodes. Blood 110:3158-3167
    [88]Harrell MI, Iritani BM, Ruddell A (2007) Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis. Am J Pathol 170:774-786
    [89]Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392-401
    [90]Liao D, Luo Y, Markowitz D, Xiang R, Reisfeld RA (2009) Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS One 4:e7965
    [91]Koyama H, Kobayashi N, Harada M, Takeoka M, Kawai Y, Sano K, Fujimori M, Amano J, Ohhashi T, Kannagi R, Kimata K, Taniguchi S, Itano N (2008) Significance of tumor-associated stroma in promotion of intratumoral lymphangiogenesis:pivotal role of a hyaluronan-rich tumor microenvironment. Am J Pathol 172:179-193
    [92]Kubota Y, Takubo K, Shimizu T, Ohno H, Kishi K, Shibuya M, Saya H, Suda T (2009) M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J Exp Med 206:1089-1102
    [93]Clavin NW, Avraham T, Fernandez J, Daluvoy SV, Soares MA,Chaudhry A, Mehrara BJ (2008) TGF-betal is a negative regulator of lymphatic regeneration during wound repair. Am J Physiol Heart Circ Physiol 295:H2113-H2127
    [94]Liao S, Liu J, Lin P, Shi T, Jain RK, Xu L (2011) TGF-{beta}blockade controls ascites by preventing abnormalization of lymphatic vessels in orthotopic human ovarian carcinoma models. Clin Cancer Res 17:1415-1424
    [95]Oka M, Iwata C, Suzuki HI, Kiyono K, Morishita Y, Watabe T, Komuro A, Kano MR, Miyazono K (2008) Inhibition of endogenous TGF-beta signaling enhances lymphangiogenesis. Blood 111:4571-4579
    [96]Kataru RP, Kim H, Jang C, Choi DK, Koh BI, Kim M, Gollamudi S, Kim YK, Lee SH, Koh GY (2011) T lymphocytes negatively regulate lymph node lymphatic vessel formation.Immunity 34:96-107
    [97]Johnson LA, Prevo R, Clasper S, Jackson DG (2007) Inflammation-induced uptake and degradation of the lymphatic endothelial hyaluronan receptor LYVE-1. J Biol Chem 282:33671-33680

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700