基于ERS散射计数据的青藏高原土壤水分估算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤水分在全球水资源中所占的比列很小,存储在土壤空隙中的水分仅占全球水资源0.005%,但它是水文模型和气候模型的重要边界条件。青藏高原作为世界上平均海拔最高、面积最大、地形最为复杂的高原,其能量与水分循环过程对亚洲季风、东亚大气环流及全球气候变化均有极大的影响。准确持续地获取青藏高原地表土壤湿度数据一直是科学家研究青藏高原地气相互作用过程的努力方向之一。
     本文的是基于ERS-1/2风散射计数据进行青藏高原地表土壤湿度参数反演。为获得较高的反演精度,本文引入一个简化的地表散射模型,然后通过最新发展的裸露地表随机散射理论模型对其参数进行标定。根据散射计的数据特点,通过寻找不同入射角下简单地表散射模型的参数之间的函数关系,来减少反演模型中的未知量,得到基于ERS-1/2散射计数据的裸露地表土壤水分估算方法,然后选择和计算植被散射水云模型的植被参数,在此基础上,根据青藏高原的土地利用信息,定量估算植被散射从而进行植被影响校正,最后反演得到进行青藏高原全年地表土壤水分的时空分布数据。
     为建立基于ERS-1/2散射计的裸露地表土壤水分反演模型,本文首先对比分析不同的裸露地表散射模型和经验半经验模型进行青藏高原地表散射模拟时,模拟结果与大尺度的ERS-1/2风散射计的观测值之间误差;论证了在进行大尺度地表散射模拟时,AIEM模型仍然比其他地表散射模型有更高的精度,并且地表自相关函数选择指数相关函数时,AIEM模型的模拟值与ERS-1/2风散射计的观测值最为接近;通过引入一个简化的裸露地表后向散射模型(SSM),并利用AIEM模型模拟建立的地表散射特性数据对SSM进行标定,从而建立散射计前、中天线不同入射角下SSM模型中的参数A_m和A_f之间的函数关系以及参数b与入射角的关系,得到可以直接利用散射计的每次观测(两个不同入射角)进行裸露地表土壤水分反演的方法;根据GAME-Tibet观测场的地表实测数据,运用上述模型基于ERS散射计数据得到的观测场的裸露地表土壤水分,结果表明,反演值能够较好的反映土壤水分的变化特征,反演值与实测值之间的相关性能够达到0.6-0.7,标准偏差约0.04cm~3/cm~3
     为进一步减少植被覆盖下土壤水分反演时的未知参数,本文根据青藏高原
Although soil moisture constitutes only about 0.005 % of the global water resources, it's important as a boundary condition for hydrologic and climate models. Tibetan Plateau is the largest and highest area with complex landform in the world, whose water and energy cycle play a crucial role on the Asia monsoon, East Asia atmosphere general circulation and global climate change. Retrieving nice continuant soil moisture data on Tibetan Plateau is one of the most important work for scientists who focus their studies on the interactions between land and atmosphere of Tibetan Plateau.This study focuses on the development of a consistant methodology for soil moisture inversion in Tibetan Plateau from ERS-1/2 Wind SCatterometer data(WSC). To gain a higher precision of soil moisture data, we firstly introduced a simplified scat-tering(SSM) model calibrated by the latest developed Advanced Integral Equation Model(AIEM) which predicts the backscattering coefficient of random rough surface. In light of the characteristics of WSC data in incident angle, we built the relation between the roughness parameters of SSM from two observations with different incident angles to reduce unknown parameters in retrieving process, thus we could derive the surface soil moisture over bare soil from two simultaneous observation from fore and mid beam of WSC respectively. Secondly, we tried to revise (?)e vegetation effect on the soil moisture estimation. We used the Water-Cloud vegetation model for estimating vegetation effects quantitatively with the reasonablly estimated canopy parameters for each vegetation canopy on Tibetan Plateau. Lastly, we derived the spatial and time series soil moisture data of Tibetan Plateau and the analysis of the results was carried out.To develop our soil moisture retrieval model over bare soil with WSC data, the validity of different theoretical scattering models over random rough surface and empirical and semi-empirical retrieval models over bare soil were investigated with WSC data over Tibetan Plateau. The results indicated AIEM could simulate the surface backscattering with higher precision than other models and exponential autocorrela-
    tion function would be more suitable than other autocorrelation function when AIEM simulation was conducted over large-scale area and Tibetan Plateau. Because AIEM model is so complex that we cann't use it in soil moisture retrieval without any simplification, we then introduced a simplification scattering model, after calibrated by AIEM model, the correlation function between the roughness parameter "A" of SSM with two different incident angle of WSC were analyzed. The parameter "b", on the other hand, can be regressed by radar incident angle. Thus we can retrieve the bare soil moisture only with two observation data from fore and mid beam of WSC respectively. The above retrieval method performed well in Tibetan Plateau with WSC data, and the results were cross-validated with the measured soil moisture data collected from GAME-Tibet IOP98. The correlation coefficient between the estimated and measured soil moisture reached about 0.6 to 0.7, the stand deviation of estimated soil moisture was of the order of 0.04 cm3/cm3.If we want retrieve land surface soil moisture under vegetation cover, more vegetation .parameter should be known or the unknown parameters should be reduced. Because of the obvious seasonal characteristics of precipitation and frozen-thawed soil, WSC data between Apr. 15th and May 20th of each year in each observation cell was chosen to retrieve parameter "A" of SSM, and these "A" were regressed with incident angle, so we could get the value of parameter "A" of SSM for each observation cell of WSC in each year. Retrieval results with above method in GAME-Tibet experiment sites demonstrated the retrieved soil moisture by two different method, one was the derived A from two observation, the other was from regressed "A", were equivalent, but the derived soil moisture data with regressed A was more smooth with changing time series than those with derived "A" from two observation.When revising the vegetation scattering effects on soil moisture retrieval, we firstly corrected the value of vegetation parameter "b" by the relation of "b" between two different wave length, namely C-band and L-band electromagnetic wave. Secondly, we estimated the vegetation water content(Wc) using AVHRR-NDVI using the empirical relation between Wc and NDVI. At last, we determined the value of vegetation backscattering, and the vegetation effects were explicitly incorporated in our retrieval model.
引文
[1] A. A. Van de Griend, J.-P. Wigneron. The b-factor as a function of frequency and canopy type at H-polarization. IEEE Trans. Geosci. Remote Sens., 42:1-10, 2004.
    [2] Attema, E. P. W., F. T. Ulaby. Vegetation modeled as water cloud. Radio Sci., 13(2):357-364, 1978.
    [3] Baghdadi, N., C. King, A. Chanzy et al. An impirical calibration of the integral equation model based on SAR data, soil moisture and surface roughness measurements over bare soil. Int. J. Remote Sens., 23(20):4325-4340, 2002.
    [4] Balsamo G., J-F. Mahfouf, S. Belair, et al. A simplified variational analysis scheme for soil moisture: Developments at meteo-france and MSC ECMWF/ELDAS. workshops on land surface assimilation, 8-11 November,2004.
    [5] Barnnet, T. P., L. Dumenil, U. Schlese, et al. The effect of eurasian snow cover on region and global climate variations. Journal of Atmospheric Sciences, 46:661-685, 1989.
    [6] Bass, F. G., I. M. Fuks. Wave Scattering from Statistically Rough Surfaces. Pergamon Press, New York, 1979.
    [7] Beaudoin, A., T. Le Toan, Q. H. J. Gwyn. SAR observations and modeling of the C-band backscatter variability due to multiscale geometry and soil moisture. IEEE Trans. Geosci. Remote Sens., 28:886-895, 1990.
    [8] Beckmann, P., A. Spizzichino. The Scattering of Electromagnetic Waves from Rough Surfaces. MacMillan, New Work, 1963.
    [9] Bentamy, A., Y. Quilfen, F. Gohin, et al. Determination and validation of average wind field from ERS-1 scatterometer measurements. The Global Atm. and Ocean Syst., 4:1-29, 1996.
    [10] Bentamy, A., Y. Quilfen, P. Queffeulou, et al. Calibration of the ERS-1 scat-terometer C-band model. IFREMER Tech. Rep. DRO/OS-94-01, page 72, 1994.
    [11] Bernard, R., P. Martin, J. Vauclin et al. C-band radar for determining surface soil moisture. Remote Sens. Environ., 12:189-200, 1982.
    [12] Bindlish, R., A. P. Barros. Parameterization of vegetation backscatter in radarbased soil moisture estimation. Remote Sens. Environ., 76:130-137, 2001.
    [13] Borgeaud, M., E. Attema, G. Salgado-Gispert, et al. Analysis of bare soil surface roughness parameters with ERS-1 data. in Symp. Extraction of Bio and Geophysical Parameters from SAR Data for Land Applications, Toulouse, France, 1995.
    [14] Brown, G. S. Backscattering from a gaussian distributed perfectly conducting rough surface. IEEE Transactions on Antennas Propagation, 26:472-482, 1978.
    [15] title = Effects of spatial variations of soil moisture and vegetation on the evolution of a prestorm environment: A numerical case study journal = Monthly Weather Review volume = 119 pages = 1368-1390 Chang J. T., R. J. Wetzel, year = 1991.
    [16] Chen, J. S., A. Ishimaru. Numerical simulation of the second-order kirchhoff approximation from very rough surfaces and study of backscattering enhancement. J. Acoust. Soc. Amer., 88:1846-1850, 1990.
    [17] Chen, K. S., T. D. Wu, J. C. Shi. A model based inversion of rough surface parameters from radar measurements. J. Electromagn. Waves Appl., 15:173-200, 2001.
    [18] Chen, Ko S., Wu, T. D., Fung, A. K. A note on the multiple scattering in an IEM model. IEEE Trans. Geosci. Remote Sens., 38:249-256, 2000.
    [19] Chen, M. F., A. K. Fung. A numerical study of the regions of validity of the kirchhoff and small-perturbation rough surface scattering models. Radio Science, 23(2): 163-170, 1988.
    [20] Chukhlantsev, A. A., A. M.Shutko. An account of the effect of vegetation during remote microwave radiometric sounding of terrestrial deposits. Remote Sens. Earth Space, 2:67-72, 1988.
    [21] Crapolicchio R., P. Lecomte. The ERS wind scatterometer mission: routine monitoring activities and results. Proceedings of a Joint ESA-Eumetsat Workshop on Emerging Scatterometer Applications-From Research to Operations, ESTEC, Noordwijk, The Netherlands, ESA SP-424:285-298, 1998.
    [22] Crow, W. T. The impact of land surface hetetogeneity on the accuracy and utility of spaceborne soil moisture retrievals. Dissertation, PRINCETON UNIVERSITY, 2001.
    [23] Crow, W. T., T. Chan, D. Entekhabi, et al. An observing system simulation experiment for Hydros radiometer-only soil moisture products. IEEE Trans. Geosci. Remote Sens., submitted.
    [24] Dahn D. G. The role of mountains in the south asia monsoon circulation. J. Atmos. Sci., 32:1515-1541, 1975.
    [25] Davidson, M. W. J., Mattia, E, Satalino, G., et al. Joint statistical properties of RMS height and correlation length derived from multisite l-m roughness measurements. IEEE Trans. Geosci. Remote Sens., 41 (7): 1651-1658, 2003.
    [26] Dawson, M. S., A. K. Fung, M. T. Manry. A robust statistical-based estimator for soil moisture retrieval from radar measurements. IEEE Trans. Geosci. Remote Sens., 35:57-67, 1997.
    [27] Dobson, M. C., Ulaby, F. T., Hallikainen, M. T., et al. Microwave dielectric behavior of wet soil, part Ⅱ: dielectric mixing models. IEEE Trans. Geosci. Remote Sens., GRS-23:35-46, 1985.
    [28] Du, L., W. H. Peake. Rayleigh scattering from leaves. Proceedings of IEEE Geosciences and Remote Sensing Symposium, 57:1227-1229, 1969.
    [29] Dubois, P. C., J. J. Van Zyl, E. T. Engman. Measuring soi moisture with imaging radar. IEEE Trans. Geosci. Remote Sens., 33:916-926, 1995.
    [30] Durden, S. L., J. J. Van Zyl, H. A. Zebker. Modeling and observation of radar polarization signature of forests areas. IEEE Trans. Geosci. Remote Sens., 27:290—301, 1989.
    [31] Engheta, N., C. Elachi. Radar scattering from a diffuse vegetation layer over a smooth surface. IEEE Trans. Geosci. Remote Sens., GE-20:212-216, 1982.
    [32] Engman, E. T. Progress in microwave remote sensing of soil moisture. Canadian Journal of Remote Sensing, 16(3):6-14, 1990.
    [33] Engman, E. T., Chauhan, N. Status of microwave soil moisture measurements with remote sensing. Remote Sens. Environ., 51(1): 189-198, 1995.
    [34] Eom, H. J., A. K. Fung. A scatter model for vegetation up to ku-band. Remote Sens. Environ., 15:185-200, 1984.
    [35] Ewe, H. T., H. T. Chuah. A multilayer scattering model for a dense vegetation medium. Proc. of Progress in Electromagnetics Research Symposium, 5-14. July, 2000, Cambridge, MA, USA.
    [36] Fast J. D., M. D. McCorcle. The effect of heterogeneous soil moisture on a summer baroclinic circulation in the central United States. Monthly Weather Review, 119:2140-2167,1991.
    [37] Frison, P. L., E., Mougin. Monitoring global vegetation dynamics with ERS-1 wind scatterometer data. Int. J. Remote Sens., 17:3201-3218, 1996.
    [38] Frison, P. L., E. Mougin. Use of ERS-1 wind scatterometer data over land surfaces. IEEE Trans. Geosci. Remote Sens., 34:550-560, 1996.
    [39] Frison, P. L., E. Mougin, L. Jarlan, et al. Comparison of ERS wind scatterometer and SSM/I data for sahelian vegetaion monitoring. IEEE Trans. Geosci. Remote Sens., 38:1794-1803,2000.
    [40] Frison, P. L., E. Mougin, P. Hiernaux. Observations and interpretation of seasonal ERS-1 wind scatterometer data over northern Sahel(Mali). Remote Sens.Environ., 63:233-242,1998.
    [41] Fung, A. K. Theory of cross-polarized power returned from a random surface. Applied Science Research, 18:50-60, 1967.
    [42] Fung, A. K., F. T. Ulaby. A scatter model for leafy vegetation. IEEE Trans. Geosci. Remote Sens., GE-16:281-286,1978.
    [43] Fung, A. K., G. W. Pan. A scattering model for perfectly conducting random surface: I. model development. II. range of validity. Int. J. Remote Sens., 8:1579-1605,1987.
    [44] Fung, A. K., H. J. Eom. A theory of wave scattering from an inhomogeneous layer with irregular interface. IEEE Trans. Antennas Propag., 29:899-910, 1981.
    [45] Fung, A. K., H. S. Fung. Application of first order renormalization method to scattering from a vegetation-like half space. IEEE Trans. Geosci. Remote Sens., GE-15:189-195,1977.
    [46] Fung, A. K., Z. Li, K.S. Chen. Backscattering from a randomly rough dielectric surface. IEEE Trans. Geosci. Remote Sens., 30:356-369, 1992.
    [47] Fung, A.K. Microwave Scattering and Emission Models and Their Applications. Artech House, Boston, London, 1994.
    [48] Gao, B. C, P. Yang, G. Guo, et al. Measurements of water vapor and high clouds over the Tibetan Plateau with the Terra MODIS instrument. IEEE Trans. Geosci. Remote Sens., 41(4):895-900, 2003.
    [49] Grippa, M., I. H. Woodhouse. Validation of surface scattering models across large footprints for global scatterometer applications. IEEE Trans. Geosci. Remote Sens., 40(10):2229-2233, 2002.
    [50] Grippa, M., I.H. Woodhouse. Retrieval of bare soil and vegetation parameters from wind scatterometer measurements over three different climatic regions. Remote Sens. Environ., 84:16-24, 2002.
    [51] Hallikainen, M. T., F. T. Ulaby, M. C. Dobson, et al. Microwave dielectric behaviour of wet soil - part I: empirical models and experimental observations. IEEE Trans. Geosci. Remote Sens., GE-23(l):25-34, 1985.
    [52] Hsieh, C.Y., A.K. Fung, G. Nesti, et al. A further study of the IEM surface scattering model. IEEE Trans. Geosci. Remote Sens., 35:901-909, 1997.
    [53] http://monsoon.t.u-tokyo.ac.jp/tibet/.
    [54] http://www.naturalresources.csdb.cn/index.asp.
    [55] Jackson, T. J., D. M. Le Vine, A. Y. Hsu, et al. Soil moisture mapping at regional scales using microwave radiometry: the Southern Great Plains hydrology experiment. IEEE Trans. Geosci. Remote Sens., 37:203-212,1999.
    [56] Jackson, T. J., P. E. O'Neill. Attenuation of soil microwave emissivity by corn and soybeans at 1.4 and 5 GHz. IEEE Trans. Geosci. Remote Sens., 28:978- 980, 1990.
    [57] Jackson, T. J., T. J. Schmugge. Vegtation effects on the microwave emission of soils. Remote Sens. Environ., 36:203-212,1991.
    [58] Jarlan, L., E. Mougin, P. L. Frison, et al. Analysis of ERS wind scatterometer time series over Sahel(Mali). Remote Sens. Environ., 81:404-415, 2002.
    [59] Jarlan, L., P. Mazzega, E. Mougin. Retrieval of land surface parameters in the Sahel from ERS wind scatterometer data: a "brute force" method. IEEE Trans. Geosci. Remote Sens., 40(9):2056-2062, 2002.
    [60] K. P. Kirdyashev, A. A. Chukhlantsev. Microwave radiation of the earth's surface in the presence of vegetation. Radio Sci. Electron., 24:256-279, 1979.
    [61] Karam, M. A., A. K. Fung. Electromagnetic scattering from a layer of finite lenght, randomly oriented, dielectric, circular cylinders over a rough interface with application to vegetation. Int. J. Remote Sens., 9:1109-1134, 1988.
    [62] Karam, M.A., A. K. Fung, R. H. Lang, et al. A microwave scattering model for layered vegetation. IEEE Trans. Geosci. Remote Sens., 30:767-784, 1992.
    [63] Karma, M. A., A. K. Fung. Scattering from randomly oriented circular disc with application to vegetation. Radio Science, 18:557-565, 1983.
    [64] Koster, R., M. Suarez. The influence of land surface moisture retention on precipitation statistics. Journal of Climate, 9:2551-2567, 1996.
    [65] Kuga, Y., J. Colbum, P. Phu. Millimeter-wave scattering from one-dimensional surfaces of different surface correlation functions. Waves Random Media, 3:101-110, 1993.
    [66] Lang, R. H. Electromagnetic backscattering from a random distribution of lossy dielectric scatters. Radio Science, 16:15-30, 1981.
    [67] Le Vine, D. M., M. A. Karam. Dependency of attenuation in avegetation canopy on frequency and plant water content. IEEE Trans. Geosci. Remote Sens., 34:1090—1094, 1996.
    [68] Leader, J. C. Incoherent backscatter from rough surfaces: The two-scale model reexamined. Radio Science, 13:441-457, 1978.
    [69] Lecomte P. CMOD4 model description. ESA technical note, Issue 1.2, 1993.
    [70] Lee, H. Improvement of the surface flux calculations in the atmospheric surface layer. J. Appl. Meterorol., 36:1416-1423, 1997.
    [71] Lewis, P., P. Saich, M. Disney, et al. Modeling the radiometric response of a dynamic, 3d model of wheat in the optical and microwave domains. Proc. IEEE Int. Geos. RS Symposium, Toulouse, 6:3543-3545, 2003.
    [72] Li, Q., J. C. Shi, K. S. Chen. A generalized power law spectrum and its applications to the backscattering of soil surfaces based on the integral equation model. IEEE Trans. Geosci. Remote Sens., 40:271-279, 2002.
    [73] Li, Zhen., J. C. Shi, H. D. Guo. Measuring soil moisture change with vegetation cover using passive and active microwave data. Pro. IEEE int. Geos. RS Symposium, 24-28 June 2002, Toronto, Canada, 5, 2002.
    [74] Long, D.G., M. R. Drinkwater. Azimuth variation in microwave scatterometer and radiometer data over Antarctica. IEEE Trans. Geosci. Remote Sens., 38:1857-1870, 2000.
    [75] Low, Alexander. Coupled Modelling of Land Surface Microwave Interactions Using ENVISAT ASAR Data. PhD thesis, Ludwig-Maximilians-Universitat, Munich(Germany), 2004.
    [76] Ma Yaoming, O. Tsukamoto, Jiemin Wang, et al. Analysis of aerodynamic and thermodynamic parameters over the grassy marshland surface of tibetan plateau. Progress in Natural Sciences, 12(1):36-40, 2002.
    [77] Magagi, R. D., Y. H. Kerr. Retrieval of soil moisture and vegetation characteristics by use of ERS-1 wind scatterometer over arid and semiarid areas. J. Hydrology, 188-189:361-384, 1997.
    [78] Magagi, R. D., Y. H. Kerr. Estimating surface soil moisture and soil roughness over semiarid areas from the use of the copolarization ratio. Remote Sens. Environ., 75(3):432-445, 2001.
    [79] Martinez, J. M., N. Floury, T. L. Toan, et al. Measurements and modeling of vertical backscatter distribution in forest canopy. IEEE Trans. Geosci. Remote Sens., 38:710-719, 2000.
    [80] Mattia, F., Davidson, M. W. J., T. L. Toan, et al. A comparison between soil roughness statistics used in surface scattering models derived from mechanical and laser profilers. IEEE Trans. Geosci. Remote Sens., 41(7): 1659-1671, 2003.
    [81] Mattia, F., J.-C. Souyris, T. Le Toan et al. On the surface roughness characterization for SAR data analysis, in Proc. IEEE Geosci. Remote Sensing Symp, 1997.
    [82] Mattia, F., T. Le Toan. Backscattering properties of multi-scale rough surfaces. J. Electromagn. Waves Applicat., 13:491-526, 1999.
    [83] McDonald, K. C., M. C. Dobson, F. T. Ulaby. Modeling multi-frequency diurnal backscatter from a walnut orchard. IEEE Trans. Geosci. Remote Sens., 29:852-863, 1991.
    [84] Messeh, M. A., S. Quegan. Variability in ERS scatterometer measurements over land. IEEE Trans. Geosci. Remote Sens., 38:1767-1776, 2000.
    [85] Mougin, E., D. L. Seen, S. Rambal, et al. A regional sahelian grassland model to be coupled with multispectral satellite data. i. description and validation. Remote Sens. Environ., 52:181-193, 1995.
    [86] National Research Council. GOALS (Global Ocean - Atmosphere - Land System for) Predicting Seasonal-to-International Climate. National Academy Press, Washington D. C., 1994.
    [87] National Research Council. Towards a new national weather service: assessment of hydrologic and hydrometeorological operations and servics. National Academy Press, Washington D. C., 1996.
    [88] Oh, Y., K. Sarabandi, F. T. Ulaby. An inversion algorithm for retrieving soil moisture and surface roughness from polarimetdc radar observation, in Proc. IEEE Geosci. Remote Sensing Symp, Ⅲ: 1582-1584, 1994.
    [89] Oh Y., Y. C. Kay. Conditon for precise measurement of soil surface roughness. IEEE Trans. Geosci. Remote Sens., 36(2):691-695, 1998.
    [90] Oh, Yisok. An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Trans. Geosci. Remote Sens., 30:370-382, 1992.
    [91] Oh, Yisok. Quantitative retrieval of soil moisture content and surface rough-.ness from multipolarized radar observations of bare soil surfaces. IEEE Trans. Geosci. Remote Sens., 42:596-601, 2004.
    [92] Oh, Yisok, K. Sarabandi, F. T. Ulaby. Semi-empirical model of the ensembleaveraged differential mueller matrix for microwave backscattering from bare soil surfaces. IEEE Trans. Geosci. Remote Sens., 40:1348-1355, 2002.
    [93] Pampaloni, P., S. Paloscia. microwave emission and plant water content: a comparison between field measurements and theory. IEEE Trans. Geosci. Remote Sens., pages 900-905, 1986.
    [94] Peplinski, N. P., F. T. Ulaby, M. C. Dobson. Dielectric properties os soil in the 0.3-1.3 GHz range. IEEE Trans. Geosci. Remote Sens., 33:803-807, 1995.
    [95] Prevot, L., I. Champion, G. Guyot. Estimating surface soil moisture and leaf area index of a wheat canopy using a dual-frequency (C and X bands)scatterometer. Remote Sens. Environ., 46:331-339, 1993.
    [96] Pulliainen, J. T., T. Manninen, M. T. Hallikainen. Application of ERS-1 wind scatterometer data to soil frost and soil moisture monitoring in boreal forest zone. IEEE Trans. Geosci. Remote Sens., 36(3):849-863, 1998.
    [97] Quesney, A., S. L. Hegarat-Mascle, O. Taconet. Estimation of watershed soil moisture index from ERS/SAR data. Remote Sens. Environ., 72:290-303, 2000.
    [98] Y. Quilfen. ERS-1 off-line wind scatterometer products. Technical Report IFREMER/CERSAT, page 55, 1995.
    [99] Ramnath, V. K., R. L. King, L. H. Younan, et al. Estimation of soil moisture using RADARSAT repeat-passes. Pro. IEEE int. Geos. RS Symposium, 21-25 July 2003, Toulouse, 1:327-329.
    [100] K. R. Raney. Radar fundamentals: Technical perspective, in: Henderson and lewis (ed.): Principles and applications of imaging radar. Manual of Rem. Sensing, 2:9-124, 1998.
    [101] Remund, Q. P., D. G. Long. Large scale inwerse Ku-Band backscatter modeling of sea ice. IEEE Trans. Geosci. Remote Sens., 41(8): 1821-1833, 2003.
    [102] G. Q. Sun D. S. Simonett Richards, J. A. L-band radar backscatter modeling of forest stands. IEEE Trans. Geosci. Remote Sens., GE-25:487-498, 1987.
    [103] Rodgers, C.D. Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev. Geophys. Space Phys., 14:609-624, 1976.
    [104] Roo, R. D. D., Yang Du. A semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion. IEEE Trans. Geosci. Remote Sens., 39:864-872, 2001.
    [105] Sancer, M. I. Shadow-corrected electromagnetic scattering from a randomly rough surface. IEEE Transactions on Antennas Propagation, 17:577-589, 1969.
    [106] Satalino, G., F. Mattia, M. W. J. Davidson, et al. On current limits of soil moisture retrieval from ERS-SAR data. IEEE Trans. Geosci. Remote Sens., 40(11):2438-2447, 2002.
    [107] T. J. Schmugge. Effect of texture on microwave emission from soils. IEEE Trans. Geosci. Remote Sens., 18:353-361, 1980.
    [108] T. J. Schmugge. Remote sensing of soil moisture: Recent advances. IEEE Trans. Geosci. Remote Sens., 21 (3):336-344, 1983.
    [109] Semyonov, G. Approximate computation of scattering of electromagnetic waves by rough surface contours. Radio Engineering and Electronic Physics, 17:1179-1187, 1966.
    [110] Serbin, G., D., D. G. Blumberg. Thermodielectric effects on radar backscattering from wet soils. IEEE Trans. Geosci. Remote Sens., 39(4):897-901, 2001.
    [111] Shi, J. C., J. Wang, A. Y. Hsu, et al. Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data. IEEE Trans. Geosci. Remote Sens., 35(5): 1254-1266, 1997.
    [112] Shi, J. C., K. S. Chen, Q. Li, et al. A parameterized surface reflectivity model and estimation ,of bare surface soil moisture with l-band radiometer. IEEE Trans. Geosci. Remote Sens., 40(12):2674-2686, 2002.
    [113] Shi, J.C., K. S. Chen, Y. Kim, et al. Estimation of soil moisture with l-band multipolarization radar. IGARSS'04.
    [114] Shukla, J., Y. Mintz. Influence of land-surface evapotranspiration on the earth's climate. Science, 215:1498-1501, 1982.
    [115] Strahler, A. Physical Geopgraphy, Science and Systems of the Human Environment. John Wiley & Sons Inc., New York etc., 1996.
    [116] Tanaka, L., H. Ishikawa, T. Hayashi et al. Surface energy budget at amdo on Tibetan Plateau using GAME/Tibet IOP'98 data. J. Meteor. Soc. Japan, 79(1B):505-517, 2001.
    [117] Tao, S. Y., Y. H. Ding. Observational evidence of the influence of Qinghai-Xizhang(Tibet) plateau on the occurrence of heavy rain and severe convective storms in China. Weather Forecasting, 2:89-112, 1981.
    [118] Tetsuo Nakazawa, 陈隆勋. Water budget analysis over the Tibetan Plateau during the northern summer in 1994. 见:陶诗言,陈联寿,徐祥德等编,第二次青藏高原大气科学实验研究进展(一),气像出版社,2000,104-107.
    [119] Toure A., K. P. B. Thomson, G. Edwards. Adaptation of the MIMICS backscattering model to the agricultural context-wheat and canola at L and C bands. IEEE Trans. Geosci. Remote Sens., 32:47-61, 1994.
    [120] Ulaby, F. T., C. Elachi. Radar Polarimetryfor Geoscience Applications. Artech House, Norwood, MA, 1990.
    [121] Ulaby, F. T., K. Sarabandi, K. McDonald, M. Whitt et al. Michigan microwave canopy scattering model. Int. J. Remote Sens., 11:1223-1253, 1990.
    [122] Ulaby, F. T., M. A. El-Rayes. Microwave dielectric spectrum of vegetation, part 2: Dual-dispersion model. IEEE Trans. Geosci. Remote Sens., 25(5):551-557, 1987.
    [123] Ulaby, F. T., P. Batlivala, M. Dobson. Microwave backscatter dependence on surface roughness, soil moisture and soil texture: Part i - bare soil. IEEE Trans. Geosci. Remote Sens., GE-16:286-295, 1978.
    [124] Ulaby, F. T., R. K. Moore, A. K. Fung. Microwave Remote Sensing: Active and Passive, volume 2. Artech House, Dedham, MA, 1982.
    [125] Ulaby, F. T., R. K. Moore, A. K. Fung. Microwave Remote Sensing: Active and Passive, volume 3. Artech House, Norwood, MA, 1986.
    [126] Valenzuela, G. R. Depolarization of EM waves by slightly rough surfaces. IEEE Transactions on Antennas Propagation, 15:552-557, 1967.
    [127] Van Zyl, J. J., H. A. Zebeker, C. Elachi. Imaging radar polarizaiton signatures: theory and observations. Radio Science, 22(4):529-643, 1987.
    [128] Wagner, W., G. Lemoine, H. Rott. A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens. Environ., 70:191-207, 1999.
    [129] Wagner, W., G. Lemoine, M. Borgeaud, et al. A study of vegetation cover effects on ERS scatterometer data. IEEE Trans. Geosci. Remote Sens., 37:938-948, 1999.
    [130] Wagner, W., J. Noll, M. Borgeaud, et al. Monitoring soil moisture over the Canadian prairies with the ERS scatterometer. IEEE Trans. Geosci. Remote Sens., 37:206-216, 1999.
    [131] Wagner, W., K. Scipal. Large-scale soil moisture mapping in western Africa using the ERS scatterometer. IEEE Trans. Geosci. Remote Sens., 38:1777-1782, 2000.
    [132] Wang, J. R., T. J. Schmugge. An empirical model for the complex dielectric permittivity of soil as a function of water content. IEEE Trans. Geosci. Remote Sens., GE-18(4):288-295, 1980.
    [133] Wegmuller, U. Active and passive microwave signature catalogue on bare soil (2-12GHz). Institute of Applied Physics, University of Berne, Switzerland, 1993.
    [134] Wigneron, J.-P, M. Parde, P. Waldteufel, et al. Characterizing the dependence of vegetation model parameters on crop structure, incidence angle, and polarization at L-Band. IEEE Trans. Geosci. Remote Sens., 42:416-425, 2004.
    [135] Wismann, V. Monitoring of seasonal thawing in siberia with the ERS scatterometer data. IEEE Trans. Geosci. Remote Sens., 38:1804-1809. 2000.
    [136] Wismann, V. R., K. Boehnke. Land surface monitoring using the ERS-1 scatterometer. Earth Observation Quarterly, 44:11-15, 1994.
    [137] Woodhouse, I. H., D. H. Hoekman. A model-based determination of soil moisture trend in spain with the ERS scatterometer. IEEE Trans. Geosci. Remote Sens., 38:1783-1893, 2000.
    [138] Woodhouse, I.H., D. H. Hoekman. Determining land surface parameters from the ERS-1 wind-scatterometer. IEEE Trans. Geosci. Remote Sens., 38:126-140, 2000.
    [139] Wu, S. T., A. K. Fung. A noncoherent model for microwave emission and backscattering from the sea surface. Journal of Geophysical Research, 77:5917-5929, 1972.
    [140] Wu, T. D., K. S. Chen. A reappraisal of the validity of the IEM model for backscattering from rough surfaces. IEEE Trans. Geosci. Remote Sens., 42:743-753, 2004.
    [141] Wu, T. D., K. S. Chen, J. C. Shi, et al. A transiton model for the reflection coefficient in surface scattering. IEEE Trans. Geosci. Remote Sens., 39:2040-2050, 2001.
    [142] Yasunari, T. A. Quasi-stationary appearance of 30-40 day period in the cloudiness during the summer monsoon over India, J. Meteorol. Soc. Japan, 58:225-279, 1980.
    [143] Zebeker, H. A., J. J. Van Zyl, D. N. Held. Imaging radar polarimetry from wave synthesis. Journal of Geophysical Research, 92:683-701, 1987.
    [144] Zribi, M., M. Dechambre. A new empirical model to retrieve soil moisture and roughness from C-Band radar data. Remote Sens. Environ., 84:42-52, 2002.
    [145] Zribi, M., O. Taconet, Le Hegarat-Mascle, et al. backscattering behavior and simulation comparison over bare soils using SIR C/XSAR and ERASME 1994 data over orgeval. Remote Sens. Environ., 59:256-266, 1997.
    [146] Zribi, M., V. Ciarletti, O. Taconet. validation of a rough surface model based on fractional brownian geometry with SIR C and ERASME radar data over Orgeval site. Remote Sens. Environ., 73:65-72, 2000.
    [147] 郭华东.雷达对地观测理论与技术.科学出版社,北京,2000.
    [148] 金亚秋.电磁散射与热辐射的遥感理论.科学出版社,北京,1993.
    [149] 李炳元.青藏高原的范围.地理研究,6(3):57-63,1987.
    [150] 刘纪远,刘明亮,庄大方等.中国近期土地利用变化的空间格局分析.中国科学(D),32(12):1032-1040,2000.
    [151] 马耀明,刘东升,苏中波等.卫星遥感藏北高原非均匀陆地地表特征参数和植被参数.大气科学,28(1):23-34,2004.
    [152] 青藏高原气象科学实验文集编辑组.青藏高原气象科学实验文集(一).科学出版社,北京,1981.
    [153] 青藏高原气象科学实验文集编辑组.青藏高原气象科学实验文集(二).科学出版社,北京,1984.
    [154] 青藏高原气象科学实验文集编辑组.青藏高原气象科学实验文集(三).科学出版社,北京,1987.
    [155] 潘广东,田国良.棉田微波散射研究.遥感学报,3:9-15,1999.
    [156] 孙菽芬,卢志泊.一个可与大气环流模式相耦合的陆地水热交换模式.中国科学(B),19(2):216-224,1989.
    [157] 陶诗言,陈联寿,徐祥德等.第二次青藏高原大气科学实验研究进展(一).气象出版社,北京,1998.
    [158] 陶诗言,陈联寿,徐祥德等.第二次青藏高原大气科学实验研究进展(二).气象出版社,北京,1999.
    [159] 陶诗言,陈联寿,徐祥德等.第二次青藏高原大气科学实验研究进展(三).气象出版社,北京,2000.
    [160] 陶诗言,陈联寿,徐祥德等.青藏高原大气边界层观测分析与大气动力学.气象出版社,北京,2000.
    [161] 陶诗言等.中国之暴雨.科学出版社,北京,1980.
    [162] 陶诗言,张庆云,张顺利.1998年长江流域洪涝灾害的气候背景和大尺度环流条件.气候与环境研究,3:290-299,1998.
    [163] 王宝发编译.微波遥感理论.北京航空航天大学出版社,北京,1989.
    [164] 徐祥德,周明煜,陈家宜等.一个可与大气环流模式相耦合的陆地水热交换模式.中国科学,31(5):428-441,2001.
    [165] 杨虎.植被覆盖地表土壤水分变化雷达探测模型和应用研究.博士论文,中国科学院遥感应用研究所,2003.
    [166] 杨梅学,姚檀栋,勾晓华.青藏公路沿线土壤的冻融过程及水热分布特征.自然科学进展,10(5):443-450,2000.
    [167] 杨梅学,姚檀栋,勾晓华.藏北高原夏季降水的水汽来源分析.地理科学,24(4):426-431,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700