体外诱导大鼠骨髓间充质干细胞向GABA能神经元分化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨髓间充质干细胞(bone marrow mesenchymal stem cells, BMSCs)作为来源于中胚层的具有多向分化潜能的成体干细胞,具有容易进行分离纯化培养且能避开自体移植的免疫障碍,同时还突破了神经干细胞(neural stem cell, NSC)和胚胎干细胞(embryonic stem cell, ESC)研究的伦理束缚等等鲜明特点,近来成为干细胞研究的热点趋势。BMSCs在适当条件下可向成骨细胞、成软骨细胞、脂肪细胞、神经细胞等方向分化,尤其向神经细胞方向分化的趋势为中枢神经系统损伤病人带来了新的福音。目前研究表明BMSCs对大鼠癫痫模型有一定的疗效,γ-氨基丁酸(gama aminobutyric acid , GABA)能神经元损伤作为癫痫的关键发病因素,BMSCs是否具有分化为GABA能神经元的能力还未有明确报道,同时体外诱导分化的GABA能神经元的功能性还有待进一步研究。本论文在前面学者研究NSC和BMSCs分化的基础上,结合GABA能神经元自身诱导分化的特点,成功在体外将BMSCs诱导分化为GABA能神经元。尽管目前研究显示其向GABA能神经元分化效率和相应功能有限,但此研究的初步结果为临床应用BMSCs治疗癫痫奠定了一定的理论基础,为颅脑病变的细胞移植替代治疗开辟了新的方向。本论文从BMSCs的分离培养、BMSCs的诱导分化两个方面作以探索性研究:
     1、BMSCs的分离培养。
     目的获取纯化的BMSCs。方法用10ml无菌注射器吸取PBS冲洗鼠龄4-6w、体重100g左右的SD大鼠股骨骨髓腔,收集5ml左右的骨髓液,缓慢沿试管壁加入到等体积的Percol(l1.073g/ml)分离液中,而后以2500rpm的速度高速离心20min,谨慎吸取试管内液体交界面处的薄层细胞转移到含PBS的试管中,吹打后以1000rpm的速度离心5min,倒掉PBS然后在细胞中加入含10%FBS的DNEM/F12,吹打均匀后以1×106个/ml的浓度转移移到40ml的塑料培养瓶中培养,即为原代细胞。静止培养3天后先半量换液,以后正常换液,大约10-12天待细胞铺满瓶底70%左右时传代培养,获得第1代细胞。以此类推。通过形态学观察和免疫组化法分析获取的细胞。结果细胞培养48h左右即开始贴壁,形态多呈梭形,原代细胞呈巢状生长。传代后细胞增殖迅速,培养液中有少量悬浮细胞,到第2代后细胞形态单一,基本达到纯化。同时对纯化细胞作免疫组化分析发现其表面标志抗体的表达情况为CD29(91. 3±5.0) %、CD105( 72. 1±6.3 ) %和CD34 (2.4±0.8) %。结论通过大鼠骨髓的分离培养,在第2代即可得到比较纯化的BMSCs。此结论为BMSCs的诱导分化提供了有利前提。
     2、体外诱导大鼠BMSCs向GABA能神经元分化。
     目的探讨BMSCs向GABA能神经元的分化趋向。方法取生长状态良好的第二代BMSCs添加NSC培养基培养一周,而后加入10 ng/ml脑源性神经营养因子(brain-derived neurotrophic factor , BDNF)和10 ng/ml骨形成蛋白-2(bone morphogenetic protein-2, BMP-2)诱导3-4天,再以1μmol/L全反式维甲酸(all transretinoic acid, ATRA)诱导3-4天完成分化。观察细胞形态学在诱导分化中的变化,免疫荧光和Western blot鉴定分化后细胞并进行统计学分析。结果细胞在添加NSC培养基3天后即开始出现变化,到一周时细胞明显变圆,透光性增强。添加BDNF和BMP-2后细胞开始出现突起,至诱导分化完成时细胞拥有明显的胞体和突起,呈典型的神经元样细胞形态。免疫荧光发现神经细胞抗体阳性:Nestin( 27.3±5.6 ) %、NSE (37.6±4.6) %和GAD67 (18.7±5.7 ) %。Western blot分析显示,经诱导分化的细胞GAD67和NSE的蛋白条带相对灰度值明显高于未诱导分化细胞的灰度值。结论BMSCs在体外有向GABA能神经元方向分化的趋势,在添加BMP-2趋势更为明显。上述结果为癫痫的细胞移植治疗奠定了一定的理论基础。
Bone marrow mesenchymal stem cells(BMSCs), as the somatic stem cells derived from the mesoderm which have multi-directional differentiation potential , easily purified from the culture and can avoid the immune barriers to transplantation, and break through the ethical constraints of NSC and ESC research, recently have become a hot trend in stem cells study. Under appropriate conditions BMSCs can differentiating into bone cells, cartilage cells, fat cells, neural cells and so on, especially the direction of the trend of differentiating into neural cells which has brought new gospel for patients who are central nervous system injured in clinical work. Moreover recent studies have shown that BMSCs have some effects on rat epilepsy model, gama aminobutyric acid(GABA)ergic neurons as a key pathogenic factors to epilepsy happened, whether BMSCs own the ability of differentiating into GABAergic neurons have not a definite coverage, while the function of the induced GABAergic neurons in vitro remains to be further studied. In this paper, resort to the previous scholars about studying the differentiation of NSC and BMSCs and characteristics of self-induced differentiation of GABAergic neurons, successfully induced the BMSCs to GABAergic in vitro. Although studies have shown that the efficiency and corresponding function of the differentiated GABAergic neurons is limited, the initial results of this research has laid a theoretical foundation for the treatment of epilepsy and opened a new direction of the cell transplantation for brain lesions. In this paper, the two aspects of isolation and culture of BMSCs, induced differentiation of BMSCs were researched as following:
     1. Isolation and culture of BMSCs.
     Objective To obtain purified BMSCs. Methods took 10ml sterile syringes to wash rat bone marrow cavity with PBS towards the SD rats age of 4-6 week, weighing about 100g, collected about 5ml of bone marrow fluid in the tube, along the tube wall slowly added an equal volume of Percoll (1.073g/ml) separation of liquid, then to take the speed of 2500rpm to high-speedly centrifuge 20min, carefully swabbed the thin interface of the cells, transferred the cells to tube containing PBS, blew the cells with pipette and centrifuged with 1000rpm about 5min, drained the PBS and added DNEM/F12 containing 10% FBS, transferred to the 40ml plastic bottle after wind and percussion uniform and got the primary cultured cells. Static cultured for 3 days to change the first half of the amount of fluid, the normal exchange of medium later, about 10-12 days closely 70% of bottom of the bottle was covered with cells and then passaged to obtain the first generation of the cells, so did the later passage. Obtained cells with morphological observation and immunohistochemical analysis. Results Separated cells began to attach the wall around 48h, most morphology was spindle, primary cells were nested growth. The cells proliferated rapidly after passage and found a few amount of suspended cells in the medium, the second generation of the cells became purified generally. Meanwhile immunohistochemical analysis showed the situation of surface marker antibodies for CD29 (91.3±5.0)%, CD105 (72.1± 6.3)%, and CD34 (2.4±0.8)%. Conclusion Isolation and culture of rat bone marrow can be obtained the relatively purified BMSCs at the second generation. This conclusion provided a favorable prerequisite for the induction of differentiation of BMSCs.
     2. Induce rat bone marrow mesenchymal stem cells differentiate into GABAergic neurons in vitro.
     Objective To explore the trend of BMSCs differentiate into GABAergic neurons. Methods Added neural stem cells(NSC) medium to the favorable conditions of BMSCs for 1 week, then induced with 10ng/ml brain-derived neurotrophic factor(BDNF) and 10ng/ml bone morphogenetic protein-2(BMP-2) for 3-4 days, next cultured with 1μmol/L all trans retinoic acid(ATRA) for 3-4 days to complete the differentiation. Observed the morphological change of the induced cells, analyzed with Immunofluorescence and Western blot to the differentiated cells, statistical disposal to the last results. Results The cells’morphology began to change in the NSC culture medium after three days, existed a clear spherical body for about 1 week and increasing transparent. The cells began to appear bulge after adding BDNF and BMP-2, clear body and processes following the differentiation completed, showing a typical neuron-like cell morphology. Immunofluorescence manifested the positive neural cells: Nestin( 27.3±5.6 ) %, NSE (37.6±4.6) % and GAD67 (18.7±5.7 ) %. Western blot analysis showed that the relative gray value of protein bands of GAD67 and NSE was significantly higher than non-induced differentiated cells. Conclusion BMSCs had the trend of differentiating into GABAergic neurons in vitro, even more pronounced trend adding in BMP-2. The results of this research laid a certain theoretical basis for BMSCs transplantation for the treatment of epilepsy.
引文
1. Shirozu M, Tada H, et al. Characterization of novel secreted and membrane proteins isolated by the signal sequence trap method[J]. Genomics, 1996. 37(3):273-280.
    2. Abboud SL. A bone marrow stromal cell line is a source and target for platelet-derived growth factor[J]. Blood, 1993. 81(10):2547-2553.
    3. Li CH and Jiao BH. Effect of bone marrow stromal cells transfected with interleukin 18 on growth of intracranial glioma in rats[J]. Ai Zheng, 2007. 26(1):38-43.
    4. Zipori D, Tamir M, et al. Differentiation stage and lineage-specific inhibitor from the stroma of mouse bone marrow that restricts lymphoma cell growth[J]. Proc Natl Acad Sci U S A, 1986. 83(12):4547-4551.
    5. Lu P, Blesch A, et al. Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact[J]? J Neurosci Res, 2004. 77(2):174-191.
    6. Friedenstein AJ, Piatetzky S, et al. Osteogenesis in transplants of bone marrow cells[J]. J Embryol Exp Morphol, 1966. 16(3):381-390.
    7. Crocker PR and Gordon S. Isolation and characterization of resident stromal macrophages and hematopoietic cell clusters from mouse bone marrow[J]. J Exp Med, 1985. 162(3):993-1014.
    8. Gou S, Wang C, et al. Spontaneous differentiation of murine bone marrow-derived mesenchymal stem cells into adipocytes without malignant transformation after long-term culture[J]. Cells Tissues Organs, 2009.
    9. Xue Q, et al. The negative co-signaling molecule b7-h4 is expressed by human BMSC and mediates its T cell modulatory activity[J]. Stem Cells Dev, 2009.
    10. Friedenstein AJ, Chailakhjan RK, et al. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells[J]. Cell Tissue Kinet, 1970. 3(4):393-403.
    11. Jonsson KB, et al. Three isolation techniques for primary culture of human osteoblast-like cells: a comparison[J]. Acta Orthop Scand, 1999. 70(4):365-373.
    12. Bajada S, et al. Decreased osteogenesis, increased cell senescence and elevated dickkopf-1 secretion in human fracture non union stromal cells[J]. Bone, 2009. 45(4):726-735.
    13. Titorencu I, et al. Proliferation, differentiation and characterization of osteoblasts from human BM mesenchymal cells[J]. Cytotherapy, 2007. 9(7):682-696.
    14. Pittenger MF. Mesenchymal stem cells from adult bone marrow[J]. Methods Mol Biol, 2008. 449:27-44.
    15. Golovko DM, et al. Accelerated stem cell labeling with ferucarbotran and protamine[J]. Eur Radiol, 2009.
    16. Amann B, et al. Autologous bone-marrow stem-cell transplantation for induction of arteriogenesis for limb salvage in critical limb ischaemia[J]. Zentralbl Chir, 2009. 134(4):298-304.
    17. Herzog EL, Chai L, et al. Plasticity of marrow-derived stem cells[J]. Blood, 2003. 102(10):3483-3493.
    18. Lundberg P, et al. Greater bone formation of Y2 knockout mice is associated with increased osteoprogenitor numbers and altered Y1receptor expression[J]. J Biol Chem, 2007. 282(26):19082-19091.
    19. Phadnis SM, et al. Mesenchymal stem cells derived from bone marrow of diabetic patients portrait unique markers influenced by the diabetic microenvironment[J]. Rev Diabet Stud, 2009. 6(4):260-270.
    20. Esposito MT, et al. Culture conditions allow selection of different mesenchymal progenitors from adult mouse bone marrow[J]. Tissue Eng Part A, 2009. 15(9):2525-2536.
    21. Tuli R, et al. A simple, high-yield method for obtaining multipotential mesenchymal progenitor cells from trabecular bone[J]. Mol Biotechnol, 2003. 23(1):37-49.
    22. Grzesik WJ, et al. Normal human cementum-derived cells: isolation, clonal expansion, and in vitro and in vivo characterization[J]. J Bone Miner Res, 1998. 13(10):1547-1554.
    23.常颖齐欣徐忠信等.不同代数的成人骨髓间充质干细胞体外转化为神经细胞的实验研究.中风与神经疾病杂志. 2004. 2004 21(4).
    24. Woodbury D, et al. Adult rat and human bone marrow stromal cells differentiate into neurons[J]. J Neurosci Res, 2000. 61(4):364-370.
    25. Sun X, et al. In vitro proliferation and differentiation of human mesenchymal stem cells cultured in autologous plasma derived from bone marrow[J]. Tissue Eng Part A, 2008. 14(3):391-400.
    26. Kim SJ, et al. Human adipose stromal cells expanded in human serum promote engraftment of human peripheral blood hematopoietic stem cells in NOD/SCID mice[J]. Biochem Biophys Res Commun, 2005. 329(1):25-31.
    27. Lennon DP, Edmison JM, et al. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitroand in vivo osteochondrogenesis[J]. J Cell Physiol, 2001. 187(3):345-355.
    28. Shen LH, et al. One-year follow-up after bone marrow stromal cell treatment in middle-aged female rats with stroke[J]. Stroke, 2007. 38(7):2150-2156.
    29. Kato R, et al. A compact, automated cell culture system for clinical scale cell expansion from primary tissues[J]. Tissue Eng Part C Methods, 2009.
    30. Huang TF, et al. Isolation and characterization of mesenchymal stromal cells from human anterior cruciate ligament[J]. Cytotherapy, 2008. 10(8):806-814.
    31. Reyes M and Verfaillie CM. Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells[J]. Ann N Y Acad Sci, 2001. 938:231-233; discussion 233-235.
    32. Sarugaser R, et al. Isolation, propagation, and characterization of human umbilical cord perivascular cells (HUCPVCs) [J]. Methods Mol Biol, 2009. 482:269-279.
    33. Martinez C, et al. Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs[J]. Blood, 2007. 109(10):4245-4248.
    34. Bellantuono I, Aldahmash A, et al. Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss[J]. Biochim Biophys Acta, 2009. 1792(4):364-370.
    35. Pittenger MF, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999. 284(5411):143-147.
    36. Deng W, et al. In vitro differentiation of human marrow stromal cellsinto early progenitors of neural cells by conditions that increase intracellular cyclic AMP[J]. Biochem Biophys Res Commun, 2001. 282(1):148-152.
    37. Sanchez RJ, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro[J]. Exp Neurol, 2000. 164(2):247-256.
    38. Korbling M and Estrov Z. Adult stem cells for tissue repair - a new therapeutic concept[J]? N Engl J Med, 2003. 349(6):570-582.
    39. Kashofer K and Bonnet D. Gene therapy progress and prospects: stem cell plasticity[J]. Gene Ther, 2005. 12(16):1229-1234.
    40. Yang LY, Huang TH, at al. Bone marrow stromal cells express neural phenotypes in vitro and migrate in brain after transplantation in vivo[J]. Biomed Environ Sci, 2006. 19(5):329-335.
    41. Yaghoobi MM and Mowla SJ. Differential gene expression pattern of neurotrophins and their receptors during neuronal differentiation of rat bone marrow stromal cells[J]. Neurosci Lett, 2006. 397(1-2):149-154.
    42. Hardy SA, Maltman DJ, et al. Mesenchymal stem cells as mediators of neural differentiation[J]. Curr Stem Cell Res Ther, 2008. 3(1):43-52.
    43. Shi Y. Induced pluripotent stem cells, new tools for drug discovery and new hope for stem cell therapies[J]. Curr Mol Pharmacol, 2009. 2(1):15-18.
    44. Yang J, et al. Effects of bone marrow stromal cell-conditioned medium on primary cultures of peripheral nerve tissues and cells[J]. Neurochem Res, 2009. 34(9):1685-1694.
    45. Kuo YC, Yeh CF, et al. Differentiation of bone marrow stromal cells in poly(lactide-co-glycolide)/chitosan scaffolds[J]. Biomaterials, 2009. 30(34):6604-6613.
    46. Kondo T, et al. Sonic hedgehog and retinoic acid synergistically promote sensory fate specification from bone marrow-derived pluripotent stem cells[J]. Proc Natl Acad Sci U S A, 2005. 102(13):4789-4794.
    47. Pituch NA, et al. Circulating CXCR4-positive stem/progenitor cells compete for SDF-1-positive niches in bone marrow, muscle and neural tissues: an alternative hypothesis to stem cell plasticity[J]. Folia Histochem Cytobiol, 2003. 41(1): p. 13-21.
    48. Mori T, et al. Combination of hTERT and bmi-1, E6, or E7 induces prolongation of the life span of bone marrow stromal cells from an elderly donor without affecting their neurogenic potential[J]. Mol Cell Biol, 2005. 25(12):5183-5195.
    49. Makino S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro[J]. J Clin Invest, 1999. 103(5):697-705.
    50. Kuramochi Y, et al. Cardiomyocyte regeneration from circulating bone marrow cells in mice[J]. Pediatr Res, 2003. 54(3): 319-325.
    51. Okada H, et al. Attenuation of autoimmune myocarditis in rats by mesenchymal stem cell transplantation through enhanced expression of hepatocyte growth factor[J]. Int Heart J, 2007. 48(5):649-661.
    52. Schultz SS and Lucas PA. Human stem cells isolated from adult skeletal muscle differentiate into neural phenotypes[J]. J Neurosci Methods, 2006. 152(1-2):144-155.
    53. Levy YS, et al. Regenerative effect of neural-induced human mesenchymal stromal cells in rat models of Parkinson's disease[J]. Cytotherapy, 2008. 10(4):340-352.
    54. Kang SK, et al. Neurogenesis of Rhesus adipose stromal cells[J]. J Cell Sci, 2004. 117(Pt 18):4289-4299.
    55. Bisping G, et al. Targeting receptor kinases by a novel indolinone derivative in multiple myeloma: abrogation of stroma-derived interleukin-6 secretion and induction of apoptosis in cytogenetically defined subgroups[J]. Blood, 2006. 107(5):2079-2089.
    56. Sahoo S, et al. Bioactive nanofibers for fibroblastic differentiation of mesenchymal precursor cells for ligament/tendon tissue engineering applications[J]. Differentiation, 2009.
    57. Chen Q, et al. The study on growth and proliferation of neural stem cells from rats in vitro[J]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi, 2008. 22(16):747-750.
    58. Zhao Z, Hu H, et al. The optimization of the method of culturing neural stem cells in neonatal rat brain[J]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2005. 19(7):544-547.
    59. Liu F, et al. Purification, induced differentiation and identification of rat embryonic neural stem cells[J]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2004. 21(4):591-596.
    60. Ren W, et al. bFGF and heparin but not laminin are necessary factors in the mediums that affect NSCs differentiation into cholinergic neurons[J]. Neurol Res, 2006. 28(1):87-90.
    61. Burke RE. GDNF as a candidate striatal target-derived neurotrophic factor for the development of substantia nigra dopamine neurons[J]. J Neural Transm Suppl, 2006(70):41-45.
    62. Yue F, et al. Induction of midbrain dopaminergic neurons from primate embryonic stem cells by coculture with sertoli cells[J]. Stem Cells, 2006. 24(7):1695-1706.
    63. Jung YH, et al. Glial cell line-derived neurotrophic factor alters thegrowth characteristics and genomic imprinting of mouse multipotent adult germline stem cells[J]. Exp Cell Res, 2010. 316(5):747-761.
    64. Novakovic B, et al. DNA methylation-mediated down-regulation of DNA methylatransferase-1 (DNMT1), is co-incident with, but not essential for, global hypomethylation in human placenta[J]. J Biol Chem. 2009.
    65. Redova M, et al. Influence of LOX/COX inhibitors on cell differentiation induced by all-trans retinoic acid in neuroblastoma cell lines[J]. Int J Mol Med. 25(2):271-280.
    66. Hattori A, et al. Bone morphogenetic protein-2 promotes survival and differentiation of striatal GABAergic neurons in the absence of glial cell proliferation[J]. J Neurochem, 1999. 72(6):2264-2271.
    67. Lowe B, et al. Quantitation of gene expression in neural precursors by reverse-transcription polymerase chain reaction using self-quenched, fluorogenic primers[J]. Anal Biochem, 2003. 315(1):95-105.
    68. Reiriz J, et al. Bone morphogenetic protein-2 promotes dissociated effects on the number and differentiation of cultured ventral mesencephalic dopaminergic neurons[J]. J Neurobiol, 1999. 38(2):161-170.
    69. Hachiya Y and Takashima S. Development of GABAergic neurons and their transporter in human temporal cortex[J]. Pediatr Neurol, 2001. 25(5):390-396.
    70. Moult PR. Neuronal glutamate and GABAA receptor function in health and disease[J]. Biochem Soc Trans, 2009. 37(Pt 6):1317-1322.
    71. Kageyama R, et al. Roles of bHLH genes in neural stem cell differentiation[J]. Exp Cell Res, 2005. 306(2):343-348.
    72. Lo L, Sommer L, et al. MASH1 maintains competence for BMP2-induced neuronal differentiation in post-migratory neural crest cells[J]. Curr Biol, 1997. 7(6):440-450.
    73. Kageyama R, Ohtsuka T, et al. Roles of Hes genes in neural development[J]. Dev Growth Differ, 2008. 50 Suppl 1:97-103.
    74. Adolf B, et al. Atoh1.2 and beta3.1 are two new bHLH-encoding genes expressed in selective precursor cells of the zebrafish anterior hindbrain[J]. Gene Expr Patterns, 2004. 5(1):35-41.
    75. Chien CT, et al. Neuronal type information encoded in the basic-helix-loop-helix domain of proneural genes[J]. Proc Natl Acad Sci U S A, 1996. 93(23):13239-13244.
    76. Nakhai H, et al. Ptf1a is essential for the differentiation of GABAergic and glycinergic amacrine cells and horizontal cells in the mouse retina[J]. Development, 2007. 134(6):1151-1160.
    77. Hori K, et al. A nonclassical bHLH Rbpj transcription factor complex is required for specification of GABAergic neurons independent of Notch signaling[J]. Genes Dev, 2008. 22(2):166-178.
    78. Mizuguchi R, et al. Ascl1 and Gsh1/2 control inhibitory and excitatory cell fate in spinal sensory interneurons[J]. Nat Neurosci, 2006. 9(6):770-778.
    79. Guimera J, Weisenhorn DV, et al. Megane/Heslike is required for normal GABAergic differentiation in the mouse superior colliculus[J]. Development, 2006. 133(19):3847-3857.
    80. Jo AY, et al. Contrasting and brain region-specific roles of neurogenin2 and mash1 in GABAergic neuron differentiation in vitro[J]. Exp Cell Res, 2007. 313(19):4066-4081.
    81. Lim DA, et al. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis[J]. Neuron, 2000. 28(3):713-726.
    82.陈锦华张治元尹昌林等. Mash1在室管膜前下区神经干细胞向GABA能神经元分化中的作用.第三军医大学学报. 2007(10): 863-865.
    83.陈锦华杨辉尹昌林等. BMP2在SVZa神经干细胞向GABA能神经元分化中的调控作用.第三军医大学学报. 2007(8): 699-701.
    84. Dasen JS and Jessell TM. Hox networks and the origins of motor neuron diversity[J]. Curr Top Dev Biol, 2009. 88:169-200.
    85. Narita Y and Rijli FM. Hox genes in neural patterning and circuit formation in the mouse hindbrain[J]. Curr Top Dev Biol, 2009. 88: 139-167.
    86. Lu QR, et al. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection[J]. Cell, 2002. 109(1):75-86.
    87. Ligon KL, et al. Olig gene function in CNS development and disease[J]. Glia, 2006. 54(1):1-10.
    88. Chapman EJ and Knowles MA. Necdin: a multi functional protein with potential tumor suppressor role[J]? Mol Carcinog, 2009. 48(11):975-981.
    89. Yung SY, et al. Differential modulation of BMP signaling promotes the elaboration of cerebral cortical GABAergic neurons or oligodendrocytes from a common sonic hedgehog-responsive ventral forebrain progenitor species[J]. Proc Natl Acad Sci U S A, 2002. 99(25): 16273-16278.
    90. Zhang H, et al. Immortalized human neural progenitor cells from the ventral telencephalon with the potential to differentiate into GABAergic neurons[J]. J Neurosci Res, 2008. 86(6):1217-1226.
    91. Xu Q, Wonders CP, et al. Sonic hedgehog maintains the identity of cortical interneuron progenitors in the ventral telencephalon[J]. Development, 2005. 132(22):4987-4998.
    92. Gulacsi A and Anderson SA. Shh maintains Nkx2.1 in the MGE by a Gli3-independent mechanism[J]. Cereb Cortex, 2006. 16 Suppl 1: 89-95.
    93. Friocourt G, et al. The role of ARX in cortical development[J]. Eur J Neurosci, 2006. 23(4):869-876.
    94. McKenzie O, et al. Aristaless-related homeobox gene, the gene responsible for West syndrome and related disorders, is a Groucho/transducin-like enhancer of split dependent transcriptional repressor[J]. Neuroscience, 2007. 146(1):236-247.
    95. Okazaki S, et al. Aristaless-related homeobox gene disruption leads to abnormal distribution of GABAergic interneurons in human neocortex: evidence based on a case of X-linked lissencephaly with abnormal genitalia (XLAG) [J]. Acta Neuropathol, 2008. 116(4):453-462.
    96. Bjornson CR, et al. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo[J]. Science, 1999. 283(5401): 534-537.
    97. Mezey E, et al. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow[J]. Science, 2000. 290(5497): 1779-1782.
    98. Blanchet MR and McNagny KM. Stem cells, inflammation and allergy[J]. Allergy Asthma Clin Immunol, 2009. 5(1): 13.
    99. Brodie JC and Humes HD. Stem cell approaches for the treatment of renal failure[J]. Pharmacol Rev, 2005. 57(3): 299-313.
    100. Armstrong L, et al. Human induced pluripotent stem cell lines showsimilar stress defence mechanisms and mitochondrial regulation to human embryonic stem cells[J]. Stem Cells, 2009.
    101. Oliveira LR, Jeffrey SS, et al. Stem cells in human breast cancer[J]. Histol Histopathol. 25(3):371-385.
    102. Garzon MT and Quinones-HA. Neural stem cell niches and homing: recruitment and integration into functional tissues[J]. Ilar J, 2009. 51(1):3-23.
    103. Hudson JE, et al. Green fluorescent protein bone marrow cells express hematopoietic and neural antigens in culture and migrate within the neonatal rat brain[J]. J Neurosci Res, 2004. 76(2):255-264.
    104. Lindvall O, Kokaia Z, et al. Stem cell therapy for human neurodegenerative disorders-how to make it work[J]. Nat Med, 2004. 10 Suppl: 42-50.
    105. Huang Q, et al. The anti-glioma effect of suicide gene therapy using BMSC expressing HSV/TK combined with overexpression of Cx43 in glioma cells[J]. Cancer Gene Ther, 2009.
    106. Li CH and Jiao BH. Anti-glioma activity of treatment by bone marrow stromal cells transfected with HSV-tk in the rat[J]. Zhonghua Zhong Liu Za Zhi, 2007. 29(3):171-175.
    107. Cheng P, et al. Platelet-derived growth factor BB promotes the migration of bone marrow-derived mesenchymal stem cells towards C6 glioma and up-regulates the expression of intracellular adhesion molecule-1[J]. Neurosci Lett, 2009. 451:52-56.
    108. Uchiyama H, et al. Adhesion of human myeloma-derived cell lines to bone marrow stromal cells stimulates interleukin-6 secretion[J]. Blood, 1993. 82(12):3712-3720.
    109. Yang LY. et al. Differentiation of adult human bone marrow mesenchymal stem cells into Schwann-like cells in vitro[J]. Chin J Traumatol, 2005. 8(2):77-80.
    110. Chai LH, et al. Human bone marrow mesenchymal stem cells differentiated into dopaminergenic neurons in vitro[J]. Sheng Wu Gong Cheng Xue Bao, 2007. 23(2):252-256.
    111. Penn PE, et al. Dissecting the hematopoietic microenvironment. IX. Further characterization of murine bone marrow stromal cells[J]. Blood, 1993. 81(5):1205-1213.
    112. Igarashi A, et al. Selection of common markers for bone marrow stromal cells from various bones using real-time RT-PCR: effects of passage number and donor age[J]. Tissue Eng, 2007. 13(10): 2405-2417.
    113. Xu J, et al. Neural ganglioside GD2 identifies a subpopulation of mesenchymal stem cells in umbilical cord[J]. Cell Physiol Biochem, 2009. 23(4-6): 415-24.
    114. Nakatani T, et al. Helt determines GABAergic over glutamatergic neuronal fate by repressing Ngn genes in the developing mesencephalon[J]. Development, 2007. 134(15):2783-2793.
    115. Xin H, et al. Bone marrow stromal cells induce BMP2/4 production in oxygen-glucose-deprived astrocytes, which promotes an astrocytic phenotype in adult subventricular progenitor cells[J]. J Neurosci Res, 2006. 83(8):1485-1493.
    116. Guzman MJ, et al. Effect of chitosan particles and dexamethasone on human bone marrow stromal cell osteogenesis and angiogenic factor secretion[J]. Bone, 2009. 45(4):617-626.
    117. Chang Y, Hsieh PH, et al. The efficiency of Percoll and Ficoll densitygradient media in the isolation of marrow derived human mesenchymal stem cells with osteogenic potential[J]. Chang Gung Med J, 2009. 32(3):264-275.
    118. Zhang Y, et al. The osteogenic properties of CaP/silk composite scaffolds[J]. Biomaterials, 2010. 31(10):2848-5286.
    119. Chiang GG, et al. Bone marrow stromal cell-mediated gene therapy for hemophilia A: in vitro expression of human factor VIII with high biological activity requires the inclusion of the proteolytic site at amino acid 1648[J]. Hum Gene Ther, 1999. 10(1):61-76.
    120. Forbes SJ, Poulsom S, et al. Hepatic and renal differentiation from blood-borne stem cells[J]. Gene Ther, 2002. 9(10):625-630.
    121. Imabayashi H, et al. Redifferentiation of dedifferentiated chondrocytes and chondrogenesis of human bone marrow stromal cells via chondrosphere formation with expression profiling by large-scale cDNA analysis[J]. Exp Cell Res, 2003. 288(1): 35-50.
    122. Guan CC, et al. Sonic hedgehog alleviates the inhibitory effects of high glucose on the osteoblastic differentiation of bone marrow stromal cells[J]. Bone, 2009. 45(6):1146-1152.
    123. Gratacos E, et al. Brain-derived neurotrophic factor (BDNF) mediates bone morphogenetic protein-2 (BMP-2) effects on cultured striatal neurones[J]. J Neurochem, 2001. 79(4):747-755.
    124. Kim S, et al. Neural differentiation potential of peripheral blood- and bone-marrow-derived precursor cell s [J]. Brain Res, 2006. 1123(1): 27-33.
    125. Prajerova I, et al. Neural stem/progenitor cells derived from the embryonic dorsal telencephalon of D6/GFP mice differentiate primarilyinto neurons after transplantation into a cortical lesion[J]. Cell Mol Neurobiol, 2010. 30(2):199-218
    126. Ruggieri M, et al. The aristaless (Arx) gene: one gene for many "interneuronopathies"[J]. Front Biosci (Elite Ed). 2: 701-710.
    127. Fullston T, et al. Ohtahara syndrome in a family with an ARX protein truncation mutation (c.81C>G/p.Y27X) [J]. Eur J Hum Genet. 18(2):157-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700