虚拟人动画中的三维服装仿真技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于物理的三维服装仿真近几年是虚拟现实和计算机图形学领域的研究热点之一,作为三维服装CAD系统集成的核心部分,它可以有效克服传统二维CAD从前期设计到后期造型存在的一系列直观性差和效率低的缺陷。此外,实现三维人体着装的动静态模拟,让设计者和客户在计算机屏幕前直接从各个方向和角度观看穿着效果,并通过实时交互对服装的款式或尺码进行选择和修改,这些功能无疑还会有更广泛的应用前景,例如基于互联网的服装个性化订制、产品销售和虚拟展示等等。然而,服装物理仿真通常计算量庞大,如何在低端硬件平台或交互式环境(例如普通PC或视频游戏)进行高质量模拟是一个新的挑战。
     本文对虚拟人动画中的三维服装仿真技术进行了研究,包括虚拟人体建模、角色动画、布料物理模拟以及可变形体碰撞检测与响应,总体目标是构建一个完整的三维服装仿真环境,并且围绕系统实时性能完成高效算法的开发:
     (1)考虑到三维服装仿真对个性化人体模型的需求,提出了一种参数化人体形态建模方法。特征参数的确定依据人体测量学的相关原理和方法,结合计算机图形学轴变形技术,所实现的人体建模系统提供了非常直观的输入接口,并且该方法还有操作简单和建模速度快的优点。
     (2)为了给三维服装动态展示提供角色动画支持,研究了骨架驱动的皮肤网格变形技术。对基于关节旋转单位四元数球面线性插值的骨骼混合算法进行了改进,引入轴心顶点校正机制改善皮肤网格的变形质量。同时,单位四元数量化查找表的构造以及插值表的预计算进一步提高了算法的执行效率。
     (3)针对布料物理建模的计算效率和稳定性问题,提出一种基于约束的布料质点弹簧模型。非线性弹簧内力是影响微分方程数值求解稳定性和限制积分时间步长的主要因素,本文模型直接通过逆向动力学约束来模拟内力,进而避免了对其的显示计算。其它外力,例如重力等,都作为相对约束引入,结合Verlet数值积分器,模拟系统可以在较大程度上保持稳定。此外,碰撞响应是绝对约束。该模型可以采用较大的时间步长生成布料动画,总体计算量小,能够满足服装仿真应用的速度需求。
     (4)为了保证仿真系统的实时交互性能,提出一种快速处理布料与环境对
In recent years, physically based 3D garment simulation techniques have received much attention in the Virtual Reality (VR) and Computer Graphics (CG) community. Taken regard as the core part of 3D garment CAD integral system, it can overcome effectively a serial of defects, such as poor intuition and low efficiency, in traditional 2D CAD from designing to postphase. Additionally, 3D garment simulation realizes dynamic or static effect of dressed 3D human body, lets designer and customer observe directly wearing effect in front of computer screen with arbitrary direction and visual angle, and modifies the style and size of garment in real-time interactive mode. Undoubtedly, all above functions have more wide application, such as custom-tailor, sale and virtual exhibition based on web. However, physically based garment simulation usually involves very large computational costs, how to perform high quality simulation on low-end hardware platform or in interactive environment (such as ordinary PC or video game) is a new big challenge.
    The dissertation mostly addressed the technology of garment simulation in virtual human animation, including virtual human body modelling, character animation, physically based cloth simulation, collision detection and response for deformable objects. Our main aim is to construct an integrated 3D garment simulation environment, and develop some highly efficient algorithms that focus on the real-time performance of system.
    (1) Taken into consideration the requirement for individual human body models in 3D garment simulation, a method for parameterized human body modeling was proposed. Feature parameters are determined according to anthropometrical approach and theory. Combined axial deformation technique in computer graphics, modeling system that is realized in this study provides very intuitive input interface. Additionally, this method also has the advantage of simple operation and quick modeling.
    (2) In order to support character animation for the dynamic show of 3D garment, the technique for skin mesh deformation driven by skeleton was well
引文
[1] David Baraff. Physical based modeling: Rigid body simulation. SIGGRAPH 2001 COURSE NOTES, Pixar Animation Studios, 2001.
    [2] 路永良,李汝勤,胡金莲.虚拟服装的发展历史和现状.纺织学报 2005,26(1):132-134.
    [3] P. Besl. Triangles as a primary representation. In Object Representation in Computer Vision (Hebert, M., Ponce, J., Boult, T. and Gross, A. eds.), Lecture Notes in Computer Science1994, Springer, 1994, pp. 191-206.
    [4] Jianhua Shen, Daniel Thalmarm. Interactive shape design using metaballs and splines. Implicit Surfaces '95, April 1995, pp. 187-196.
    [5] Christian Babski, Daniel Thalmann. A seamless shape for hanim compliant bodies. VRML 99: Fourth Symposium on the Virtual Reality Modeling Language, Germany, 1999, pp. 21-28.
    [6] Mathieu Desbrun, Marie-Paule Gascuel. Animating soft substances with implicit surfaces. Proceedings of SIGGRAPH 95, 1995, pp. 287-290.
    [7] N. Badler, S. Smoliar. Digital representations of human movement. ACM Computer Surveys, 1979, 11(1): 19-38.
    [8] Specification for a Standard Humanoid, Version 1.1. http://h-anim.org/Specifications/H-Anim1.1/
    [9] Magnenat Thalmann N, Thalmann D., The direction of synthetic actors in the film Rendez-vous a Montr'eal. IEEE Computer Graphics and Application, 1987, 7(12): 9-19.
    [10] Komatsu K. Human skin model capable of natural shape variation. The Visual Computer, 1988, 4(3): 265-271.
    [11] Forsey DR. A surface model for skeleton-based character animation. In: The 2nd Eurographics Workshop on Animation and Simulation, Vienna, Austria, Springer, Wien, 1991, pp. 55-73.
    [12] Yoshimoto S. Ballerinas generated by a personal computer. J Visualization Computer Animation, 1992, pp. 85-90.
    [13] Chadwick, J.E., Haumann, D.R., Parent, R.E. Layered construction for deformable animated character, Computer Graphics, 1989, 23(3): 243-252.
    [14] Gascuel M. P., Verroust A., Puech C. A modeling system for complex deformable bodies suited to animation and collision processing. Journal of Visualization Computer Animation 1991, 2: 82-91.
    [15] R. Turner, D. Thalmann, The Elastic Surface Layer Model for Animated Character Construction, Proc. Computer Graphics International '93, Lausanne, Switzerland, Springer-Verlag, Tokyo, 1993, pp. 399-412.
    [16] Turner R. LEMAN: a system for constructing and animating layered elastic characters. In: Eamshaw RA, Vince JA (eds) Computer graphics: developments in virtual environments. Academic Press, London, 1995, pp. 185-203.
    [17] D. Thalmann, J. Shen, E. Chauvineau. Fast Realistic Human Body Deformations for Animation and VR Applications, Computer Graphics International'96, Pohang, Korea, June, 1996,pp. 166-174.
    [18] Shen J, Human body modeling and deformations. PhD Thesis. Computer Graphics Lab, 1996.
    [19] Scheepers F, Parent RE, Carlson WE, May SF. Anatomy-based modeling of the human musculature. In: Proceedings ACM SIGGRAPH '97, Addison-Wesley, 1997, pp. 163-172.
    [20] Wilhelms J, Van Gelder A., Anatomically based modeling. In: Proceedings ACM SIGGRAPH '97, Addison-Wesley, 1997, pp. 173-180.
    [21] Dekker L., Douros I., Buxton B. F., Treleaven P., Building Symbolic Information for 3D Human Body Modeling from Range Data, Proc. of the Second International Conference on 3-D Digital Imaging and Modeling, IEEE Computer Society, 1999, pp.388-397.
    [22] Dekker L. 3D Human Body Modeling from Range Data, PhD thesis, University College London, 2000.
    [23] Burnsides D., Boehmer M., Robinette K. Landmark Detection and Identification in the CAESAR Project, Proc. 3DIM (3rd International Conference on 3D Digital Image and Modeling), 2001, pp.393-398.
    [24] Ju X., Werghi N., Siebert J. P. Automatic segmentation of 3D human body scans, Proc. IASTED Int. Conf. on Computer Graphics and Imaging 2000, ACTA Press, 2000, pp.239-244.
    [25] Ju X., Siebert J. P. Conforming generic animatable models to 3D scanned data, Proc.6th Numerisation 3D-Scanning 2001 Congress, France, 2001, pp.487-488.
    [26] Fabio Remondino. 3D Reconstruction of Static Human Body with a Digital Camera Proceedings of SPIE Volume 5013 Videometrics VII, Sabry F. El-Hakim, Armin Gruen, James S. Walton, eds., 2003, pp. 38-45.
    [27] I.A. Kakadiaris, D. Metaxas, 3D Human body model acquisition from multiple views, in: Proceedings of the Fifth International Conference on Computer Vision, Boston, MA, 1995, pp. 618-623.
    [28] Hilton A., Beresford D., Gentils T., Smith R. and Sun W. Virtual People: Capturing human models to populate virtual worlds, Proc. Computer Animation, IEEE Press, 1999, pp. 174-185.
    [29] Lee W., Gu J., Magnenat Thalmann N. Generating animatable 3D virtual humans from photographs, Computer Graphics Forum, Proc. Eurographics '2000, Interlaken, Switzerland, 2000, 19(3): 1-10.
    [30] P. Fua, A. Gruen, R. Pl¨ankers, N. D'Apuzzo, D. Thalmann. Human Body Modeling and Motion Analysis from Video Sequences. International Archives of Photogrammetry and Remote Sensing, 1998, 32(5): 866-873.
    [31] Plaenkers R., Fua P. and D'Apuzzo N. Automated Body Modeling from Video Sequence, mPeople Workshop Proceedings, IEEE-ICCV99, Greece, 1999, pp. 45-52.
    [32] Sloan P. P., Rose C, Cohen M. Shape by Example, Symposium on Interactive 3D Graphics, March 2001, pp.135-143.
    [33] Allen B, Curless B, Popovic Z. The space of human body shapes: reconstruction and parameterization from range scans. ACM Transactions on Graphics, 2003, 22(3): 587-594.
    [34] H. Seo, N. Magnenat Thalmann. An Example-Based Approach to Human Body Manipulation. Graphical Models, Academic Press, 2004, 66(1): 1-23.
    [35] H. Seo, N. Magnenat Thalmann. An Automatic Modeling of Human Bodies from Sizing Parameters. ACM S1GGRAPH Symposium on Interactive 3D Graphics Proc., 2003, pp. 19-26.
    [36] Seo H, Cordier F, Magnenat Thalmann N. Synthesizing animatable body models with parameterized shape modifications. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, San Diego, CA, USA, 2003, pp. 120-125.
    [37] Magnenat Thalmann N, Thalmann D. The direction of synthetic actors in the film Rendez-vous a Montr'eal. IEEE Computer Graphics and Application, 1987, 7(12): 9-19.
    [38] Sloan, P., Rose, C., Cohen, M. Shape and animation by example. Microsoft Research Tech. Report, 2000, MSR-TR-2000-79.
    [39] Lewis, J.P., Cordner, M., Fong, N. Pose space deformation: A unified approach to shape interpolation and skeleton-driven animation. Proc. SIGGRAPH 2000, 2000, pp. 165-71.
    [40] Wang, X. C., Phillips, C. Multi-weight enveloping: least-squares approximation techniques for skin animation. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM Press, 2002, pp. 129-138.
    [41] B. Allen, B. Curless, Z. Popovic. Articulated body deformation from range scan data, Proceedings SIGGRAPH 2002, published by ACM SIGGRAPH Addison Wesley, 2002, pp. 612-619.
    [42] Peter Sand, Leonard McMillan, Jovan Popovic. Continuous Capture of Skin Deformation. ACM Transactions on Graphics(TOG) 2003, 22(3): 578-586.
    [43] Weber, J., Michael Gleicher, Run-Time Skin Deformation, Proceedings of Game Developers Conference, 2000.
    [44] 叶大海,庄越挺,刘丰,骨粒串主导的自由曲面变形算法,计算机辅助设计与图形学学报报,2004,16(12):1719-1723.
    [45] A. Mohr, M. Gleicher. Building Efficient, Accurate Character Skins from Examples, ACM Transactions on Graphics (TOG), published by ACM SIGGRAPH Addison Wesley, 2003, 22(3): 165-172,
    [46] Chadwick, J., Haumann, D., Parent, R. Layered construction for deformable animated characters. In Proceedings of SIGGRAPH 1989, ACM Press/ACM SIGGRAPH, Computer Graphics Proceedings, Annual Conference Series, ACM, 1989, pp. 243-252.
    [47] Singh, K., Kokkevis, E. Skinning characters using surface oriented free-form deformations. In Graphics Interface, 2000, pp.35-42.
    [48] Magnenat Thalmann, N., Cordier, F., Seo, H., Papagianakis, G. Modeling of bodies and clothes for virtual environments. In CW '04: Proceedings of the 2004 International Conference on Cyberworlds (CW'04), IEEE Computer Society, 2004, pp. 201-208.
    [49] Kavan, L., and Zara, J. Real Time Skin Deformation with Bones Blending In: WSCG'2003 Short papers. Pilsen: University of West Bohemia, 2003, pp. 69-74.
    [50] Kavan, L., and Zara, J. Spherical Blend Skinning: A Real-time Deformation of Articulated Models, In 2005 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, ACM Press, 2005, pp. 9-16.
    [51] J. Weil, The synthesis of Cloth Objects, Computer Graphics, SIGGRAPH 86 Conference Proceedings, Annual Conference Series, ACM SIGGRAPH, published by Addison Wesley, 1986, pp. 49-54.
    [52] D. Terzopoulos, J. Platt, A. H. Barr, K. Fleischer. Elastically Deformable models. Computer Graphics (Proc. SIGGRAPH '87), 1987, pp. 205-214.
    [53] D. Terzopoulos, K. Fleischer. Deformable models. The Visual Computer, 1988, 6(4): 306-331.
    [54] D. Terzopoulos, K. Fleischer. Modeling inelastic deformation: viscoelasticity, plasticity, fracture. Computer Graphics (Proc. SIGGRAPH), 1988, pp. 269-278.
    [55] Jeffrey W. Eischen, Shigan Deng, Timothy G. Clapp. Finite-Element Modeling and Control of Flexible Fabric Parts. IEEE Computer Graphics and Applications, 1996, 16(5): 71-80.
    [56] P. Volino, M. Courchesne, N. Magnenat-Thalmann. Versatile and Efficient Techniques for Simulating Cloth and Other Deformable Objects. Computer Graphics (Proc. SIGGRAPH), 1995, pp. 137-144.
    [57] Xavier Provot. Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior. In Graphics Interface '95, 1995, pp. 147-154.
    [58] P. Volino, N. Magnenat Thalmann. Developing Simulation Techniques for an Interactive Clothing System. In Proc. of the 1997 International Conf. on Virtual Systems and MultiMedia, 1997, pp. 109-118.
    [59] Kamabata S. The standardization and analysis of hand evaluation, The Textile Machinery Society of Japan, Osaka, 1980.
    [60] David E. Breen, Donald H. House, Michael J. Wozny. Predicting the drape of woven cloth using interacting particles, Proceedings of SIGGRAPH '94, 1994, pp. 365-372.
    [61] B. Eberhardt, A. Weber, W. StraBer. A Fast, Flexible, Particle-System Model for Cloth Draping. IEEE Computer Graphics and Applications, 1996. 16(5): 52-60.
    [62] B. Eberhardt, A. Weber. Modelling the Draping Behaviour of Woven Cloth. Maple Tech. Journal, 1997. 4(2): 25-31.
    [63] David Baraff, Andrew Witkin. Large Steps in Cloth Simulation. In Michael Cohen, editor, SIGGRAPH 98 Conference Proceedings, Annual Conference Series, 1998, pp. 43-54.
    [64] Cordier F, Magnenat-Thalmann N. Real-time animation of dressed virtual humans. Computer Graphics Forum, Blackwell Publishers, 2002, 21(3): 327-336.
    [65] Y. M. Kang, J. H. Choi, H. G. Cho, D. H. Lee. An efficient animation of wrinkled cloth with approximate implicit integration, The Visual Computer Journal, 2001, 17(3): 147-157.
    [66] Y. M. Kang, H. G. Cho. Bilayered Approximate Integration for Rapid and Plausible Animation of Virtual Cloth with Realistic Wrinkles, proceedings of Computer Animation '02, 2002, pp. 203-211.
    [67] Pascal Volino, Nadia Magnenat Thalmann. Fast Geometric Wrinkles on Animated Surfaces. In WSCG'99, Plzen, Feb 1999.
    [68] S. Hadap, E. Bangarter, P. Volino, N. Magnenat Thalmann. Animating Wrinkles on Clothes, IEEE Visualization '99. San Francisco, USA, published by IEEE Press, 1999, pp. 175-182.
    [69] M. Oshita, A. Makinouchi. Real-time. Cloth Simulation with Sparse Particles and Curved Faces, Computer Animation, published by IEEE Press, 2001, pp. 220-227.
    [70] A. Fuhrmann, C. Gross, V. Luckas. Interactive Animation of Cloth Including Self-Collision Detection, Journal of WSCG, 2003,11 (1): 141-148.
    [71] Vassilev T, Spanlang B. Fast cloth animation on walking avatars. Eurographics, Blackwell Publishers, 2001,20(3): 137-150.
    [72] M. Desbrun, P. Schr(o|¨)der, A. H. Barr. Interactive Animation of Structured Deformable Objects, In Graphics Interface'99 proceedings, published by Morgan Kaufmann, 1999, pp. 1-8.
    [73] Y. M. Kang, J. H. Choi, H. G. Cho, C. J. Park. Fast and Stable Animation of Cloth with an Approximated Implicit Method, Chan-Jong Park, Proceedings of Computer Graphics International 2000, Geneva, Switzerland, 2000, pp. 247-255.
    [74] Y. M. Kang, J. H. Choi, H. G. Cho, D. H. Lee, C. J. Park. Real-time Animation Technique for Flexible and Thin Objects, WSCG proceedings, 2000, pp. 322-329.
    [75] Y. M. Kang, J. H. Choi, H. G. Cho. Complex deformable object in virtual reality, Proc. of Virtual Reality Software and Technology, 2002, pp. 49-56.
    [76] Y. M. Kang. Real-time cloth animation with physical plausibility and numerical stability. PhD thesis, Pusan National University, 2003.
    [77] Volino P, Magnenat Thalmann N. Implementing fast cloth simulation with collision response, Proceedings of CGI'00,2000, pp. 257-268.
    [78] S. Oh, J. Ahn, K. Wohn. Low damped cloth simulation. The Visual Computer, 2006, 22(2): 70-79.
    [79] U. M. Ascher, S. J. Ruuth, B. T. Wetton. Implicit-explicit methods for time dependent pde's, SIAM Journal on Numerical Analysis, published by Society for Industrial and Applied Mathematics, 1995,32 (3): 797-823.
    [80] U. M. Ascher, S. J. Ruuth, R. J. Spiteri. Implicit-explicit rungekutta methods for time-dependent partial differential equations, Applied Numerical Mathematics, published by Elsevier Science, 1997, pp. 151-167.
    [81] B. Eberhardt, O. Etzmuss, M. Hauth. Implicit-Explicit Schemes for Fast Animation with Particles Systems, Proceedings of the Eurographics workshop on Computer Animation and Simulation, published by Springer-Verlag, 2000, pp. 137-151,
    [82] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, Laks Raghupathi, A. Fuhrmann, Marie-Paule Cani, F.Faure, N. Magnetat Thalmann, W. Strasser, P. Volino. Collision Detection for Deformable Objects, Computer Graphics Forum, 2005,24(1): 61-81.
    [83] Volino P., Magnenat Thalmann N. Efficient Self-Collision Detection on Smoothly Discretized Surface Animations using Geometrical Shape Regularity. Computer Graphics Forum, 1994, pp. 155-166.
    [84] Provot X. Collision and Self-Collision Handling in Cloth Model Dedicated to Design Garments. In Graphics Interface '97, Canadian Information Processing Society, Canadian Human-Computer Communications Society, 1997, pp. 177-189.
    [85] Volino P., Magnenat Thalmann N. Collision and Self-Collision Detection: Efficient and Robust Solutions for Highly Deformable Surfaces. In Comp. Animation and Simulation (1995), Springer Verlag, 1995, pp. 55-65.
    [86] Larsson T., Akenine M(o|¨)ller T. Collision detection for continuously deforming bodies. In Eurographics, 2001, pp. 325-333.short presentation.
    [87] Larsson T., Akenine M(o|¨)ller T. Efficient collision detection for models deformed by morphing. The Visual Computer, 2003,19(2): 164-174.
    [88] VAN DEN BERGEN G. Efficient collision detection of complex deformable models using AABB trees. Journal of Graphics Tools, 1997,4(2): 1-14.
    [89] Mezger J., Kimmerle S., Etzmuss O. Hierarchical Techniques in Collision Detection for Cloth Animation. Journal of WSCG, 2003, 11(2): 322-329.
    [90] Klein J., Zachmann G. Adb-trees: Controlling the error of time-critical collision detection. In 8th International Fall Workshop Vision, Modeling, and Visualization (VMV), University M(u|¨)nchen, Germany, 2003, pp. 37-45.
    [91] Lin M. C. Efficient Collision Detection for Animation and Robotics. PhD thesis, University of California, Berkeley, 1993.
    [92] Raghupathi L., Grisoni L., Faure F., Marchal D., Cani M.P., Chaillou C. An intestine surgery simulator: Real-time collision processing and visualization. IEEE Transactions on Visualization and Computer Graphics, 2004,10(6): 708-718.
    [93] S. F. Frisken, R. N. Perry, A. P. Rockwood, T. R, Jones. Adaptively sampled distance fields: A general representation of shape for computer graphics. SIGGRAPH 2000, Computer Graphics Proceeding. 2000, pp. 249-254.
    [94] Bridson R., Marino S., Fedkiw R. Simulation of clothing with folds and wrinkles. In Proc. ACM/Eurographics Symposium on Computer Animation. 2003, pp. 28-36.
    [95] A. Fuhrmann, G. Sobotka, C. Gross. Distance fileds for rapid collision detection in physically based modeling. In Proceedings of Graphics Conference. 2003, pp. 58-65.
    [96] Melax S. Dynamic plane shifting bsp traversal. In Proc. of Graphics Interface '00, 2000, pp. 213-220.
    [97] Turk G. Interactive collision detection for molecular graphics. Tech. Rep. TR90-014, University of North Carolina at Chapel Hill, 1990.
    [98] Ganovelli F., Dingliana J., O'sullivan C. Buckettree: Improving collision detection between deformable objects. In Proc. of Spring Conference on Computer Graphics SCCG '00, 2000, pp. 156-163.
    [99] Zhang D., Yuen M. Collision detection for clothed human animation. In Proceedings of Pacific Graphics '00, 2000, pp. 328-337.
    [100] Shinya M., Forgue M. Interference detection through rasterization. Journal of Visualization and Computer Animation 2, 1991, pp. 132-134.
    [101] Baciu G., Wong W. S.K., Sun H. RECODE: an image-based collision detection algorithm. The Journal of Visualization and Computer Animation, 1999, 181-192.
    [102] Myszkowski K., Okunev O., Kunii T. Fast collision detection between complex solids using rasterizing graphics hardware. The Visual Computer, 1995, 11(9): 497-512.
    [103] Govindaraju N., Redon S., Lin M., Manocha D. Cullide: Interactive collision detection between complex models in large environments using graphics hardware. In Proc. of ACM Graphics Hardware, 2003, pp. 25-32.
    [104] Heidelberger B., Teschner M., Gross M. Real-time volumetric intersections of deforming objects. In Proc. of Vision, Modeling, Visualization VMV'03,2003, pp. 461-468.
    [105] Heidelberger B., Teschner M., Gross M. Detection of collisions and self-collisions using image-space techniques. In Proc. Of WSCG'04, 2004, pp. 4-10.
    [106] Barr, A. H. Global and local deformation of solid primitives, Computer Graphics (SIGGRAPH'84), 1984, 18(3): 21-30.
    [107] 鲍虎军,金小刚,彭群生.计算机动画的算法与基础.杭州:浙江大学出版社,2000.
    [108] Sederberg, T W., Parry, S. R. Free-form deformation of solid geometric models, Computer Graphics (SIGGRAPH'86), 1986, 20(4): 151-160.
    [109] Coquillart, S. Extended free-form deformation: a sculpturing tool for 3D geometric modeling. Computer Graphics (SIGGRAPH'90), 1990, 24(4): 187-193.
    [110] MacCracken R, Joy K I. Free-form deformations with lattices of arbitrary topology, Computer Graphics, 1996, 30(3): 181-188.
    [111] Hsu W M, Hughes J F, Kaufman H. Direct manipulation of free-form deformation. Computer Graphics, 1992, 26(2): 177-184
    [112] Kalra, P., Mangili, A, Thanlmann, N. M., Thalmann, D. Simulation of facial muscle actions based on rational free form deformation, Computer Graphics Forum, 1992, 11(3): 59-69.
    [113] Lamousin, H. J., Waggesnspack, W. N. NURBS-based free-form deformation, IEEE Computer Graphicsand Its Applications, 1994, 14(6): 59-65.
    [114] G. Sela, G. Elber. Discontinuous Free Form Deformations, The 12th Pacific Conference on Graphics and Applications, Seoul, Korea, 2004, pp. 227-236.
    [115] Lazarus, F, Coquillart, S. Jancene, P. Axial deformation: an intuitive deformation technique, Computer Aided Design, 1994, 26(8): 607-613
    [116] Chang, Y. K., Rockwood, A, P. A generalized de Casteljau approach to 3D free-form deformation. Computer Graphics (SIGGRAPH'94), 1994, 28(3): 257-260.
    [117] Feng, J. Q., Ma, L. Z., Peng, Q. S. A new free-form deformation through the control of parametric surfaces, Computer and Graphics, 1996, 20(4): 531-539.
    [118] Borrel, P., Rappoport, A. Simple constrained deformation for geometric modeling and interactive design. ACM Transaction on Graphics, 1994, 13(2): 137-155.
    [119] Jin, X. G., Li, Y. F., Peng, Q. S. General constrained deformations based on generalized meatballs. In: Proceedings of the Conference on Computer Graphics and Applications, Singapore, 1998, pp. 115-124.
    [120] Singh K, Fiume E. Wires: A geometric deformation technique. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Orlando, 1998, pp. 405-414
    [121] Hohenstein, Uniform Body Representation, Workpackage Input, E-Tailor project, IST-1999-10549
    [122] Coquillart S. Computing offsets of B-Spline curves. Computer Aided Design. 1987, 16(6): 305-309.
    [123] Klok F. Two moving coordinate frames for sweeping along a 3D trajectory. Computer Aided Geometric Design, 1986, 15(3): 217-229.
    [124] Peng Qunsheng, Jin Xiaogang, Feng Jieqing. Arc-length based axial deformation and length preserving deformation. In: Proc. Computer Animation'97, Geneva: IEEE Computer Society, 1997, pp. 87-93.
    [125] Andrew J., Hanson, Hui Ma. Parallel Transport Approach to Curve Framing, Department of Computer Science, Indiana University, 1995, Technical Report TR425.
    [126] Hughes, John F., Tomas m(o|¨)ller. Building an Orthonormal Basis from a Unit Vector. Journal of graphics tools, 1999,4(4): 33-35.
    [127] Lee, A., Moreton, H., Hoppe, H., Displaced subdivision surfaces. In Proceedings of ACM SIGGRAPH 2000, 2000, pp. 85-94.
    [128] Catmull, E., and Clark, J. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design, 1978,10(9): 350-355.
    [129] M. Alexa. Linear Combination of Transformations, SIGGRAPH 2002 Conference Proceedings, Annual Conference Series, published by ACM SIGGRAPH Addison Wesley, 2002, 21(3): 380-387.
    [130] Shoemake, K. Animating rotation with quaternion curves. In Proceedings of the 12th annual conference on Computer graphics and interactive techniques, ACM Press, 1985, pp.245-254.
    
    [131] 金小刚,彭群生. 四元数及其在计算机动画中的应用. 计算机辅助设计与图形学学报, 1994, 6(3): 174-180.
    [132] Deering, M. Geometry compression. In Proceedings of ACMSIGGRAPH 95, 1995, pp. 13-20.
    [133] Grit Th(u|¨)rmer, Charles A. W(u|¨)thrich. Computing vertex normals from polygonal facets, Journal of Graphics Tools, 1998, 3(1): 43-46.
    [134] A. Vlachos, J. Peters, C. Boyd, J. Mitchell. Curved PN triangles. Symposium on Interactive 3D Graphics 2001, 2001, pp. 159-166.
    [135] P. Melis. Real-Time Cloth Simulation in a 3D Virtual Environment, http://www.home.cs.utwente.nl/~melis/clothsim.pdf, August 2002.
    [136] M. Lin, S. Gottschalk. Collision detection between geometric models: A survey. Proceeding of IMA Conference on Mathematics of Surfaces, 1998, pp.1008-1014.
    [137] W. Schroeder, J. Zarge, W. Lorenson. Decimation of Triangle Meshes, Computer Graphics (Proc. SIGGRAPH 92), vol. 26, ACM Press, New York, 1992, pp. 65-70.
    [138] W. Schroeder. A Topology-Modifying Progressive Decimation Algorithm, Proc. IEEE Visualization 97, IEEE CS Press, Los Alamitos, Calif., 1997, pp. 205-212.
    [139] J. Rossignac, P. Borrel. Multi-Resolution 3D Approximations for Rendering Complex Scenes, Geometric Modeling in Computer Graphics, Springer-Verlag, Berlin, 1993, pp. 455-465.
    [140] K-L. Low, T.S. Tan. Model Simplification Using Vertex Clustering, Proc. 1997 Symp. Interactive 3D Graphics, ACM Press, New York, 1997, pp. 75-82.
    [141] P. Lindstrom. Out-of-Core Sim plification of Larg e Polygonal Models, Computer Graphics (Proc. SIGGRAPH 2000), vol. 34, ACM Press, New York, 2000, pp. 259-262.
    [142] M. Eck et al. Multiresolution Analysis of Arbitrary Meshes, Computer Graphics (Proc. Siggraph 95), vol. 29, ACM Press, New York, 1995, pp. 173-182.
    [143] T. He et al. Voxel-Based Object Simplification, Proc. Visualization 95, IEEE CS Press, Los Alamitos, Calif., 1995, pp. 296-303.
    [144] H. Hoppe. Progressive Meshes, Computer Graphics (Proc. SIGGRAPH 96), vol. 30, ACM Press, New York, 1996, pp. 99-108.
    [145] H. Hoppe. View-Dependent Refinement of Progressive Meshes, Computer Graphics (Proc. SIGGRAPH 97), ACM Press, New York, 1997, pp. 189-198.
    [146] M. Garland, P. Heckbert. Simplification Using Quadric Error Metrics, Computer Graphics (Proc. Siggraph 97), vol. 31, ACM Press, New York, 1997, pp. 209-216.
    [147] Lindstrom, P., Turk, G. Fast and memory efficient polygonal simplification. In: Proc. of the IEEE Visulaization'98, 1998, pp. 279-286.
    [148] M. Garland, P. Heckbert. Simplifying Surfaces with Color and Texture using Quadric Error Metrics, Proc. IEEE Visualization 98, IEEE CS Press, Los Alamitos, Calif., 1998, pp. 263-270.
    [149] H. Hoppe. New Quadric Metric for Simplifying Meshes with Appearance Attributes, Proc. IEEE Visualization 99, IEEE CS Press, Los Alamitos, Calif., 1999, pp. 59-66.
    [150] J. Cohen, M. Olano, D. Manocha. Appearance Preserving Simplification, Computer Graphics (Proc. Siggraph 98), vol. 32, ACM Press, New York, 1998, pp. 115-122.
    [151] P. Lindstrom, G. Turk. Image-Driven Simplification, ACM Trans. Graphics. 2000, 19(3): 204-241.
    [152] Choi K, Ko H. Stable but responsive cloth. ACM Trans. On Graphics (Proc. of the SIGGRAPH), 2002, 21(3): 604-611.
    [153] O. Etzmuss, B. Eberhardt, M. Hauth, W. Strasser, Collision adaptive Panicle Systems, Proceedings of the 8th Pacific Graphics Conference, 2000, pp. 338-453.
    [154] Rudomin, I., Castillo, J. Real-Time Clothing: Geometry and Physics, In: Proc. of WSCG, 2002, pp. 45-48.
    [155] Oh SW, Kim HS, Wohn KY, Collision handling for interactive garment simulation. In: Proc. of VSMM. 2002, pp. 239-251.
    [156] Barber, C. B.; Dobkin, D. P.; Huhdanpaa, H. T. The Quickhull Algorithm for Convex Hulls. ACM Trans. Mathematical Software 22, 1996, pp. 469-483.
    [157] 周培德.计算几何——算法分析与设计,北京:清华大学出版社,2000.
    [158] Gottschalk S, Lin MC, Manocha D. OBBTree: a hierarchical structure for rapid interference detection. In: Proc. of the 23rd annual conference on Computer graphics and interactive techniques. 1996, pp. 171-180.
    [159] Kirkpatrick D. Optimal search in planar subdivisions. SIAM Journal on Computing, 1983, 12(1): 28-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700