抑制蛋白酪氨酸磷酸酶1B可促进人脂肪干细胞分化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的明确蛋白酪氨酸磷酸酶1B(PTP-1B)在人脂肪干细胞(hADSC)分化中的作用及机制。方法1、hADSC分离培养并鉴定。2、以不同浓度UA(PTP-1B特异性抑制剂)和原钒酸钠(SV,PTP广谱抑制剂)干预hADSC分化,检测油红染色、脂肪酸结合蛋白4(FABP4)mRNA。3、以UA孵育hADSC测定PTP-1B活性和胰岛素受体(IR)β亚基磷酸化水平;检测UA干预下诱导1-10天PTP-1B、PPARλ、C/EBPα和C/EBPβ表达。结果1、hADSC符合干细胞特性。2、UA组脂滴增多、增大,FABP4表达随UA剂量增大而升高,呈剂量依赖性;SV组未见脂滴。3、UA抑制PTP-1B活性,IRβ亚基磷酸化水平、PPARγ和C/EBPα表达增高,C/EBPβ表达高峰前移。结论1、原代培养hADSC成功。2、抑制PTP-1B增强了胰岛素信号转导,PPARγ和C/EBPα表达增高并提前激活C/EBPβ,促进hADSC分化。3、抑制PTP可抑制hADSC分化。
Objective: to study effects of protein tyrosine phosphatase 1B (PTP-1B) on differentiation of human adipose-derived stem cell(hADSC). Methods: 1. hADSC were detected according to stem cell’s characteristics. 2.hADSC differentiation was intervented by UA(PTP-1B inhibitor) and sodium orthovanadate(SV, PTP inhibitor). Oil red O staining and FABP4 mRNA were detected. 3. PTP-1B and IR were extracted from hADSC that incubated with UA to detect PTP-1B activity and lever of phosphorylated IRβsubunit. Expression of PTP-1B, PPARγ, C/EBPαand C/EBPβmRNA were detected from 1st to 10th day of induction. Results: 1.hADSC accorded with stem cell’s characteristics. 2. Lipid droplets in UA groups were more and bigger and FABP4 increased according as UA dose. No lipid droplet in SV group. 3. UA inhibited PTP-1B activity, made phosphorylated IRβsubunit, PPARγand C/EBPαexpress higher, and C/EBPβearlier. Conclusions: 1. hADSC were cultured successfully. 2. Inhibiton of PTP-1B enhances insulin signal and expression of PPARγand C/EBPα, and makes C/EBPβexpress earlier, which promote differentiation of hADSC. 3.Inhibition of PTP inhibits differentiation of hADSC.
引文
1. Green H, Kehinde O. Spontaneous heritable changes leading to increased adipose conversion in 3T3 cells. Cell, 1976, 7: 105-113.
    2. Green H, Meuth M. An established pre-adipose cell line and its differentiation in culture. Cell, 1974, 3: 127-133.
    3. Green H, Kehinde O. Formation of normally differentiated subcutaneous fat pads by an established preadipose cell line. J Cell Physiol, 1979, 101: 169-171.
    4. Vannier C, Gaillard D, Grimaldip P, et al. Adipose conversion of ob17 cells and hormone-related events. Int J Obesity, 1985, 1: 41-53.
    5. Entenmann G, Hauner H. Relationship between replication and differentiation in cultured human adipocyte precursor cells. Am J Physiol, 1996, 270(Cell Physiol. 39): C1011-C1016.
    6. Kuri HW, Marsch MM. DNA synthesis and cell division related to adipose differentiation of 3T3 cells. J Cell Physiol, 1983, 114: 39-44.
    7. Kopen GC, Prockop DJ, Phinney DG, et al. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA, 1999, 96: 10711-17016.
    8. Oswald J, Boxberger S, Jorgensen B, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells, 2004, 22: 377-384.
    9. Jiang Y, Vaessen B, Lenvik T, et al. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol, 2002, 30: 896-904.
    10. Sakai D, Mochida J, Yamamoto Y, et al. Transplantation of mesenchymal stem cells embedded in Atelocollagen gel to the intervertebral disc: a potential therapeutic model for disc degeneration. Biomaterials, 2003, 24: 3531-3541.
    11. Cesare C, Irene AG, Roberts G, et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal,blood and bone marrow. Blood, 2001, 98: 2396-2402.
    12. Halleux C, Sottile V, Gasser JA, et al. Multi-lineage potential of human mesenchymal stem cells following clonal expansion. J Musculoskelet Neuronal Interact, 2001, 2: 71-76.
    13. Gregoire F, Genart C, Hauser N, et al. Glucocorticoids induce a drastic inhibition of proliferation and stimulate differentiation of adult rat fat cell precursors. Exp Cell Res, 1991, 196: 270-278.
    14. Gregoire F, Todoroff G, Hauser N, et al. The stroma-vascular fraction of rat inguinal and epididymal adipose tissue and the adipoconversion of fat cell precursors in primary culture. Biol Cell, 1990, 69: 215-222.
    15. Gregoire FM, Johnson PR, Greenwood MR. Comparison of the adipoconversion of preadipocytes derived from lean and obese Zucker rats in serum-free cultures. Int J Obes Relat Metab Disorders, 1995, 19: 664-670.
    16. Ryden M, Dicker A, Harmelen V, et al. Mapping of early signaling events in tumor necrosis factor-alpha-mediated lipolysis in human fat cells. J Biol Chem, 2002, 277: 1085-1091.
    17. Mackay AM, Pittenger MF, Beck SC, et al. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science, 1999, 284: 143-147.
    18. Bosnakovski D, Mizuno M, Kim G, et al. Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Res, 2005, 319: 243-253.
    19. Yoshimura K, Shigeura T, Matsumoto D, et al. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol, 2006, 208: 64-76.
    20. Friedestein A. Stromal bone marrow cells and the hematopoietic microenvironment. Arkh Patol, 1982, 44: 3-11.
    21. Bruder SP, Jaiswal N, Haynesworth SE, et al. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem, 1997, 64: 278-294.
    22. Reyes S, Lund T, Lenvik T, et al. Purification and ex vivo expansion of postnatal human marrow. Blood, 2001, 98: 2615-2625.
    23. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002, 418: 41-49.
    24. Steck E, Bertram H, Abel R, et al. Induction of intervertebral disc-like cells from adult mesenchymal stem cells. Stem Cells, 2005, 23: 403-411.
    25. Pittenger MF, Mosca JD, McIntosh KR. et al. Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. Curr Top Microbiol Immunol, 2000, 251: 3-11.
    26. Pittenger M, Vanguri P, Simonetti D, et al. Adult mesenchymal stem cells: Potential for muscle and tendon regeneration and use in gene therapy. J Musculoskelet Neuronal Interact, 2002, 2: 309-320.
    27. Caterson EJ, Nesti LJ, Albert T, et al. Application of mesenchymal stem cells in the regeneration of musculoskeletal tissues. Med Gen Med, 2001, 5: E1.
    28. Caplan AI, Bruder SP. Mesenchymal Stem Cells: building blocks for molecular medicine in the 21st century. Trends Mol Med, 2001, 7: 259-264.
    29. Joannides A, Gaughwin P, Scott M, et al. Postnatal astrocytes promote neural induction from adult human bone marrow-derived stem cells. J Hematother Stem Cell Res, 2003, 12: 681-688.
    30. Shea CM, Edgar CM, Einhorn TA, et al. BMP treatment of C3H10T1/2 mesenchymal stem cells induces both chondrogenesis and osteogenesis. J Cell Biochem, 2003, 90: 1112-1127.
    1. Klama LD, Boss O, Peroni OD, et al. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol, 2000, 20(15): 5479-5489.
    2. Kendra KB, Mirela D, Bingzhong X, et al. Neuronal PTP1B regulates body weight, adiposity and leptin action. Nature medicine, 2006, 12(8): 917-924.
    3. Elchebly M, Payette P, Michaliszyn E, et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science, 1999, 283(5407): 1544-1548.
    4. Kaszubska W, Falls HD, Schaefer VG, et al. Protein tyrosine phosphatase 1B negatively regulates leptin signaling in a hypothalamic cell line. Mol Cell Endocrinol, 2002, 195(1-2): 109-118.
    5. Lund IK, Hansen JA, Andersen HS, et al. Mechanism of protein tyrosine phosphatase 1B-mediated inhibition of leptin signalling. J Mol Endocrinol, 2005, 34(2): 339-351.
    6. Worman HJ, Courvalin JC. The nuclear lamina and inherited disease. Trends Cell Biol, 2002, 12:591-598.
    7. Moitra J, Mason MM, Olive M, et al. Life without white fat: a transgenic mouse. Genes Dev, 1998, 12:3168-3181.
    8. Shimomura I, Hammer RE, Richardson JA, et al. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes, 1998, 12:3182-3194.
    9. Nadler S, Stoehr J, Schueler K, et al. The expression of adipogenic genes is decreased in obesity and diabetes mellitus. Proc Natl Acad Sci USA, 2000, 97: 11371-11376.
    10. Danforth E Jr. Failure of adipocyte differentiation causes type II diabetes mellitus? Nat Genet, 2000, 26:13.
    11. Miyasaka H, Li SS. The cDNA cloning, nucleotide sequence and expression of an intracellular protein tyrosine phosphatase from mouse testis. Biochem Biophys ResCommun, 1992, 185(3): 818-825.
    12. Frangioni JV, Beahm PH, Shifrin V, et al. The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. Cell, 1992, 68(3): 545-560.
    13. Forsell PA, Boie Y, Montalibet J, et al. Genomic characterization of the human and mouse protein tyrosine phosphatase-1B genes. Gene, 2000, 260(1-2): 145-153.
    14. Hirata AE, Alvarez-Rojas F, Carvalheira JB, et al. Modulation of IR/PTP1B interaction and downstream signaling in insulin sensitive tissues of MSG-rats. Life Sci, 2003, 73(11): 1369-1381.
    15. Goldstein BJ, Bittner-Kowalczyk A, White MF, et al. Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein. J Biol Chem, 2000, 275(6): 4283-4289.
    16. Kaszubska W, Falls HD, Schaefer VG, et al. Protein tyrosine phosphatase 1B negatively regulates leptin signaling in a hypothalamic cell line. Mol Cell Endocrinol, 2002, 195(1-2): 109-118.
    17. Van der Sar AM, de Fockert J, Betist M, et al. Pleiotropic effects of zebrafish protein-tyrosine phosphatase-1B on early embryonic development. Int J Dev Biol, 1999, 43(8): 785-794.
    18. Aoki N, Matsuda T. A cytosolic protein-tyrosine phosphatase PTP1B specifically dephosphorylates and deactivates prolactin-activated STAT5a and STAT5b. J Biol Chem, 2000,275(50): 39718-39726.
    19. Ezumi Y, Takayama H, Okuma M. Differential regulation of protein-tyrosine phosphatases by integrin alpha IIb beta 3 through cytoskeletal reorganization and tyrosine phosphorylation in human platelets. J Biol Chem, 1995, 270(20): 11927-11934.
    20. Ragab A, Bodin S, Viala C, et al. The tyrosine phosphatase 1B regulates linker for activation of T-cell phosphorylation and platelet aggregation upon FcgammaRIIa cross-linking. J Biol Chem, 2003, 278(42): 40923-40932.
    21. Barrett WC, DeGnore JP, Keng YF, et al. Role of superoxide radical anion insignal transduction mediated by reversible regulation of protein-tyrosine phosphatase
    1B. J Biol Chem, 1999, 274(49): 34543-34546.
    22. Tao J, Malbon CC, Wang HY. Galpha(i2) enhances insulin signaling via supression of protein- tyrosine phosphatase 1B. J Biol Chem, 2001, 276(43): 39705-39712.
    23. Ravichandran LV, Chen H, LI Y, et al. Phosphorylation of PTP 1B at Ser(50) by Akt impairs its ability to dephosphorylate the insulin receptor. Mol Endocrinol, 2001,15(10): 1768-1780.
    24. Kim JH, Cho H, Ryu SE, et al. Effects of metal ions on the activity of protein tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by Cu2+ ion. Arch Biochem Biophys, 2000, 382(1): 72-80.
    25. Dadke S, Kusari A, Kusari J. Phosphorylation and activation of protein tyrosine phosphatase (PTP) 1B by insulin receptor. Mol Cell Biochem, 2001, 221(1-2): 147-154.
    26. Kubota N, Terauchi Y,Miki H, et al. PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resisitance. Mol Cell, 1999, 4(4): 597-609.
    27. Shimizu S, Ugi S, Maegawa H, et al. Protein-tyrosine phosphatase 1B as new activator for hepatic lipogenesis via sterol regulatory element-binding protein-1 gene expression. J Biol Chem, 2003, 278(44): 43095-43101.
    28. Xie L, Lee SY, Andersen JN, et al. Cellular effects of small molecule PTP1B inhibitors on insulin signaling. Biochemistry, 2003, 42(44): 12792-12804.
    29. Gum RJ, Gaede LL, Heindel MA, et al. Antisense protein tyrosine phosphatase 1B reverses activation of p38 mitogen-activated protein kinase in liver of ob/ob mice. Mol Endocrinol, 2003, 17(6): 1131-1143.
    30. Zhang W, Hong D, Zhou Y, et al. Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B, enhancing insulin receptor phosphorylation and stimulating glucose uptake. Biochim Biophys Acta, 2006, 1760(10): 1505-1512.
    31. Liao K, Lane MD. The blockade of preadipocyte differentiation by protein-tyrosine phosphatase HA2 is reversed by vanadate. J Biol Chem, 1995,270(20): 12123-12132.
    32. Shenghao J, Bo Z, Zilong Q, et al. c-Crk, a substrate of the insulin-like growth factor-1 receptor tyrosine kinase, functions as an early signal mediator in the adipocyte differentiation process. J Biol Chem, 2000, 275(44): 34344–34352.
    33. Amri EZ, Dani C, Doglio A, et al. Coupling of growth arrest and expression of early markers during adipose conversion of preadipocyte cell lines. Biochem Biophys Res Commun, 1986, 137: 903-910.
    34. Kuri-Harcuch W, Marsch-Moreno M. DNA synthesis and cell division related to adipose differentiation of 3T3 cells. J Cell Physiol, 1983, 114: 39-44.
    35. Entenmann G., Hauner H. Relationship between replication and differentiation in cultured human adipocyte precursor cells. Am J Physiol, 1996, 270(Cell Physiol. 39): C1011-C1016.
    1. Sarmiento M, Puius YA, Vetter SW, et al. Structural basis of plasticity in protein tyrosine phosphatase 1B substrate recognition. Biochemistry, 2000, 39(28): 8171-8179.
    2. Zhang W, Hong D, Zhou Y, et al. Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B, enhancing insulin receptor phosphorylation and stimulating glucose uptake. Biochim Biophys Acta, 2006, 1760(10): 1505-1512.
    3. Shi K, Egawa K, Maegawa H, et al. Protein-tyrosine phosphatase 1B associates with insulin receptor and negatively regulates insulin signaling without receptor internalization. J Biochem (Tokyo), 2004, 136(1): 89-96.
    4. Issad T, Boute N, Boubekeur S, et al. Interaction of PTPB with the insulin receptor precursor during its biosynthesis in the endoplasmic reticulum. Biochimie, 2005, 87(1): 111-116.
    5. Boute N, Boubekeur S, Lacasa D, et al. Dynamics of the interaction between the insulin receptor and protein tyrosine-phosphatase 1B in living cells. EMBO Rep, 2003, 4(3): 313-319.
    6. Romsicki Y, Reece M, Gauthier JY, et al. Protein tyrosine phosphatase-1Bdephosphorylation of the insulin receptor occurs in a perinuclear endosome compartment in human embryonic kidney 293 cells. J Biol Chem, 2004, 279(13): 12868-12875.
    7. Klama LD, Boss O, Peroni OD, et al. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol, 2000, 20(15): 5479-5489.
    8. Haj FG, Zabolotny JM, Kim YB, et al. Liver-specific protein-tyrosine phosphatase 1B (PTP1B) re-expression alters glucose homeostasis of PTP1B-/-mice. J Biol Chem, 2005, 280(15): 15038-15046.
    9. HInsRata AE, Alvarez-Rojas F, CarvalheInsRa JB, et al. Modulation of InsR/PTP1B interaction and downstream signaling in insulin sensitive tissues of MSG-rats. Life Sci, 2003, 73(11): 1369-1381.
    10. 王淼,邹大进,侯炯,等. PTP-1B 在 2 型糖尿病初诊患者内脏脂肪组织的表达水平. 第二军医大学学报,2005,26(6):648-650.
    11. Clampit JE, Meuth JL, Smith HT, et al. Reduction of protein-tyrosine phosphatase-1B increases insulin signaling in FAO hepatoma cells. Biochem Biophys Res Commun, 2003, 300(2): 261-267.
    12. Gum RJ, Gaede LL, Koterski SL, et al. Reduction of protein tyrosine phosphatase 1B increases insulin-dependent signaling in ob/ob mice. Diabetes, 2003, 52(1): 21-28.
    13. Carol LV, Ernst UF, Young BK, et al. Overexpression of Protein-tyrosine phosphatase-1B in adipocytes inhibits insulin-stimulated phosphoinositide 3-kinase activity without altering glucose transport or Akt/protein kinase B activation. J Biol Chem, 2000, 275(24): 18318-18326.
    14. Juge-aubry CE, Gorla-bajszczak A, Pernin A, et al. Peroxisome proliferator-activated receptor mediates cross-talk with thyroid hormone receptor by competition for retinoid X receptor. Possible role of a leucine zipper-like heptad repeat. J Biol Chem, 1995, 270: 18117-18122.
    15. Schoonjans K, Staels B, Auwerx J. The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. Biochim Biophys Acta, 1996, 1302: 93-109.
    16. Tontonoz P, Hu E, Splegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell, 1994, 79: 1147-1156.
    17.Altiok S, Xu M, Splegelman BM. PPARgamma induces cell cycle withdrawal: inhibition of E2F/DP DNA-binding activity via down-regulation of PP2A. Genes Dev, 1997, 11: 1987-1998.
    18.Hu E, Tontonoz P, Splegelman BM. Trans-differentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha. Proc Natl Acad Sci USA, 1995, 92: 9856-9860.
    19. Tontonoz P, Hu E, Splegelman BM. Regulation of adipocyte gene expression and differentiation by peroxisome proliferator activated receptor gamma. Curr Opin Genet Dev, 1995, 5: 571-576.
    20. Kubota N, Terauchi Y,Miki H, et al. PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resisitance. Mol Cell, 1999, 4(4): 597-609.
    21. Brun RP, Kim JB, Hu E, et al. Adipocyte differentiation: a transcriptional regulatory cascade. Curr Opin Cell Biol, 1996, 8: 826-832.
    22. Lane MD, Lin FT, Macdougald OA, et al. Control of adipocyte differentiation by CCAAT/enhancer binding protein alpha (C/EBP alpha). Int J Obesity Related Metab Disorders, 1996, 20, Suppl.: S91-S96.
    23. Macdougald OA, Lane MD. Transcriptional regulation of gene expression during adipocyte differentiation. Annu Rev Biochem, 1995, 64: 345-373.
    24. Mandrup S, Lane MD. Regulating adipogenesis. J Biol Chem, 1997, 272: 5367-5370.
    25. Lin FT, Lane MD. Antisense CCAAT/enhancer-binding protein RNA suppresses coordinate gene expression and triglyceride accumulation during differentiation of 3T3-L1 preadipocytes. Genes Dev, 1992, 6: 533-544.
    26. Lin FT, Lane MD. CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3-L1 adipocyte differentiation program. Proc Natl Acad Sci USA, 1994, 91: 8757-8761.
    27. Wu Z, Xie Y, Bucher NL, et al. Conditional ectopic expression of C/EBP beta in NIH-3T3 cells induces PPAR gamma and stimulates adipogenesis. Genes Dev, 1995,9: 2350-2363.
    28. Wu Z, Bucher NL, Farmer SR. Induction of peroxisome proliferator-activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Mol Cell Biol, 1996, 16: 4128-4136.
    1. Bento JL, Palmer ND, Mychaleckyj JC, et al. Association of protein tyrosine phosphatase 1B gene polymorphisms with type 2 diabetes. Diabetes, 2004, 53(11): 3007-3712.
    2. Cheyssac C, Lecoeur C, Dechaume A, et al. Analysis of common PTPN1 gene variants in type 2 diabetes, obesity and associated phenotypes in the French population. BMC Med Genet, 2006, 7: 44.
    3. Palmer ND, Bento JL, Mychaleckyj JC, et al. Association of protein tyrosinephosphatase 1B gene polymorphisms with measures of glucose homeostasis in Hispanic Americans: the insulin resistance atherosclerosis study (InsRAS) family study. Diabetes, 2004, 53(11): 3013-3019.
    4. Santaniemi M, Ukkola O, Kesaniemi YA. Tyrosine phosphatase 1B and leptin receptor genes and theInsR interaction in type 2 diabetes. J Intern Med, 2004, 256(1): 48-55.
    5. Gouni-Berthold I, Giannakidou E, Muller-Wieland D, et al. The Pro387Leu variant of protein tyrosine phosphatase-1B is not associated with diabetes mellitus type 2 in a German population. J Intern Med, 2005, 257(3): 272-280.
    6. Shi K, Egawa K, Maegawa H, et al. Protein-tyrosine phosphatase 1B associates with insulin receptor and negatively regulates insulin signaling without receptor internalization. J Biochem (Tokyo), 2004, 136(1): 89-96.
    7. Issad T, Boute N, Boubekeur S, et al. Interaction of PTPB with the insulin receptor precursor during its biosynthesis in the endoplasmic reticulum. Biochimie, 2005, 87(1): 111-116.
    8. Boute N, Boubekeur S, Lacasa D, et al. Dynamics of the interaction between the insulin receptor and protein tyrosine-phosphatase 1B in living cells. EMBO Rep, 2003, 4(3): 313-319.
    9. Romsicki Y, Reece M, Gauthier JY, et al. Protein tyrosine phosphatase-1B dephosphorylation of the insulin receptor occurs in a perinuclear endosome compartment in human embryonic kidney 293 cells. J Biol Chem, 2004, 279(13): 12868-12875.
    10. Klama LD, Boss O, Peroni OD, et al. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol, 2000, 20(15): 5479-5489.
    11. Haj FG, Zabolotny JM, Kim YB, et al. Liver-specific protein-tyrosine phosphatase 1B (PTP1B) re-expression alters glucose homeostasis of PTP1B-/-mice. J Biol Chem, 2005, 280(15): 15038-15046.
    12. HInsRata AE, Alvarez-Rojas F, CarvalheInsRa JB, et al. Modulation of InsR/PTP1B interaction and downstream signaling in insulin sensitive tissues ofMSG-rats. Life Sci, 2003, 73(11): 1369-1381.
    13. 王淼,邹大进,侯炯,等. PTP-1B 在 2 型糖尿病初诊患者内脏脂肪组织的表达水平. 第二军医大学学报,2005,26(6):648-650.
    14. Clampit JE, Meuth JL, Smith HT, et al. Reduction of protein-tyrosine phosphatase-1B increases insulin signaling in FAO hepatoma cells. Biochem Biophys Res Commun, 2003, 300(2): 261-267.
    15. Gum RJ, Gaede LL, Koterski SL, et al. Reduction of protein tyrosine phosphatase
    1B increases insulin-dependent signaling in ob/ob mice. Diabetes, 2003, 52(1): 21-28.
    16. Waring JF, Ciurlionis R, Clampit JE, et al. PTP1B antisense-treated mice show regulation of genes involved in lipogenesis in liver and fat. Mol Cell Endocrinol, 2003, 203(1-2): 155-168.
    17. Gum RJ, Gaede LL, Heindel MA, et al. Antisense protein tyrosine phosphatase 1B reverses activation of p38 mitogen-activated protein kinase in liver of ob/ob mice. Mol Endocrinol, 2003, 17(6): 1131-1143.
    18. Kushner JA, Haj FG, Klaman LD, et al. Islet-sparing effects of protein tyrosine phosphatase -1b deficiency delays onset of diabetes in InsRS2 knockout mice. Diabetes, 2004, 53(1): 61-66.
    19. Lam NT, Lewis JT, Cheung AT, et al. Leptin increases hepatic insulin sensitivity and protein tyrosine phosphatase 1B expression. Mol Endocrinol, 2004, 18(6): 1333-1345.
    20. Lund IK, Hansen JA, Andersen HS, et al. Mechanism of protein tyrosine phosphatase 1B-mediated inhibition of leptin signalling. J Mol Endocrinol, 2005, 34(2): 339-351.
    21. Lam NT, Covey SD, Lewis JT, et al. Leptin resistance following over-expression of protein tyrosine phosphatase 1B in liver. J Mol Endocrinol, 2006, 36(1): 163-174.
    22. Shimizu S, Ugi S, Maegawa H, et al. Protein-tyrosine phosphatase 1B as new activator for hepatic lipogenesis via sterol regulatory element-binding protein-1 gene expression. J Biol Chem, 2003, 278(44): 43095-43101.
    23. Qiu W, Avramoglu RK, Dube N, et al. Hepatic PTP-1B expression regulates the assembly and secretion of apolipoprotein B-containing lipoproteins: evidence fromprotein tyrosine phosphatase-1B overexpression, knockout, and RNAi studies. Diabetes, 2004, 53(12): 3057-3066.
    24. Winter CL, Lange JS, Davis MG, et al. A nonspecific phosphotyrosine phosphatase inhibitor, bis(maltolato)oxovanadium(IV), improves glucose tolerance and prevents diabetes in Zucker diabetic fatty rats. Exp Biol Med (Maywood), 2005, 230(3): 207-216.
    25. Rao GS, Ramachandran MV, Bajaj JS. In silico structure-based design of a potent and selective small peptide inhibitor of protein tyrosine phosphatase 1B, a novel therapeutic target for obesity and type 2 diabetes mellitus: a computer modeling approach. J Biomol Struct Dyn, 2006, 23(4): 377-384.
    26. Yang C, Cross K, Myatt GJ, et al. Building predictive models for protein tyrosine phosphatase 1B inhibitors based on discriminating structural features by reassembling medicinal chemistry building blocks. J Med Chem, 2004, 47(24): 5984-5994.
    27. Montalibet J, Kennedy BP. Using yeast to screen for inhibitors of protein tyrosine phosphatase 1B. Biochem Pharmacol, 2004, 68(9): 1807-1814.
    28. Xie L, Lee SY, Andersen JN, et al. Cellular effects of small molecule PTP1B inhibitors on insulin signaling. Biochemistry, 2003, 42(44): 12792-12804.
    29. Erbe DV, Wang S, Zhang YL, et al. Ertiprotafib improves glycemic control and lowers lipids via multiple mechanisms. Mol Pharmacol, 2005, 67(1): 69-77.
    30. Seale AP, de Jesus LA, Kim SY, et al. Development of an automated protein-tyrosine phosphatase 1B inhibition assay and the screening of putative insulin-enhancing vanadium(IV) and zinc(II) complexes. Biotechnol Lett, 2005, 27(4): 221-225.
    31. Geary RS, Bradley JD, Watanabe T, et al. Lack of pharmacokinetic interaction for ISIS 113715, a 2'-0-methoxyethyl modified antisense oligonucleotide targeting protein tyrosine phosphatase 1B messenger RNA, with oral antidiabetic compounds metformin, glipizide or rosiglitazone. Clin Pharmacokinet, 2006, 45(8): 789-801.
    32. Xu J, Li L, Qian Z, et al. Reduction of PTP1B by RNAi upregulates the activity of insulin controlled fatty acid synthase promoter. Biochem Biophys Res Commun, 2005, 329(2): 538-543.
    33. Wu Y, Ou-Yang JP, Wu K, et al. Hypoglycemic effect of Astragalus polysaccharide and its effect on PTP1B. Acta Pharmacol Sin, 2005, 26(3): 345-352.
    1. Sarmiento M, Puius YA, Vetter SW, et al. Structural basis of plasticity in protein tyrosine phosphatase 1B substrate recognition. Biochemistry, 2000, 39(28): 8171-8179.
    2. Roller PP, Wu L, Zhang ZY, et al. Potent inhibition of protein-tyrosine phosphatase-1B using the phosphotyrosyl mimetic fluoro-O-malonyl tyrosine (FOMT). Bioorg Med Chem Lett, 1998, 8(16): 2149-2150.
    3. Groves MR, Yao ZJ, Roller PP, et al. Structural basis for inhibition of the protein tyrosine phosphatase 1B by phosphotyrosine peptide mimetics. Biochemistry, 1998, 37(51): 17773-17783.
    4. Murthy VS, Kulkarni VM. Molecular modeling of protein tyrosine phosphatase 1B (PTP 1B) inhibitors. Bioorg Med Chem, 2002, 10(4): 897-906.
    5. Glover NR, Tracey AS. Structure, modelling, and molecular dynamics studies of the inhibition of protein tyrosine phosphatase 1B by sulfotyrosine peptides. Biochem Cell Biol, 1999, 77(5): 469-486.
    6. Xin Z, Oost TK, Abad-Zapatero C et al. Potent, selective inhibitors of protein tyrosine phosphatase 1B. Bioorg Med Chem Lett, 2003, 13(11): 1887-1890.
    7. Asante-Appiah E, Patel S, Dufresne C, et al. The structure of PTP-1B in complexwith a peptide inhibitor reveals an alternative binding mode for bisphosphonates. Biochemistry, 2002, 41(29): 9043-9051.
    8. Jia Z, Ye Q, Dinaut AN, et al. Structure of protein tyrosine phosphatase 1B in complex with inhibitors bearing two phosphotyrosine mimetics. J Med Chem, 2001, 44(26): 4584-4594.
    9. Iversen LF, Andersen HS, Moller KB, et al. Steric hindrance as a basis for structure-based design of selective inhibitors of protein-tyrosine phosphatases. Biochemistry, 2001, 40(49): 14812-14820.
    10. Scapin G, Patel SB, Becker JW, et al. The structural basis for the selectivity of benzotriazole inhibitors of PTP1B. Biochemistry, 2003, 42(39): 11451-11459.
    11. Guo XL, Shen K, Wang F, et al. Probing the molecular basis for potent and selective protein-tyrosine phosphatase 1B inhibition. J Biol Chem, 2002, 277(43): 41014-41022. Epub 2002 Aug 21.
    12. Wiesmann C, Barr KJ, Kung J, et al. Allosteric inhibition of protein tyrosine phosphatase 1B. Nat Struct Mol Biol, 2004, 11(8): 730-737. Epub 2004 Jul 18.
    13. Xie L, Lee SY, Andersen JN, et al. Cellular effects of small molecule PTP1B inhibitors on insulin signaling. Biochemistry, 2003, 42(44): 12792-12804.
    14. Huyer G, Liu S, Kelly J, et al. Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J Biol Chem, 1997, 272(2): 843-851.
    15. Shao J, Catalano PM, Yamashita H, et al. Vanadate enhances but does not normalize glucose transport and insulin receptor phosphorylation in skeletal muscle from obese women with gestational diabetes mellitus. Am J Obstet Gynecol, 2000, 183(5): 1263-1270.
    16. Eby-Wilkens E, Maier M, Evdokimov A, et al. Mechanism of insulin sensitization by BMOV (bis maltolato oxo vanadium). unliganded J-Inorg-Biochem, 2003, 96(2-3): 321-330.
    17. Mohammad A, Wang J, McNeill JH. Bis(maltolato)oxovanadium(IV) inhibits the activity of PTP1B in Zucker rat skeletal muscle in vivo. Mol Cell Biochem, 2002, 229(1-2): 125-128.
    18. Desmarais S, Friesen RW, Zamboni R, et al. [Difluro(phosphono)methyl]phenylalanine-containing peptide inhibitors of protein tyrosine phosphatases. Biochem J, 1999, 337 ( Pt 2): 219-223.
    19. Taylor SD, Kotoris CC, Dinaut AN, et al. Potent non-peptidyl inhibitors of protein tyrosine phosphatase 1B. Bioorg Med Chem, 1998, 6(9): 1457-1468.
    20. Burke TR Jr, Ye B, Yan X, et al. Small molecule interactions with protein-tyrosine phosphatase PTP1B and their use in inhibitor design. Biochemistry, 1996, 35(50): 15989-15996.
    21. Yao ZJ, Ye B, Wu XW, et al. Structure-based design and synthesis of small molecule protein-tyrosine phosphatase 1B inhibitors. Bioorg Med Chem, 1998, 6(10): 1799-1810.
    22. Andersen HS, Iversen LF, Jeppesen CB, et al. 2-(oxalylamino)-benzoic acid is a general, competitive inhibitor of protein-tyrosine phosphatases. J Biol Chem, 2000, 275(10): 7101-7108.
    23. Iversen LF, Andersen HS, Branner S, et al. Structure-based design of a low molecular weight, nonphosphorus, nonpeptide, and highly selective inhibitor of protein-tyrosine phosphatase 1B. J Biol Chem, 2000, 275(14): 10300-10307.
    24. Andersen HS, Olsen OH, Iversen LF, et al. Discovery and SAR of a novel selective and orally bioavailable nonpeptide classical competitive inhibitor class of protein-tyrosine phosphatase 1B. J Med Chem, 2002, 45(20): 4443-4459.
    25. Liu G, Szczepankiewicz BG, Pei Z, et al. Discovery and structure-activity relationship of oxalylarylaminobenzoic acids as inhibitors of protein tyrosine phosphatase 1B. J Med Chem, 2003, 46(11): 2093-2103.
    26. Ham SW, Park J, Lee SJ, et al. Selective inactivation of protein tyrosine phosphatase PTP1B by sulfone analogue of naphthoquinone. Bioorg Med Chem Lett, 1999, 9(2): 185-186.
    27. Ahn JH, Cho SY, Ha JD, et al. Synthesis and PTP1B inhibition of 1,2-naphthoquinone derivatives as potent anti-diabetic agents. Bioorg Med Chem Lett, 2002, 12(15): 1941-1946.
    28. Cheon HG, Kim SM, Yang SD, et al. Discovery of a novel protein tyrosine phosphatase-1B inhibitor, KR61639: potential development as an antihyperglycemicagent. Eur J Pharmacol, 2004, 485(1-3): 333-339.
    29. Suzuki T, Hiroki A, Watanabe T, et al. Potentiation of insulin-related signal transduction by a novel protein-tyrosine phosphatase inhibitor, Et-3,4-dephostatin, on cultured 3T3-L1 adipocytes. J Biol Chem, 2001, 276(29): 27511-27518.
    30. Bleasdale JE, Ogg D, Palazuk BJ, et al. Small molecule peptidomimetics containing a novel phosphotyrosine bioisostere inhibit protein tyrosine phosphatase
    1B and augment insulin action. Biochemistry, 2001, 40(19): 5642-5654.
    31. Liljebris C, Martinsson J, Tedenborg L, et al. Synthesis and biological activity of a novel class of pyridazine analogues as non-competitive reversible inhibitors of protein tyrosine phosphatase 1B (PTP1B). Bioorg Med Chem, 2002, 10(10): 3197-3212.
    32. Shim YS, Kim KC, Chi DY, et al. Formylchromone derivatives as a novel class of protein tyrosine phosphatase 1B inhibitors. Bioorg Med Chem Lett, 2003, 13(15): 2561-2563.
    33. Liljebris C, Larsen SD, Ogg D, et al. Investigation of potential bioisosteric replacements for the carboxyl groups of peptidomimetic inhibitors of protein tyrosine phosphatase 1B: identification of a tetrazole-containing inhibitor with cellular activity. J Med Chem, 2002, 45(9): 1785-1798.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700