糖对黄瓜子叶节培养物成花的影响及其差异蛋白质组的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验通过黄瓜离体子叶节花芽分化实验体系,初步探索糖种类和浓度对植物成花的影响;并应用蛋白质组学方法和生物信息学技术,在蛋白质水平上探讨植物成花的机理。实验结果如下:
     1、组织培养实验结果显示:无糖或高糖处理不利于成花。在添加0.3mg/L PP_(333)的基础上,1.5%蔗糖+1.5%果糖处理的直接花分化率最高;成花培养中蔗糖是基本的因素。果糖的最佳供应时间在开始培养后的48-72h。在供糖基础上,添加GA_3处理对成花的影响不明显;添加ABA处理可提高直接花分化率;适度抑制乙烯有利于成花。
     2、建立并优化双向电泳实验条件,结果表明:应采用酚抽提法制备蛋白质干粉,第一向等电聚焦固相pH梯度胶条(24cm)的最适蛋白上样量为1200μg,第二向SDS-PAGE使用11.5%T的分离胶等条件,有助于提高黄瓜离体子叶节总蛋白质双向电泳的分辨率和重复性。
     3、通过对PP_(333)诱导的黄瓜离体子叶节花芽分化的差异蛋白研究,经双向电泳检测到蛋白点有1000个左右,质谱分析鉴定出15个差异表达蛋白点,其中可确认有意义的差异蛋白点有5个,分别为14-3-3蛋白(R2)、核酮糖-1,5-二磷酸羧化酶大亚基(R5和R9)、甲硫氨酸合酶(R10)、氨基肽酶(R16)和60S酸性核糖体蛋白(R20)。这些蛋白与光合作用、代谢作用、翻译过程及信号转导等关系密切,可能在黄瓜成花中起着不同的作用。
In this paper, the effect of sugars on flowering was tentatively explored during the course of flower bud differentiation of cucumber cotyledonary nodes cultured in vitro by histological method. The mechanism of flowering was studied by the way of proteomics and biology informatics.
     1、The results of tissue culture experiments showed that the flowering efficiency of cucumber cotyledonary nodes treated with sugar-deletion or sugar of high concentration were all unfavourable. By supplement with 0.3mg/L PP_(333), the efficiency of direct floral bud formation was the best when the culture medium was supplied with 1.5% sucrose and 1.5% fructose, sucrose was the basal factor in flowering in vitro. The optimum time for pulse-treatment with fructose was the duration of 48-72 hours after the seedlings were decapitated. On the base of sugar supplement, the treatment of GA_3 didn't obviously change the efficiency of flowering. The treatment of ABA increased the efficiency of direct floral bud formation. Moderate inhibition of ethylene production and/or action could help to flowering.
     2、2-DE (two-dimensional eletrophoresis) protocol suited for the separation from cucumber cotyledonary nodes was established. Experiment was showed that: The method of preparing proteins powder was phenol extraction. The optimum loading quantity of sample protein was 1200μg in isoeletric focusing. The optimunm concentration of separation gel was 11.5%T. The optimum protocol of cucumber cotyledonary nodes markddely increased resolution and repeatability of 2-DE of cucumber cotyledonary nodes.
     3、Differentially proteomic approaches using 2-DE were adopted to identify differentially expressed proteins from cucumber cotyledonary nodes treated with PP_(333). Nearly 1000 proteins were reproducibly detected. Analysis with MALDI-TOF-TOF/MS showed that 15 differentially expressed proteins including 5 important proteins, 14-3-3 protein (R2), ribulose 1,5-bisphosphate carboxylase large subunit(R5 and R9), methionine synthase(RlO), putative aminopeptidase(R16), 60s acidic ribosomal protein(R20). All of these proteins had a close relation to photosynthesis, metabolism, protein translation process and signal transduction. They were playing different parts in cucumber flowering.
引文
[1]Tooke F,Ordidge M,Chiurugwi T,et al.Mechanisms and function of flower and inflorescence reversion[J].Exp Bot,2005,56(420):2587-2599.
    [2]Gibson SI.Sugar and phytohormone response pathways:navigating a signaling network[J].Exp Bot,2003,55:253-264.
    [3]León P,Sheen J.Sugar and hormone connections[J].Trends Plant Sci,2003,8:110-116.
    [4]Sheen J,Zhou Li,Jang J-C.Sugar as signaling molecμles[J].Curr Opin Plant Sci,1999,2:410-418.
    [5]Rolland F,Moore B,Sheen J.Sugar sensing and signaling in plants[J].Plant Cell,2002,14(supp):S185-S205.
    [6]杜勤,姜维梅,梁海曼,等.黄瓜子叶培养物的花芽分化和ABP基因表达间的关系[J].浙江大学学报(理学版),2000,27(4):461-465.
    [7]杨传平,姜静,梁艳,等.白桦雄花序发育初期蛋白质的双向电泳图谱分析[J].东北林业大学学报,2004,32(1):1-4.
    [8]朱志勇,曹尚银,徐小彪,等.新红星苹果花芽蛋白质提取及双向电泳的改良方法[J].果树学报 2007,24(4):549-552.
    [9]Esashi Y,Oda Y.Effect of light intensity and sucrose on the flowering of Lemna perpusilla[J].Plant Cell Physiol,1964,5:513-516.
    [10]Rédei GP,Acedo G,Gavazzi G.Flower differentiation in Arabidopsis[J].Stadler Genet Symp,1974,6:135-168.
    [11]Shinozaki M.Long-day flowering and sugar content in Pharbitis nil[J].Plant Cell Physiol,1993,34(supp):s88,316(2aF12).
    [12]Franklin G,Pius PK,Ignacimuthu S.Factors affecting in vitro flowering and fruiting of green pea(Pisum Sativum)[J].Euphytica,2000,115:65-73.
    [13]Van Den Ende G,Barendse GWM,Kemp A,et al.The role of glucose on flower bud formation in thin-layer tissue cultures of Nicotiana tabacum L[J].Exp Bot,1984,35:1853-1859.
    [14]Ulger S,Sonmez S,Karkacier M,et al.Determination of endogenous hormones,sugars and mineral nutrition levels during the induction,initiation and differentiation stage and their effects on flower formation in olive[J].Plant Growth Regul,2004,42:89-95.
    [15]Tang W.High-frequency plant regeneration via somatic embryogenesis and organogenesis and in vitro flowering of regenerated plantlets in Panax ginseng[J].Plant Cell Rept,2000,19: 727-732.
    [16]Taylor.NJ,Light ME,Van Staden J.Monosac-charides promote flowering in Kniphofia leucocephala in vitro[J].Plant Growth Regul,2007,52:73-79.
    [17]陈永宁,李文安.薄层细胞培养在细胞分化研究中的应用[J].细胞生物学杂志,1989,11(2):64-68.
    [18]Campos KO,Kerbauy GB.Thermoperiodic effect on flowering and endogenous hormonal status in Dendrobium(Orchidaceae)[J].Plant Physiol,2004,161:1385-1387.
    [19]Oka M,Miyamoto K,Okada K.Auxin polar transport and flower formation in Arabidopsis thaliana transformed with indoleacetamide hydrolase(iaaH)gene[J].Plant Cell Physiol,1999,40:231-237.
    [20]Ono M,Ono KS,Yamada K,et al.Axillary bud flowering after apical decapitation in Pharbitis in relation to photo induction[J].Physiol Plant,1993,87:1-6.
    [21]Halvey AH,Spiegelstein H,Goldschmidt EE.Auxin inhibition of flower induction of Pharbitis is not mediated by ethylene[J].Plant Physiol,1991,95:652-654.
    [22]Papafotion M,Schwabe WW.Studies on the long-day inhibition of flowering in xanthium and kalanchoe[J].Physiol Plant,1990,80:177-184.
    [23]Mendoza MG,Kaeppler HF.Auxin and sugar effects on callus formation and plant regeneration frequencies from mature embryos of wheat(Triticum aestivum L.)[J].In Vitro Cell Dev Biol-Plant,2002,38:39-45.
    [24]King RW,Seto H,Sachs RM.Response to Gibberellin Structural Variants Shows that Ability to Inhibit Flowering Correlates with Effectiveness for Promoting Stem Elongation of Some Plant Species[J].Plant Growth Regul,2000,19(4):437-444.
    [25]Borner R,Kampmann G,Chandler J,et al.A MADS domain gene involved in the transition to flowering in Arabidopsis[J].Plant J,2000,24:591-599.
    [26]McDaniel CN,Hastnelt LK.Flowering as metamorphosis:Two sequential signals regulate floral initiation in Lolium temulentum[J].Development,1996,122:3661-3668.
    [27]Chen WS,Liu HY,Liu ZH,et al.Gibberellin and temperature influence carbohydrate and flowering in Phalaenopsis[J].Physiol Plant,1994,90:391-395.
    [28]King RW,Ben-Tal Y.A florigenic effect of sucrose in Fuchsia hybrida is blocked by gibberellin-induced assimilate competition[J].Plant Physiol,2001,125:486-496.
    [29]Blazquez MA,Green R,Nilsson O,et al.Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter[J].Plant Cell,1998,10:791-800.
    [30]Mitrovic A,Zivanovic B,Cukafic LJ.The effects of photoperiod,glucose and gibberellic acid on growth in vitro and flowering of Chenopodium murale[J].Biol Plant,2000,43:173-177.
    [31]Kozlowska M,Rybus-Zajac M,Stachowiak J,et al.Changes in carbohydrate contents of Zantedeschia leaves under gibberellin-stimulated flowering[J].Acta Physiol Plant,2007,29:27-32.
    [32]Kumar TA,Reddy GM.Role of benzyladenine,Ca~(2+)ions and AGAMOUS like gene in regulation of in vitro flowering in Arachis hypogaea L[J].In Vitro Cell Dev Biol,1996,32(3pt Ⅱ):83A,P-1071.
    [33]Bernier G.The role of cytokinins in the floral transition process revisited.Flowering Newsletter[M],2003,issue36(03144).
    [34]Havelange A,Lejeune P,Bernier G.Sucrose/cytokinin interaction in Sinapis alba a floral induction:A shoot-to-root-to-shoot physiological loop[J].Physiol Plant,2000,109:343-350.
    [35]Gaudin V,Lunness PA,Fobert PR,et al.The expression of D-cyclin genes defines distinct developmental zones in snapdragon apical meristems and is locally regulated by cycloidea gene[J].Plant Physiol,2000,122:1137-1148.
    [36]Hartig K,Beck E.Crosstalk between auxin,cytokinins,and sugars in the plant cell cycle[J].Plant Biol,2006,8:389-396.
    [37]Takeno K,Maeda T.Abscisic acid both promotes and inhibits photoperiodic flowering of Pharbitis nil[J].Physiol Plant,1996,98:467-470.
    [38]陈俊伟,谢鸣,秦巧平.植物糖信号与激素信号之间的联系[J].植物生理学通讯,2005,41(3):279-285.
    [39]Arenas-Huertero F,Arroyo-Becerra A,Zhou L,et al.Analysis of Arabidopsis glucose insensitive mutants,gin5 and gin6,reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar[J].Gene Dev,2000,14:2085-2096.
    [40]Laby RJ,Kincaid M S,Kim D,et al.The Arabidopsis sugar-insensitive mutants sis4 and sis5are defective in abscisic acid synthesis and response[J].Plant J,2000,23:587-596.
    [41]Huijser C,Kortstee A,Pego J,et al.The Arabidopsis sucrose Uncoupled-6 gene is identical to abscisic acid insensitive-4:Involvement of abscisic acid in sugar responses[J].Plant J,2000,23:577-585.
    [42]Rook F,Corke F,Card R,et al.Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling[J].Plant J,2001 26:421-433.
    [43] Gibson SI, Laby RJ, Kim D. The sugar-insensitive 1 (sis1) mutant of Arabidopsis is allelic to ctrl[J]. Biochem Biophys Res Commun, 2001, 280: 196-203.
    [44] Godt DE, Riegel A, RoitschT. Regulation of sucrose synthase expression in chenopodium rubrum: characterization of sugar induced expression in photoautotrophic suspension cultures and sink tissue specific expression in plants[J]. Plant Physiol, 1995, 146: 231—236.
    [45] Nakamura S, Lynch T. J, Finkelstein, R. R.. Physical interactions between ABA response loci of Arabidopsis[J]. Plant Journal, 2001, 26: 627-635.
    [46] Martin T, Oswald O, Graham I A. Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon: Nitrogen availability[J]. Plant Physiol, 2002, 128: 472- 481.
    [47] Van Nocker S. The molecular biology of flowering[J]. In "Horticultural Reviews", Janick J,ed., Wiley Publishers, 2001, 27: 1-40.
    [48] Ogawara T, Higashi K, Kamada H, et al. Ethylene advances the transition from vegetative growth to flowering in Arabidopsis thaliana[J]. Plant Physiol, 2003, 160: 1335 — 1340.
    [49] Crevecoeur M, Penel C, Greppin H, et al. The role of ethylene in the transition from vegetative growth to flowering: A Reassessment Flowering Newslett[M], 2004, issue 38.
    [50] Hong JH, Cowan AK, Lee SK. Glucose inhibits ACC oxidase activity and ethylene biosynthesis in ripening tomato fruit[J]. Plant Growth Regul, 2004, 43: 81 — 87.
    [51] Defilippi BG, Dandekar AM, Kader AA. Impact of suppression of ethylene action or biosynthesis on flavor metabolites in apple (Malus domestica Borkh) fruit[J]. Agric Food Chem, 2004, 52: 5694-5701.
    
    [52] Banon S, Ortuno A, Del Rio JA. Influence of ethylene on apex development and mobilization of soluble saccharides in the corm of Liatris[J]. Biol Plant, 1997, 39(2): 197-206.
    [53] Gazzarrini S, McCourt P. Genetic interactions between ABA, ethylene and sugar signaling pathway[J]. Curr Opin Plant Biol, 2001, 4: 387-391.
    [54] de Folter S, Immink RG, Kieffer M, et al. Comprehensive Interaction Map of the Arabidopsis MADS-Box Transcription Factors[J]. Plant Cell, 2005, 17 (5): 1424-1433.
    [55] Ferrario S, Shchennikova AV, Franken J, et al. Angenent Control of Floral Meristem Determinacy in Petunia by MADS-Box Transcription Factors[J]. Plant Physiology, 2006, 140: 890-898.
    [56] Park JH, Ishikawa Y, Yoshida R, et al. Kameya Expression of AODEF, a B-functional MADS-box gene, in stamens and inner tepals of the dioecious species Asparagus officinalis L[J]. Plant Cell Rep, 2003, 22: 159-165.
    [57]Chen L,Cheng JC,Castle L,et al.EMF Genes Regulate Arabidopsis Inflorescence Development[J].Plant Cell,1997,9(11):2011-2024.
    [58]Ohto M-a,Onai K,Furukawa Y,et al.Effects of sugar on vegetative development and floral transition in Arabidopsis[J].Plant Physiol,2001,127:252-261.
    [59]Parfitt O,Herbert RJ,Rogers HJ,et al.Differential expression of putative floral genes in Pharbitis nil shoot apices cultured on glucose compared with sucrose[J].Exp Bot,2004,55:2169-2177.
    [60]Blasing OE,Gibon Y,Günther M,et al.Sugars and circadian regulation make major contribution to the global regulation of diurnal gene expression in Arabidopsis[J].Plant Cell,2005,17:3257-3281.
    [61]Smeekens S.Sugar-induced signal transduction in plants[J].Annu Rev Plant Physiol Plant Mol Biol,2000,51:49-81.
    [62]程建徽,谢鸣,蒋桂华,等.植物己糖激酶的信号转导作用[J].细胞生物学杂志,2004,26:594-598.
    [63]Jang J C,Sheen J.Sugar sensing in higher plants[J].Plant Cell,1994,6:1665-1679.
    [64]Smeekens S,Rook F.Sugar sensing and sugar-mediated signal transduction in plants[J].Plant physiol,1997,115:7-13.
    [65]Jang J C,Leon P,Zhou L,et al.Hexokinase as a sugar sensor in higher plants[J].Plant Cell,1997,9:5-19.
    [66]Ohto MA,Nakamura K.Sugar-induced increase of calcium dependent protein kinase ssociated with the plasma membrane in leaf tissue of tobacco[J].Plant Physiol,1995,109:973-981.
    [67]Ozcan S,Dover J,Rosenwald AG,et al.Two glucose transporters in S.cerevisiae are glucose sensors that generate a signal for induction of gene expression[J].Proc Natl Acad Sci USA.,1996,93:12428-12432.
    [68]Chiou TJ,Bush DR.Sucrose is a signal molecule in assimilate p artitioning[J].Proe Natl Acad Sci USA,1998,95:4784-4788.
    [69]Wenzler HC,Mignery G,Fisher L,et al.Sucrose-regulated expression of a chimeric potato tuber gene in leaves of transgenic tobacco plants[J].Plant Mol Biol,1989,13:347-354.
    [70]Rook F,Gerrits N,Kortstee A,et al.Sucrose-specific signaling represses the translation of the Arabidopsis ATB2 bZIP transcription factor gene[J].Plant J,1998,15:253-263.
    [71]Fu H,Park WD.Sink and vascular associated sucrose synthase function are encoded by different gene clasters in potato[J].Plant Cell,1995,7:1369-1385.
    [72]Liu J,Samac DA,Bucciarelli B,et al.Signaling of phosphorus deficiency-induced gene expression in white lupin reguires sugar and phloem transport[J].Plant J,2005,41:257-260.
    [73]Kazuka T,Horiguchi G,Kim G-T,et al.The different growth respoinses of the Arabidopsis thaliana leaf blade and the petiole during shade avoidance are regulate by photoreceptors and sugar[J].Plant Cell Physiol,2005,46:213-223.
    [74]刘莉,祝朋芳.光周期与植物成花诱导[J].辽宁农业科学,2004,3:26-27.
    [75]何大澄,肖雪媛.差异蛋白质组学及其应用[J].北京师范大学学报(自然科学版),2002,38(4):558-562.
    [76]陈伟,游向荣,龙强,等.蛋白质组学研究方法与技术[J].福建果树,2006,139:42-47.
    [77]赵宏伟,田秀珠,王波.差异蛋白质组学研究与应用进展[J].医学与哲学(临床决策论坛版),2006,27(4):45-47.
    [78]Juri R,Matthias M.What does it mean to identify a protein in proteomics[J].Trends in Biochemical Sciences,2002,27(2):74.
    [79]孙言伟,姜颖,贺福初.差异蛋白质组学的研究进展[J].生命科学,2005,17(2):137-140.
    [80]金晓芬,杨肖娥,冯英.蛋白质组学及其在植物营养学研究中的应用[J].植物生理学通讯,2005,41,6(12):705-709.
    [81]Klose J,Kobalz U..Two-dimensional electrophoresis of proteins:an undated protocol and implication for a functional analysis of the genome[J].Electrophoresis,1995,16:1034-1059.
    [82]GYGI S P,ROCHON Y,FRANZA B R,et al.Correlation between protein and mRNA abundancein yeast[J].MolCellBiol,1999,19(3):1720-1730.
    [83]姜楠,霍海如,姜廷良,等.蛋白质组检测技术进展[J].国外医学卫生学分册,2004,31(1):55-58.
    [84]Tonge R,Shaw J,Middlefon B,et al.Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology[J].Pmteomic,2001,1(3):377-396.
    [85]Jensen PK,Pasa-Tolic L,Peden KK,et al.Mass spectrometric detection for capillary isoelectric focusing,separations of complex protein mixtures[J].Electrophoresis,2000,21(7):1372-1380.
    [86]张珍英,邓慧敏,黎军,等.MALDI-TOF MS测定多肽和蛋白质混合物的可行性研究 [J].中山大学学报(自然科学版),2002,41(6):122-124.
    [87]Schehr C,et al.Peptide mass fingerprint sequence coverage from diferentially stained proteins on two-dimensional electrophoresis pttRerns by matrix assisted laser desorption/ionization mass spectrometry(MALDI-MS)[J].Elcctrophoresis,1998,19:918-927.
    [88]利布莱尔 D C.蛋白质组学导论-生物学的新工具[M].北京:科学出版社,2005.
    [89]王贤纯,梁宋平.电喷雾串联质谱图的叠合与多肽序列分析[J].生物化学与生物物理学报,2001,33(6):665-670.
    [90]曾嵘,俞利荣.电喷雾离子阱质谱法鉴定人肝癌细胞双向凝胶电泳胶内蛋白质[J].科学通报,2000,45(6):592-598.
    [91]WrightT G L Jr.SELDI proteinchip MS:a platform for biomarker discovery and cancer diagnosis[J].Expert Rev Mol Diagn,2002,2(6):549-563.
    [92]苏智广,文富强,冯玉麟.SELDI蛋白质芯片技术及其应用[J].生命的化学,2004,24(4):356-358.
    [93]聂玉哲,张晓磊,李玉花.激光捕获显微切割技术及其在植物研究中的应用[J].植物生理学通讯,2006,42(4):695-699.
    [94]闫峰,李宗芳.激光捕获显微切割技术应用研究新进展[J].癌症(Chinese Journal of Cancer),2004,23(7):860-864.
    [95]Kieselbach J,Bystedt M,Hynds P,et al.A peroxidase homologue and novel plastocyanin located by proteomics to the Arabidopsis chloroplast thylakoid lumen[J].FEBS Lett,2000,480(2-3):271-276.
    [96]柴小清,靳飞,张艳萍,等.缺铁逆境胁迫下水稻叶蛋白质组的双向电泳分析[J].首都师范大学学报,2004,25(3):46-51.
    [97]乔建军,赵红,葛志强,等.水杨酸作用下东北红豆杉细胞的二维凝胶电泳分析[J].生物工程学报,2003,19(1):92-96.
    [98]钱小红,万晶宏.蛋白质组研究中肽质量指纹谱鉴定方法的建立及应用[J].生物化学与生物物理学报,2000,32(4):373-378.
    [99]田云,卢向阳.生物信息学[J].生物学杂志,2002,19(3):11-12.
    [100]贺光.生物信息学在蛋白质研究中的应用[J].国外医学·遗传学分册,2002,25(3):156-158.
    [101]李小荟.PP_(333)处理黄瓜子叶节花芽分化、内源激素及差异蛋白组的研究[D].福建师范大学硕士学位论文.
    [102]Zhang M-F,Chen L-P.Rapid delection specific protein in cytoplamic male-sterile line of tuber mastard using SDS-PAGE[J].Zhejiang University:Agriculture and Life Science,2001,27(6):646-648.
    [103]陈伟,吕柳新,黄春梅,等.“乌叶”荔枝胚胎发育过程特异蛋白的变化[J].园艺学报,2001,28(6):504-508.
    [104]Shen S,Komatsu S.Characterization of proteins responsive to gibbereln in the leaf sheath of rice(Oryza sativa L.)seedling using proteome analysis[J].Biological and Pharmceutical Bulletin,2003,26:129-136.
    [105]霍晨敏,赵宝存,葛荣朝,等.小麦耐盐突变体盐胁迫下的蛋白质组分析[J].遗传学报,2004,31(2):1408-1414.
    [106]谈建中,刘美娟,张国英,等.桑突变体Cty-Ym叶片蛋白质的双向电泳及质谱分析[J].蚕业科学,2005,31(1):8-13.
    [107]Plomion C,Pionneau C,Brach J,et al.Compression wood-responsive proteins in developing xylem of Maritime pine[J].Plant Physiol,2000,123(3):959-963.
    [108]Chang WW,Huang L,Shen M.Patterns of protein synthesis and tolerance of anoxia in root tips of maize seatings acclimated to a low-oxygen environment and identification of proteins by mass spectrometry[J].Plan Physia,2000,122(2):295-318.
    [109]Xing T,Ouellet T,Miki BJ.Towards genomic and proteomic studies of protein phophorylation in plant-pathogen interactions[J].Trends Plant Sci,2002,7(5):224-230.
    [110]梁海曼.黄瓜离体于叶培养物直接分化花芽的研究[J].中国学术期刊文摘.1995,(增刊):97.
    [111]董倩.多效唑(PP_(333))对黄瓜离体子叶节花芽分化的影响[D].福建师范大学硕士学位论文.
    [112]Fei H,Vessey K.Further investigation of the roles of auxin and cytokinin in the NH_4~+-induced stimulation of nodulation using white clover transformed with the auxin-sensitive receptor GH3:gus A[J].Physiol Plant,2004,121:674-681.
    [113]Finkelstein RR,Gibson SI.ABA and sugar interactions regulating development:cross-talk or voices in a crowd.Curr Opin Plant Biol,2001,5:26-32.
    [114]张维,郭得平.糖和脱落酸及乙烯互作及其植物生长发育的关系[J].植物生理学通讯,2005,41(3):376-380.
    [115]Lejeune P,Sotta B,Kinet J M,et al.Floral transition in Sinap is alba:Changes in cytokin and auxin levels in apical bud and phloem sap collected at the stem top of the plant[J].Physiol Plant,1992,85(3pt2):A36-203.
    [116]Oliveira CM,Browning G.Studies on the induction of flowering in juvenile Prunus avium L [J].Hort Sci,1993,68(5):731-739.
    [117]王庆成,徐德兰.赤霉素(GA_3)对杨树开花结实的效应(简报)[J].植物生理学通讯,2001,37(6):510-512.
    [118]Brocard-Gifford I,Lynch TJ,Garcia ME,et al.The Arabidopsis thaliana abscisic acid-insensitive8 locus encodes a novel protein mediating abscisic acid and sugar responses essential for growth[J].Plant Cell,2004,6:406-421.
    [119]Kannero Y,Yotsumoto K,Lee S-K,et al.Marked inhibition of floral bud initiation by optically active abscisic acid in Pharbitis nil[J].Agric Biol Chem,1990,54:3363-3365.
    [120]方秀娟.黄瓜施用乙烯利技术[J].长江蔬菜,2000,4:37-38.
    [121]Wihins MR,Sanchez JC,Williams KL,et al.Current challenges and future applications for protein expressed by a genome should be identified and how to do it[J].Biotechnol Gene.Eng.Rev,1995,13:19-50.
    [122]夏其昌,曾嵘.蛋白质化学与蛋白组学[M].北京:科学出版社,2004.
    [123]杨虹,崔启微.黄瓜的生物学研究[J].牡丹江师范学院学报(自然科学版).2007,4:32-33.
    [124]丁国华,秦智伟,周秀艳,等.黄瓜霜霉病抗病基因的RAPD及SCAR标记[J].西北植物学报,2007,27(9):1747-1751.
    [125]张桂华,韩毅科,杨瑞环,等.黄瓜种质资源遗传多样性的AFLP分析[J].华北农学报,2007,22(3):21-24.
    [126]林鸣,曹宗巽.黄瓜器官特异蛋白的研究[J].植物学报,1996,38(7):525-529.
    [127]向春阳,田秀萍,崔丽雅,等.电泳技术鉴定黄瓜种子纯度的应用研究[J].黑龙江八一农垦大学学报,1998,10(2):14-17.
    [128]刘素纯,萧浪涛,廖柏寒,等.铅胁迫对黄瓜幼苗叶片蛋白质的影响[J].湖南农业大学学报(自然科学版),2006,32(2):141-143,218.
    [129]范海延,陈捷,吕春茂,等.黄瓜杂交二代抗黄瓜白粉病的蛋白质组学初步分析[J].园艺学报,2007,34(2):349-354.
    [130]Bradford MM.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Anal.Biochem,1976,7(72):248-254.
    [131]Blackstock WP,Weir MP.Proteomics:quantitative and physical mapping of cellular proteins[J].Trends BiOrecknol,1999,7(3):121-127.
    [132]Giavalisco P,Nordhoff E.Extraction of proteins from plant tissues for two-dimensional electrophoresis analysis[J].Electrophresis,2003,24(1-2):173-183.
    [133]Berkelman T,Brubacker MG,Cheng H.Important factors influencing protein solubilitu for 2-D electrophoresis.Tip and Techniques,2004,114:31-32.
    [134]Mechin V,Consoli L,Le Guilloux M,et al.An efficient solubilization for plant focused in immobilized pH gradients.Proteomics,2003,3:1299-1302.
    [135]何文锦,郭晋隆,陈由强,等.灰木相思蛋白质组双向电泳条件的优化[J].西北植物学报,2007,27(8):1577-1582.
    [136]李燕,蔡建秀,郑少泉,等.“红核子”龙眼胚胎发育不同时期的蛋白质组分析[J].热带作物学报,2006,27(4):64-68.
    [137]Gallardo K,Job C,Groot SPC,et al.Proteomic analysis of Arabidopsis seed germination and priming[J].Plant Physiol,2001,126(2):835-848.
    [138]韩毅科,杜胜利,魏爱民,等.黄瓜离体雌核发育早期的特异蛋白质研究[J].南开大学学报(自然科学版),2006,36(6):1-5.
    [139]崔娜,李天来,李悦.植物中14-3-3蛋白的主要功能[J].生物技术,2007,17(2):86-89.
    [140]Ashida H,Danchin A,Yokota A.Was photosynthetic RuBisCO recruited by acquisitive evolution from RuBisCO-like proteins involved in sulfur metabolism?.Res Microbiol,2005,156:611-618.
    [141]Ravanel S,Block MA,Rippert P.Methionine Metabolism in Plants[J].Biol.Chem.,2004,279(21):22548-22557.
    [142]Varshavsky A.The N-end rule:Functions.mysteries uses[J].Proceed-ings of Tile National Acaderny of Sciences of The United States of America,1996,93(22):12142.
    [143]Gu YQ,Holzer FM,Walling LL.Overexpression,purification and biochemical characterization of the wound-induced leucine aminopeptidase of tomato[J].European Journal of Biochemistry,1999,263(3):726.
    [144]胡荣贵.核糖体蛋白的核糖体外功能[J].生命化学,1997,17(1):23-25.
    [145]顾志敏,王建飞,黄骥.水稻胞质糖体蛋白基因OsRPS7的克隆与序列分析[J].遗传HEREDITAS(Beijing),2004,26(2):181-185.
    [146]Dewir YH,Chakvabarty D,Hahn EJ,et al.Kinetics of nutrient utilization and photosynthetic enzyme activities during floral versus vegetative differentiation of Spathi phyllum in air-lift bioreactor cultures[J].Plant Growth Regul,2008,54(2):175-164.
    [147]Basu R,Ghosh B.Polyamines in various rice(Oryza satire L.)genotypes with respect to sodium chloride salinity[J].Plant Physiol,1991,82:575-581.
    [148]Ronald B.Methionine and Derivatives:Exploring ehirality at sulfur[J].Biochem Mole Biol Education,2005,33(4):274-276.
    [149]Taylor AB,Stoj CS,Ziegler L,et al.The copper-iron connetion in biology:Structure of the metallo-oxidase Fet 3p.Proc.Natl.Acad.Sci,2005,102(43):15459-15464.
    [150]张晋华,崔峥嵋.核糖体蛋白S5(RPS5)基因研究进展[J].前沿科研,2007,213:19-21.
    [151]肖强,郑海雷.14-3-3蛋白与植物细胞信号转导[J]。细胞生物学杂志(Chinese Journal of Cell Biology),2005,27:417-422.
    [152]Fulgosi H,Soll J,de Faria Maraschin S,et al.14-3-3 proteins and plant development[J].Plant Mol Biol,2002,50:1019-1029.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700