神经元性组织工程化神经移植修复犬外周神经缺损的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和意义:外周神经损伤是临床常见损伤,外周神经缺损的修复是世界性的难题,主要是神经生长速度慢和效应器、感受器萎缩快的矛盾。如何提高神经再生的速度和质量,寻找新的修复方法是外周神经损伤迫切需要解决的瓶颈问题。目前外周神经缺损的治疗策略,是依据外周神经损伤再生的理论,通过提供一个神经纤维再生通道、营造有利于神经纤维再生微环境等,涉及神经导管及细胞因子的应用、细胞或神经移植、以及近年来兴起的组织工程化外周神经等。这些治疗方法已经在动物实验或临床上取得了可喜的效果,但由于神经生长速度较慢,效应器的退化较为严重,用于修复长距离神经缺损效果不满意。鉴于此,我们提出了“桥接神经元修复外周神经缺损”的设想,即通过神经元接力的方法,加快神经到达效应器、感受器的时间,减少效应器、感受器病变程度,提高神经损伤修复的效果。为验证此设想,本研究从临床实用出发,拟以骨髓源性神经组织定向干细胞(NTCSC)源性神经元细胞为种子细胞、以同种异体脱细胞神经支架为支架材料,构建神经元性组织工程化神经,用于修复犬坐骨神经损伤,探讨神经元性组织工程化神经修复外周神经的机制及效果,旨在为外周神经缺损的修复提供一个新的方法。
     第一部分NTCSC的培养、诱导分化及鉴定
     研究目的:研究骨髓源性神经组织定向干细胞(NTCSC)的分离、培养、鉴定及向神经元细胞的诱导分化,探讨作为神经元细胞来源种子细胞的可能性。
     研究方法:取beagle犬自体骨髓,全骨髓培养,留取贴壁细胞,添加BFGF和EGF的无血清培养液继续培养,待细胞聚集呈球状时,吹打散开后传代培养扩增,细胞鉴定。分别用RA+SHH和NRG1诱导分化,观察诱导细胞形态、生长情况,检测其表面标志。
     结果:传代细胞悬浮、球形生长、增殖能力旺盛、Nestin阳性,为骨髓源性神经组织定向干细胞。RA+SHH诱导分化后,神经球贴壁、分散、β-Tubulin阳性、NeuN阳性,为神经元样细胞。NRG1诱导后,神经球散开、长出较长的突起、表达S-100,为雪旺氏细胞。结论:NTCSC扩增能力强、有神经系细胞的特性、易于向神经元样细胞以及雪旺氏细胞分化,是较为理想的神经元细胞来源的种子细胞。
     第二部分神经元性组织工程化神经的的构建。
     研究目的:研究脱细胞支架制备、组织工程化神经的构建,制备神经元性组织工程化外周神经移植体。
     研究方法:取Beagle犬坐骨神经6cm,修剪、0.3%SDS脱细胞5天、RNA酶和DNA酶消化2天、蒸馏水反复漂洗5天、密封、60Co辐照灭菌、4℃保存。将诱导的雪旺氏细胞和神经元样细胞按照1:1的比例混合成细胞悬液,用微量注射器种植到支架中,制成神经元性组织工程化神经移植体。
     结果:大体观察见脱细胞神经支架外形完整,乳白色,H-E染色未见到细胞成分,纤维连续无断裂。组织工程化神经移植体柔软、饱满,种植细胞在支架内生长,迁移、分布均匀。
     结论:成功构建了神经元性组织工程化外周神经移植体。
     第三部分神经元性组织工程化神经的体内研究
     研究目的:研究神经元性组织工程化外周神经移植修复坐骨神经6cm缺损的效果,探讨桥接神经元修复外周神经长段缺损的可行性。
     研究方法:制备犬双坐骨神经6cm缺损模型6只,神经元性组织工程化神经、雪旺氏细胞性组织工程化神经和自体神经分别移植到相应的犬4侧缺损的坐骨神经上。术后进行动物行为学观察。术后13周,三组犬进行肌电图检测。4侧神经元性组织工程化神经移植组行辣根过氧化物酶逆行追踪;全部动物处死、取坐骨神经、切片、免疫组织化学染色、甲苯胺蓝染色、透射电镜检测;取腓肠肌、检测蛋白质的含量。
     结果:术后犬下肢不能活动,自术后2周始,三组犬均出现下肢肌肉萎缩、足底溃疡。术后8周,神经元性组织工程化外周神经移植犬对针刺有反应、下肢能触地行走,自体神经移植组术后10周恢复感觉运动功能,雪旺氏细胞性组织工程化神经移植组术后13周恢复感觉运动功能。肌电图检测表明:神经元性组织工程神经恢复效果理想。
     神经元性组织工程化外周神经移植犬腓肠肌中注射HRP后,神经移植体内可见天青色的团块。免疫组织化学显示,神经元性组织工程化神经移植体中NeuN阳性。甲苯胺蓝染色,神经元性组织工程化神经移植体中髓鞘数量多于雪旺氏细胞性组织工程化神经移植组。透射电镜显示神经元性组织工程化神经移植体中有突触的形成。考马斯亮蓝检测腓肠肌蛋白质含量,实验组>自体神经移植组>雪旺氏细胞移植组。
     结论:种植的干细胞源性神经元样细胞可以在外周神经微环境内存活、并维持神经元的功能,桥接神经元修复外周神经缺损的效果优于传统组织工程化神经和自体神经移植,桥接神经元修复外周神经缺损可行。
Background and Significance:Peripheral nerve injury is common clinical damage, and the repair of peripheral nerve defects is a worldwide problem. Difficulty is Contradictions between the slow growth rate of nerve and the fast atrophy of effectors.
     The improvement of speed and quality of nerve regeneration is an urgent need to solve the repair of nerve injury. At present the treatment of peripheral nerve defect strategy is based on the theory of regeneration of peripheral nerve injury, by providing a channel, and creating a favorable micro environment for nerve fiber regeneration, and it is involved the application of Neural tube and cytokines, as well as the recent emergence of tissue engineering nerve. These treatments have been achieved gratifying results in animal experiments and clinical trials. But for a long nerve defect. But this recovery rate was not yet satisfied. Effectors of the degeneration is still very severe. In view of this, we have proposed a "neurons bridging to repair of peripheral nerve defects" the idea is that by neurons relaying, the time for the axons arriving to the effctors is reduced and the regenerations of effecors is slow down.
     To test this idea, this study started from the clinical utility, intended to construct neuronal tissue engineering nerve with bone marrow-derived neural tissue committed stem cells (NTCSC)-derived neuronal cells and allogenic acellular nerve, and repair the dog sciatic nerve injury. mechanisms and effectsof repairing peripheral nerve with neuronal tissue engineered nerve, aiming to provide a new approachof repairing peripheral nerve defects.
     Section 1 culture, induced differentiation and identification of bone marrow-derived NTCSC.
     Objective:To study separation, culture, identification of bone marrow-derived neural tissue committed stem cells (NTCSC), as well as induction and differentiation to neurons, the separation, culture, identification, and the induction and differentiation of neurons, and to discuss the possibility of neuronal cells as a source of seed cells
     Methods:The cells are Harvested from dogs bone marrow, and first cultured in a serum culture medium for 7days. Later the cells were moved to a serum-free medium cantaining with BFGF and EGF. After the cells grow to form cells sphere. Disperse the cells sphere and continue to cuture the cells sphere. And this cells sphere is bone marrow-derived NTCSC. Let adherent neurosphere and use RA+SHH to induce the NTCSC to neuronal differentiation, as well as NRG1 to induce to Schwann cell differentiation. At different time observe cell morphology, growth, detect surface marker of cells.
     Results:The bone marrow-derived neural tissue committed stem cells (NTCSC) suspend, and grow spherically and proliferative capacity of cells is strong. NTCSCs express CXCR4-positive, Nestin-positive. After RA+SHH induction, the neurospheres adherent and expressβ-Tubulin-positive and NeuN-positive. With NRG1-induced, the neurospheres spread out, grow long And express S-100 positive.
     Conclusion:NTCSC has great expansion capability and have characteristics of neuralline, NTCSC can differentiate into neurons and Schwann cells, as a result NTCSCs is an ideal seed cells for tissue engineering nerve.
     Section 2 Construction of neuronal tissue engineering.
     Objective:Prepare a safe nerve scaffold of non-immune response, suitable bio-mechanical properties. Seed cells to nerve scaffold and Prepare tissue-engineered nerve. Transplant the nerve to the beagle's leg.
     Methods:6cm sciatic nerve were havested from died beagle dogs.The nerve were Rinsed with 0.3% SDS for 5 days and RNA enzymes, DNA enzyme for 2 days, and rinsed with distilled water Repeatedly for 5 days. The Acellular nerve graft were sterilizated by 60Co irradiation, and then conserved at 4℃. Induced Schwann cells and neuron-like cells were mixed into the cell suspension in accordance with the ratio of 1:1, and injected into the scaffold with micro-syringe. And now the neuronal tissue-engineered nerve is prepared.
     Results:acellular nerve scaffold is of complete shape, and did not contain cells. The Fibers of scaffold were continuous and of non-fracture. After the cultivation of cells, tissue engineering nerveare soft and plump. The nerves were well suture with the scatic nerves. The planted cells grew in the scaffold and migration, distribution was observed.
     Conclusion:The biomechanical properties of Acellular nerve graft is good, containing less cellular components. The Acellular nerve graft is a safe carrier for nerve tissue engineering.
     Section 3 the in vivo research of neuronal tissue-engineered nerve.
     Objective:To study the effect of repairing the scatic nerve 6cm defects with neuronal tissue engineering nerve and disscuss the feasibility of repairing the long segment of peripheral nerve defects with Bridging the neurons.
     Methods:Prepare 6 canine models of 6cm defects of two Hind legs scatic nerve. Neuronal tissue engineering nerve、schwann cell tissue engineering nerve and autologous nerve graft were transplanted into the 4 scatic nerve defects. Animal behavior were observed after the operations. After 13 weeks, EMG was examined. 4 sides neuronal tissue engineered nerve graft group underwent retrograde horseradish peroxidase. after killing all the animals, immunohistochemical stain, toluidine blue staining, transmission electron microscopy detection and protein content detection were taken.
     Results:The left lower limb of all three groups dogs can not move after operations. After 2 weeks, muscle atrophy were found in the limbs of three groups begin muscle atrophy. After 8 weeks the experimental group dogs began to react to acupuncture, and lower limbs can touch the ground walking. Sensorimotor all recovered. Autograft control group recovered after 10 weeks and Schwann cell transplantation group were recovered after 13 weeks.
     After HRP were injected Gastrocnemius muscle of neuronal tissue engineering Nerve Graft dog, blue clumps is visible in nerve graft. Immunohistochemistry showed that neuronal tissue engineered nerve graft in NeuN positive.Toluidine blue staining showed that the number of myelin sheath in neuronal tissue engineered nerve graft is more than Schwann cells in tissue engineering nerve group.Transmission electron microscopy revealed synapse formation in neuronal tissue engineered nerve graft. Coomassie blue detection of protein content showed that protein content of gastrocnemius muscle in the experimental group> nerve autograft group> Schwann cell transplantation group.
     Conclusion:Transplanted stem cell-derived neuron-like cells can survive in the peripheral nerve microenvironment and maintain neuronal function. Repairing peripheral nerve defects by bridging the neurons is better than the traditional neural tissue engineering and autologous nerve graft. And this method is feasible.
引文
1. Dellon, A.L., Wound healing in nerve. Clin Plast Surg,1990.17(3):p. 545-70.
    2. Giannini, C., A.C. Lais, and P.J. Dyck, Number, size, and class of peripheral nerve fibers regenerating after crush, multiple crush, and graft. Brain Res,1989.500(1-2):p.131-8.
    3. Danielsen, N., Nerve regeneration and repair. Diabet Med,1996.13(7):p. 677-8.
    4. Terenghi, G, Peripheral nerve injury and regeneration. Histol Histopathol, 1995.10(3):p.709-18.
    5. Doolabh, V.B., M.C. Hertl, and S.E. Mackinnon, The role of conduits in nerve repair:a review. Rev Neurosci,1996.7(1):p.47-84.
    6. Evans, GR., Peripheral nerve injury:a review and approach to tissue engineered constructs. Anat Rec,2001.263(4):p.396-404.
    7. Matejcik, V., et al., Results of peripheral nerve reconstruction by autograft. Bratisl Lek Listy,2001.102(2):p.92-8.
    8. Mateichik, V., [Repair of nerve defects with autotransplants]. Khirurgiia (Mosk),2001(11):p.20-3.
    9. Bushnell, B.D., et al., Early clinical experience with collagen nerve tubes in digital nerve repair. J Hand Surg Am,2008.33(7):p.1081-7.
    10. Li, B.C., et al., PLGA conduit seeded with olfactory ensheathing cells for bridging sciatic nerve defect of rats. J Biomed Mater Res A,2010.
    11. Madaghiele, M., et al., Collagen-based matrices with axially oriented pores. J Biomed Mater Res A,2008.85(3):p.757-67.
    12. Wang, W., et al., [Repair of peripheral nerve gap with the use of tissue engineering scaffold complex]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2005.27(6):p.688-91.
    13. Phillips, J.B., et al., Neural tissue engineering:a self-organizing collagen guidance conduit. Tissue Eng,2005.11(9-10):p.1611-7.
    14. Chang, C.J., Effects of nerve growth factor from genipin-crosslinked gelatin in polycaprolactone conduit on peripheral nerve regeneration—in vitro and in vivo. J Biomed Mater Res A,2009.91(2):p.586-96.
    15. Patel, M., et al., GDNF blended chitosan nerve guides:an in vivo study. J Biomed Mater Res A,2009.90(1):p.154-65.
    16. Glazner, GW. and D.N. Ishii, Insulinlike growth factor gene expression in rat muscle during reinnervation. Muscle Nerve,1995.18(12):p.1433-42.
    17. Lien, S.C., P.S. Cederna, and W.M. Kuzon, Jr., Optimizing skeletal muscle reinnervation with nerve transfer. Hand Clin,2008.24(4):p.445-54, vii.
    18. Lago, N. and X. Navarro, Correlation between target reinnervation and distribution of motor axons in the injured rat sciatic nerve. J Neurotrauma, 2006.23(2):p.227-40.
    19. Bedini, C., V. Fiaschi, and A. Lanfranchi, Degenerative and regenerative processes in the olfactory system of homing pigeons. Arch Ital Biol,1976. 114(4):p.376-88.
    20. Carlson, B.M. and J.A. Faulkner, Muscle regeneration in young and old rats:effects of motor nerve transection with and without marcaine treatment. J Gerontol A Biol Sci Med Sci,1998.53(1):p. B52-7.
    21. Thomas, C.K., et al., Properties of medial gastrocnemius motor units and muscle fibers reinnervated by embryonic ventral spinal cord cells. Exp Neurol,2003.180(1):p.25-31.
    22. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science,1998.282(5391):p.1145-7.
    23. Zhang, S.C., et al., In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol,2001. 19(12):p.1129-33.
    24. Zhao, L.R., et al., Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol,2002.174(1):p.11-20.
    25. Sanchez-Ramos, J., et al., Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol,2000.164(2):p.247-56.
    26. Sanchez-Ramos, J.R., Neural cells derived from adult bone marrow and umbilical cord blood. J Neurosci Res,2002.69(6):p.880-93.
    27. Woodbury, D., K. Reynolds, and I.B. Black, Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J Neurosci Res,2002.69(6):p.908-17.
    28. Kondo, T., et al., Sonic hedgehog and retinoic acid synergistically promote sensory fate specification from bone marrow-derived pluripotent stem cells. Proc Natl Acad Sci U S A,2005.102(13):p.4789-94.
    29. Ni, W.F., et al., In vitro neural differentiation of bone marrow stromal cells induced by cocultured olfactory ensheathing cells. Neurosci Lett,2010. 475(2):p.99-103.
    30. Gulati, A.K., Evaluation of acellular and cellular nerve grafts in repair of rat peripheral nerve. J Neurosurg,1988.68(1):p.117-23.
    31. Hall, S.M., Regeneration in cellular and acellular autografts in the peripheral nervous system. Neuropathol Appl Neurobiol,1986.12(1):p. 27-46.
    32. Gulati, A.K. and G.P. Cole, Nerve graft immunogenicity as a factor determining axonal regeneration in the rat. J Neurosurg,1990.72(1):p. 114-22.
    33. Wichterle, H., et al., Directed differentiation of embryonic stem cells into motor neurons. Cell,2002.110(3):p.385-97.
    34. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science,2007.318(5858):p.1917-20.
    35. Okita, K., T. Ichisaka, and S. Yamanaka, Generation of germline-competent induced pluripotent stem cells. Nature,2007. 448(7151):p.313-7.
    36. Nakagawa, M., et al., Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol,2008.26(1):p. 101-6.
    37. Gage, F.H., Mammalian neural stem cells. Science,2000.287(5457):p. 1433-8.
    38. Clarke, D.L., et al., Generalized potential of adult neural stem cells. Science,2000.288(5471):p.1660-3.
    39. Doetsch, F., et al., Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell,1999.97(6):p.703-16.
    40. Johansson, C.B., et al., Identification of a neural stem cell in the adult mammalian central nervous system. Cell,1999.96(1):p.25-34.
    41. Kucia, M., J. Ratajczak, and M.Z. Ratajczak, Bone marrow as a source of circulating CXCR4+ tissue-committed stem cells. Biol Cell,2005.97(2):p. 133-46.
    42. Kucia, M., et al., Tissue-specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury. Blood Cells Mol Dis,2004.32(1):p.52-7.
    43. Kabos, P., et al., Generation of neural progenitor cells from whole adult bone marrow. Exp Neurol,2002.178(2):p.288-93.
    44. Hermann, A., et al., Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci,2004.117(Pt 19):p. 4411-22.
    45. Jang, Y.K., et al., Retinoic acid-mediated induction of neurons and glial cells from human umbilical cord-derived hematopoietic stem cells. J
    Neurosci Res,2004.75(4):p.573-84.
    46. Appel, B. and J.S. Eisen, Retinoids run rampant:multiple roles during spinal cord and motor neuron development. Neuron,2003.40(3):p. 461-4.
    47. Ericson, J., et al., Pax6 controls progenitor cell identity and neuronalfate in response to graded Shh signaling. Cell,1997.90(1):p.169-80.
    48. Briscoe, J., et al., Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature,1999.398(6728):p. 622-7.
    49. Nomura, H., C.H. Tator, and M.S. Shoichet, Bioengineered strategies for spinal cord repair. J Neurotrauma,2006.23(3-4):p.496-507.
    50. Lu, Q., A. Simionescu, and N. Vyavahare, Novel capillary channel fiber scaffolds for guided tissue engineering. Acta Biomater,2005.1(6):p. 607-14.
    51. Maquet, V., et al., Peripheral nerve regeneration using bioresorbable macroporous polylactide scaffolds. J Biomed Mater Res,2000.52(4):p. 639-51.
    52. Fawcett, J.W. and R.J. Keynes, Muscle basal lamina:a new graft material for peripheral nerve repair. J Neurosurg,1986.65(3):p.354-63.
    53. Sondell, M., G Lundborg, and M. Kanje, Regeneration of the rat sciatic nerve into allografts made acellular through chemical extraction. Brain Res,1998.795(1-2):p.44-54.
    54. Connolly, S.S., et al., Cavernous nerve regeneration using acellular nerve grafts. World J Urol,2008.26(4):p.333-9.
    55. Haase, S.C., et al., Recovery of muscle contractile function following nerve gap repair with chemically acellularized peripheral nerve grafts. J Reconstr Microsurg,2003.19(4):p.241-8.
    56. Brown, B., et al., The basement membrane component of biologic
    scaffolds derived from extracellular matrix. Tissue Eng,2006.12(3):p. 519-26.
    57. Rovak, J.M., et al., Peripheral nerve transplantation:the role of chemical acellularization in eliminating allograft antigenicity. J Reconstr Microsurg, 2005.21(3):p.207-13.
    58. Rye, D.B., C.B. Saper, and B.H. Wainer, Stabilization of the tetramethylbenzidine (TMB) reaction product:application for retrograde and anterograde tracing, and combination with immunohistochemistry. J Histochem Cytochem,1984.32(11):p.1145-53.
    59. Lemann, W., et al., Stabilization of TMB reaction product for electron microscopic retrograde and anterograde fiber tracing. Brain Res Bull, 1985.14(3):p.277-81.
    60. Ide, C, Peripheral nerve regeneration. Neurosci Res,1996.25(2):p. 101-21.
    61. Murphy, P., et al., The regulation of Krox-20 expression reveals important steps in the control of peripheral glial cell development. Development, 1996.122(9):p.2847-57.
    62. Bixby, J.L., J. Lilien, and L.F. Reichardt, Identification of the major proteins that promote neuronal process outgrowth on Schwann cells in vitro. J Cell Biol,1988.107(1):p.353-61.
    63. Carbonetto, S., Facilitatory and inhibitory effects of glial cells and extracellular matrix in axonal regeneration. Curr Opin Neurobiol,1991. 1(3):p.407-13.
    64. Skaper, S.D., S.E. Moore, and F.S. Walsh, Cell signalling cascades regulating neuronal growth-promoting and inhibitory cues. Prog Neurobiol,2001.65(6):p.593-608.
    1. Falls DL. Neuregulins:functions, forms, and signaling strategies. Exp Cell Res.2003 Mar 10;284(1):14-30.
    2. Britsch S. The neuregulin-I/ErbB signaling system in development and disease. Adv Anat Embryol Cell Biol.2007; 190:1-65.
    3. Holmes WE, Sliwkowski MX, Akita RW, Henzel WJ, Lee J, Park JW, et al. Identification of heregulin, a specific activator of p185erbB2. Science.1992 May 22;256(5060):1205-10.
    4. Wen D, Peles E, Cupples R, Suggs SV, Bacus SS, Luo Y, et al. Neu differentiation factor:a transmembrane glycoprotein containing an EGF domain and an immunoglobulin homology unit. Cell.1992 May 1;69(3):559-72.
    5. Fischbach GD, Rosen KM. ARIA:a neuromuscular junction neuregulin. Annu Rev Neurosci.1997;20:429-58.
    6. Yang X, Kuo Y, Devay P, Yu C, Role L. A cysteine-rich isoform of neuregulin controls the level of expression of neuronal nicotinic receptor channels during synaptogenesis. Neuron.1998 Feb;20(2):255-70.
    7. Bermingham-McDonogh O, Xu YT, Marchionni MA, Scherer SS. Neuregulin expression in PNS neurons:isoforms and regulation by target interactions. Mol Cell Neurosci.1997;10(3-4):184-95.
    8. Clemence A, Mirsky R, Jessen KR. Non-myelin-forming Schwann cells proliferate rapidly during Wallerian degeneration in the rat sciatic nerve. J Neurocytol.1989 Apr; 18(2):185-92.
    9. Cheng L, Esch FS, Marchionni MA, Mudge AW. Control of Schwann cell survival and proliferation:autocrine factors and neuregulins. Mol Cell Neurosci. 1998 Oct;12(3):141-56.
    10. Harrisingh MC, Perez-Nadales E, Parkinson DB, Malcolm DS, Mudge AW, Lloyd AC. The Ras/Raf/ERK signalling pathway drives Schwann cell dedifferentiation. Embo J.2004 Aug 4;23(15):3061-71.
    11. Svaren J, Meijer D. The molecular machinery of myelin gene transcription in Schwann cells. Glia.2008 Nov 1;56(14):1541-51.
    12. Jessen KR, Mirsky R. Negative regulation of myelination:relevance for development, injury, and demyelinating disease. Glia.2008 Nov 1;56(14):1552-65.
    13. Parkinson DB, Bhaskaran A, Droggiti A, Dickinson S, D'Antonio M, Mirsky R, et al. Krox-20 inhibits Jun-NH2-terminal kinase/c-Jun to control Schwann cell proliferation and death. J Cell Biol.2004 Feb 2;164(3):385-94.
    14. Parkinson DB, Bhaskaran A, Arthur-Farraj P, Noon LA, Woodhoo A, Lloyd AC, et al. c-Jun is a negative regulator of myelination. J Cell Biol.2008 May 19;181(4):625-37.
    15. Decker L, Desmarquet-Trin-Dinh C, Taillebourg E, Ghislain J, Vallat JM, Charnay P. Peripheral myelin maintenance is a dynamic process requiring constant Krox20 expression. J Neurosci.2006 Sep 20;26(38):9771-9.
    16. Salzer JL. Switching myelination on and off. J Cell Biol.2008 May 19;181(4):575-7.
    17. Lyons DA, Pogoda HM, Voas MG, Woods IG, Diamond B, Nix R, et al. erbb3 and erbb2 are essential for schwann cell migration and myelination in zebrafish. Curr Biol.2005 Mar 29; 15(6):513-24.
    18. Birchmeier C, Nave KA. Neuregulin-1, a key axonal signal that drives Schwann cell growth and differentiation. Glia.2008 Nov 1;56(14):1491-7.
    19. Taveggia C, Zanazzi G, Petrylak A, Yano H, Rosenbluth J, Einheber S, et al. Neuregulin-1 type III determines the ensheathment fate of axons. Neuron.2005 Sep 1;47(5):681-94.
    20. Tao Y, Dai P, Liu Y, Marchetto S, Xiong WC, Borg JP, et al. Erbin regulates NRG1 signaling and myelination. Proc Natl Acad Sci U S A.2009 Jun 9;106(23):9477-82.
    21. Brinkmann BG, Agarwal A, Sereda MW, Garratt AN, Muller T, Wende H, et al. Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system. Neuron.2008 Aug 28;59(4):581-95.
    22. Chen S, Velardez MO, Warot X, Yu ZX, Miller SJ, Cros D, et al. Neuregulin 1-erbB signaling is necessary for normal myelination and sensory function. J Neurosci.2006 Mar 22;26(12):3079-86.
    23. Nave KA, Salzer JL. Axonal regulation of myelination by neuregulin 1. Curr Opin Neurobiol.2006 Oct;16(5):492-500.
    24. Freidin M, Asche S, Bargiello TA, Bennett MV, Abrams CK. Connexin 32 increases the proliferative response of Schwann cells to neuregulin-1 (Nrgl). Proc Natl Acad Sci U S A.2009 Mar 3;106(9):3567-72.
    25. Banerjee S, Pillai AM, Paik R, Li J, Bhat MA. Axonal ensheathment and septate junction formation in the peripheral nervous system of Drosophila. J Neurosci.2006 Mar 22;26(12):3319-29.
    26. Sandrock AW, Jr., Dryer SE, Rosen KM, Gozani SN, Kramer R, Theill LE, et al. Maintenance of acetylcholine receptor number by neuregulins at the neuromuscular junction in vivo. Science.1997 Apr 25;276(5312):599-603.
    27. Mei L, Xiong WC. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci.2008 Jun;9(6):437-52.
    28. Krivosheya D, Tapia L, Levinson JN, Huang K, Kang Y, Hines R, et al. ErbB4-neuregulin signaling modulates synapse development and dendritic arborization through distinct mechanisms. J Biol Chem.2008 Nov 21;283(47):32944-56.
    29. Li B, Woo RS, Mei L, Malinow R. The neuregulin-1 receptor erbB4 controls glutamatergic synapse maturation and plasticity. Neuron.2007 May 24;54(4):583-97.
    30. Altiok N, Altiok S, Changeux JP. Heregulin-stimulated acetylcholine receptor gene expression in muscle:requirement for MAP kinase and evidence for a parallel inhibitory pathway independent of electrical activity. Embo J.1997 Feb 17;16(4):717-25.
    31. Fromm L, Rhode M. Neuregulin-1 induces expression of Egr-1 and activates acetylcholine receptor transcription through an Egr-1-binding site. J Mol Biol. 2004 Jun 4;339(3):483-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700