酪蛋白酶解肽谱对树突状细胞成熟的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酪蛋白经水解制得的多肽是重要的生物活性肽,具有免疫调节能力。本研究分别利用胰蛋白酶及胃蛋白酶的酶解酪蛋白,经乙醇、超滤以及Sephadex G-25两次分离纯化后,制备两种不同的酪蛋白水解多肽。一方面以Balb/c小鼠为实验动物,分别将同一浓度的胰蛋白酶水解的酪蛋白多肽通过口服,腹腔注射和静脉注射给药。利用悬浮液体芯片系统,检测小鼠外周血血清中24种细胞因子的浓度变化,研究胰蛋白酶酪蛋白水解多肽对小鼠细胞因子网络的影响并推测产生的先天免疫应答。结果灌胃组中,大部分细胞因子的水平是升高的,抗炎细胞因子IL-5,IL-9,IL-10,MIP-1α是降低的,说明酪蛋白水解多肽促进发炎细胞因子的合成,具有刺激免疫升高的作用。腹腔注射组与此类似。静脉注射的酪蛋白水解多肽对细胞因子水平的影响与灌胃组、腹腔注射组相比明显不同。因为多肽不经过肠粘膜免疫系统直接进入血液,推测通过激活多种免疫细胞内部不同的信号途径影响了细胞因子的基因表达。另一方面诱导培养C57BL/6雄性小鼠骨髓源的树突状细胞(Dendritic cells),用不同浓度的水解多肽刺激DCs,在48h后进行流式细胞仪检测,鉴定DCs的成熟程度,并将成熟后的DCs与T细胞共孵育96h,CCK-8检测T细胞增殖。结果表明:两种酶水解酪蛋白多肽均能够刺激DCs的成熟,但刺激程度低于阳性对照LPS。而且成熟的DCs能够刺激T细胞增殖,说明DCs具有对这些多肽的抗原递呈能力。其上清液中的细胞因子IL-1α、IL-β、IL-2、IL-6、IL-12的分泌提高, TNF-α、IFN-γ浓度降低,促使幼稚T细胞向Th2极化。说明酪蛋白水解多肽对获得性免疫具有信号传递作用。
The polypeptides derived from casein are important biological active peptides(BAP), which have obvious immunostimulating properties. Polypeptides were separated from tryptic and peptic casein hydrolysates by ethanol sedimentation, ultrafiltration and two rounds of Sephadex G-25 chromatography. First, use Millipore mouse Cytokine kits to test the concentrations of 24 cytokines in serum of mouse, which treated with polypeptides were separated from tryptic casein hydrolysates (TCH) through oral administration, intraperitoneal injection, intravenous injection to study the effects of peptides on the cytokine network and the impacts of innate immune response . The results indicated that, the concentrations of most of cytokines in serum of mouse were grown besides the anti-inflammatory cytokines as IL-5,IL-9,IL-10,MIP-1αwere reduced in the oral administration group; similar to the intraperitoneal injection group. The results of intravenous injection group was significantly different compared with the other two groups, which show that the peptide go to blood directly but not thought mucosal immune system, and activate a variety of different signaling pathways in immunocyte then change the gene expression of cytokine . Second, bone marrow-derived dendritic cells(DCs), which were generated from male C57BL/6 mouse were stimulated by casein-derived polypeptides, and 24 hours later, cells were tested on flow cytometry . The stimulated DCs and T cells were co-cultured 96 hours, and T cells proliferation was assayed using CCK-8 kit .The result show that two kinds of casein-derived polypeptides were able to stimulate DCs to mature, but the stimulation was lower than the LPS which as a positive control .And mature DCs can stimulate T cell proliferation, indicating DCs had the ability to present of the polypeptide. The concentrations of IL-1α, IL-β, IL-2, IL-6, IL-12 in clear supernatant liquid were increased, and the concentration of TNF-α, IFN-γwere decreased, indicating the Th2 polarization of naive T. The result shows that the casein-derived polypeptides have a regulating function on the acquired immune function.
引文
[1]Zioudrou.C, R.A. Streaty, and W.A. Klee, Opioid peptides derived from food proteins [J]. Biol Chem, 1979. 254: 2446-2449.
    [2]Lahov.E. and W. Regelson, Antibacterial and immunostimulating casein-derived substances from milk:casecidin, isracidin peptides [J]. Food Chem Toxicol, 1996. 34: 131-45.
    [3]FitzGerald.R.J.and H.Meisel, Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme [J]. Nutr, 2000. 84 Suppl 1: S33-37.
    [4]Manson.W. and W.D. Annan, The structure of a phosphopeptide derived from–casein [J]. Arch Biochem Biophys, 1971. 145: 16-26.
    [5]Vegarud.G.E., T. Langsrud, and C. Svenning, Mineral-binding milk proteins and peptides; occurrence, biochemical and technological characteristics [J]. Nutr, 2000. 84 Suppl 1: S91-98.
    [6]Yamamoto.N. and T. Takano, Antihypertensive peptides derived from milk proteins. [J] Nahrung, 1999. 43: 159-164.
    [7]Fiat.A.M., et al., Biologically active peptides of casein and lactotransferrin implicated in platelet function[J]. Dairy Res, 1989. 56: 351-355.
    [8]郑华,傅伟龙,酪蛋白水解物对小鼠生长及免疫功能的影响[J].华南农业大学学报, 2000. 21: 71-74.
    [9]Meisel.H., Biochemical properties of regulatory peptides derived from milk proteins [J]. Biopolymers, 1997. 43: 119-28.
    [10]]FitzGerald.R.J.and H. Meisel, Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme [J]. Nutr, 2000. 84 Suppl 1: S33-37.
    [11]Manson.W. and W.D. Annan, The structure of a phosphopeptide derived from–casein [J]. Arch Biochem Biophys, 1971. 145: 16-26.
    [12]Mc Cafferty.D.G., et al., Synergy and duality in peptide antibiotic mechanisms [J]. Curr Opin Chem Biol, 1999. 3(6): 672-680.
    [13]Meisel.H. and R.J. FitzGerald, Opioid peptides encrypted in intact milk protein sequences [J]. Nutr, 2000. 84 Suppl 1: S27-31.
    [14]Roesler. J., et al. Application of purified polysaccharides from cell cultures of the plant Echinacea purpurea to test subjects mediates activation of the phagocyte system [J]. Immunopharmacol, 1991. 13: 931-41.
    [15]Meisel. H., Multifunctional peptides encrypted in milk proteins [J]. Biofactors, 2004. 21: 55-61.
    [16]Kayser.H. and H. Meisel, Stimulation of human peripheral blood lymphocytes by bioactive peptides derived from bovine milk proteins [J]. FEBS Lett, 1996. 383: 18-20.
    [17]Neutra.M.R, Frey.A.and Kraehenbuhl.J.P.,Epithelial M cells: gateways for mucosal infection and immunization [J]. Cell, 1996, 86: 345-348.
    [18]Mowat.A.,Intestinal graft versus host disease. In: Ferrara JLN, Deeg HJ and Burakoff SJ (eds.). Graftvs-Host Disease. Marcel Dekker, New York, 1997, pp 337-384 Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens [J]. Nat Rev Immunol, 2003.3: 331-341
    [19]庞广昌,陈庆森,胡志和.食品是如何通过细胞因子网络控制人类健康的(Ⅰ)[J].食品科学, 2006, 27(5): 258-264.
    [20]庞广昌,陈庆森,胡志和.食品是如何通过细胞因子网络控制人类健康的(Ⅱ)[J].食品科学, 2006, 27(6): 260-270.
    [21]Jacques B, Ralph MS. Dendritic cells and the control of immunity [J]. Nature, 392: 245-252.
    [22] Steinman, R.M. et al. (2003) Tolerogenic dendritic cells [J]. Annu. Rev. Immunol. 21, 685–711
    [23] Steinman RM. The dendritic cell system and its role in immunogenicity [J].Anon Rev Immunol,1991.9: 271-296
    [24] Tomonori.I,Shimoyama. S,Kang. L,et al,The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo[J].J Exp Med,2002, 195 : 1289-1305
    [25]张临友,张学峰树突状细胞的起源和分化[J]国外医学免疫学分册2003,1: 36-40
    [26]丁传林树突状细胞的发育、亚群及其对T细胞应答类型的调控[J].上海免疫学杂志,2002 ,5 :347~348
    [27]张霞树突状细胞在免疫学上的研究进展[J].中国动物保健,2003,7:35-38
    [28]Kim .K.D, Lim .H.Y, Lee .H.G, et al. Apolipoprotein A-I induces IL-10 and PGE2 production in human monocytes and inhibits dendritic cell differentiation and maturation[J]. Biochem Biophys Res Commun, 2005,338: 1126~1136
    [29]Ohl.L, Mohaupt.M, Czeloth.N, et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions [J]. Immunity, 2004,21: 279-88
    [30]Randolph.G.J, Angeli.V, Swartz.M.A., Dendritic-cell trafficking to lymph nodes through lymphatic vessels [J]. Nat Rev Immunol, 2005,5: 617-628
    [31]Medzhitov.R, Toll-like receptors and innate immunity [J]. Nat Rev Immunol, 2001,1: 135-45
    [32]Gallucci.S, Lolkema.M, Matzinger.P. Natural adjuvants: endogenous activators of dendritic cells[J]. Nat Med, 1999, 5: 1249-1255
    [33]Le Bon.A, Etchart N, Rossmann C, et al. Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon[J]. Nat Immunol, 2003,4: 1009-1015
    [34]Sallusto.F, Lanzavecchia.A., Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha[J]. Exp Med, 1994,179: 1109-1118
    [35]Sporri R, Reis e Sousa C. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function[J]. Nat Immunol, 2005,6: 163-170
    [36]Blander JM, Medzhitov R. Regulation of phagosome maturation by signals from toll-like receptors[J]. Science, 2004,304: 1014-1018
    [37]Agerberth B, Charo J et al. The human antimicrobial and chemotactic peptides L-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations[J]. Blood, 2000,96: 3086~3089
    [38]Blander.J.M, Medzhitov.R .Toll-dependent selection of microbial antigens for presentation by dendritic cells[J]. Nature, 2006,440: 808-812
    [39]Visser.S and Recio.I. Process for producing peptides from biological fluids and peptides obtainable by said process[J]. European patent 98,203: 107-108
    [40]Fayette. J. et al. Human dendritic cells skew isotype switching of CD40-activated naive B cells towards IgA1 and IgA2 [J]. Exp. Me, 1997,185: 1909-1918
    [41]Pasare C, Medzhitov R. Control of B-cell responses by Toll-like receptors [J]. Nature, 2005, 438: 364-368
    [42]Ruprecht.C.R, Lanzavecchia .A.Toll-like receptor stimulation as a third signalrequired for activation of human naive B cells[J]. Eur J Immunol, 2006,36:810-816
    [43]Matsumoto.M. et al. Distinct roles of lymphotoxin-a and type 1 TNF receptor in the establishment of follicular dendritic cells from non-bone marrow-derived cells[J]. Exp. Med, 1997,186: 1997-2004
    [44]Grouard.G., Durand, I., Filgueira, L., et al. Dendritic cells capable of stimulating T cells in germinal centres[J]. Nature, 1996,384: 364-367
    [45]Soderberg KA, Payne GW, Sato A, et al. Innate control of adaptive immunity via remodeling of lymph node feed arteriole[J]. Proc Natl Acad Sci USA, 2005,102: 6315~6320
    [46]Hashimoto.C, Hudson.K.L, Anderson K.V. The Toll gene of Drosophila, required for 4 dorsal-ventral embryonic polarity, appears to encode a transmembrane protein [J]. Cell, 1988, 52: 269–79.
    [47]Sallusto.F, Cella.M, Danieli C, et al. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products [J]. Exp. Med, 1995, 182: 389–400.
    [48]Tan MC, Mommaas AM, Drijfhout JW, et al. Mannose receptor-mediated uptake of antigens strongly enhances HLA class II-restricted antigen presentation by cultured dendritic cells [J]. Eur. J. Immunol, 1997, 27: 2426–2435.
    [49]Brown, GD. Dectin-1: a signalling non-TLR pattern-recognition receptor [J]. Nat. Rev. Immunol., 2006, 6:33–43.
    [50]Ariizumi K, Shen GL, Shikano S, et al. Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning [J]. J Biol Chem, 2000, 275:20157-20167.
    [51]Leibundgut-Landmann S, Robinson MJ, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17 [J]. Nat. Immunol., 2007, 8: 630–638.
    [52]Cambi A, Gijzen K, De Vries J M et al. The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells [J]. Eur. J. Immunol, 2003, 33(2): p 532–538.
    [53]Serrano-Gomez D, Leal JA, Corbi AL. DC-SIGN mediates the binding of Aspergillus fumigatus and keratinophylic fungi by human dendritic cells [J]. Immunobiology, 2005, 210: p175–183.
    [54]Figdor CG, van Kooyk Y, Adema GJ. C-type lectin receptors on dendritic cellsand Langerhans cells [J]. Nat. Rev. Immunol., 2002, 2: 77–84.
    [55]McKenzie EJ, Philip RT, Richard JS, et al. Mannose Receptor Expression and Function Define a New Population of Murine Dendritic Cells [J]. Journal of Immunology, 2007, 178: 4975-4983.
    [56]Martinez-Pomares L, Reid DM, Brown GD, et al. Analysis of mannose receptor regulation by IL-4, IL-10, and proteolytic processing using novel monoclonal antibodies [J]. J Leukoc Biol., 2003, 73: 604-613.
    [57]DeFife KM, Jenney CR, McNally AK, et al. Interleukin-13 induces human monocyte/macrophage fusion and macrophage mannose receptor expression [J]. J Immunol, 1997, 158: 3385-3390.
    [58]Doyle AG, Herbein G, Montaner LJ, et al. Interleukin-13 alters the activation state of murine macrophages in vitro: comparison with interleukin-4 and interferon-gamma [J]. Eur J Immunol, 1994, 24: 1441-1445.
    [59]Soilleux EJ, Morris LS, Leslie G, et al. Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro [J]. J Leukoc Biol, 2002, 71: 445-457.
    [60]Willment JA, Lin HH, Reid DM, et al. Dectin-1 expression and function are enhanced on alternatively activated and GM-CSF-treated macrophages and are negatively regulated by IL-10, dexamethasone, and lipopolysaccharide [J]. J Immunol, 2003, 171: 4569-4573.
    [61]Salzman NH, Ghosh D, Huttner KM, et al. 2003b. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin [J]. Nature, 2003b, 422: 522–526.
    [62]Werts C, Girardin SE, Philpott DJ. TIR, CARD and PYRIN: three domains for an antimicrobial triad [J]. Cell Death Differ, 2006, 13: 798-815.
    [63]Girardin SE, Boneca IG, Viala J, et al. Nod2 is a general sensor of peptideglycan through muramyl dipeptide (MDP) detection [J]. J Biol Chem, 2003, 278: 8869-8872.
    [64]Inohara N, Ogura Y, Fontalba A, et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. [J] Biol Chem, 2003, 278: p 5509-5512.
    [65]Sugawara Y, Uehara A, Fujimoto Y, et al. Toll-like receptors, NOD1, and NOD2 in oral epithelial cells [J]. Dent. Res., 2006, 85: 524-529.
    [66]Uehara A, Fujimoto Y, Fukase K et al. Various human epithelial cells express functional Toll-like receptors, NOD1 and NOD2 produce antimicrobial peptides, butnot proinflammatory cytokines [J]. Mol. Immunol., 2007, 44: 3100–3111.
    [67]Boughan PK, Argent RH, Body-Malapel M, et al. Nucleotide-binding oligomerization domain-1 and epidermal growth factor receptor: critical regulators of beta-defensins during helicobacter pylori infection [J]. J. Biol. Chem., 2006, 281: 11637–11648.
    [68]Park JH, Kim YY, Shaw M, et al. Nod1/RICK and TLR signaling regulate chemokine and antimicrobial innate immune responses in mesothelial cells [J]. J. Immunol., 2007, 179: 514–521.
    [69]Magalhaes JG, Philpott DJ, Nahori MA, et al. Murine Nod1 but not its human orthologue mediates innate immune detection of tracheal cytotoxin [J]. EMBO Rep., 2005, 6: 1201–1207.
    [70]Totemeyer S, Sheppard M, Lloyd A, et al. IFN-gamma enhances production of notric oxide from macrophages via a mechanism that depends on nucleotide oligomerization domain-2 [J]. Immunol, 2006, 176: 4804–4810.
    [71]Chamaillard M, Hashimoto M, Horie Y, et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. [J] Nat Immunol, 2003, 4: 702-707.
    [72]Fritz JH, Girardin SE, Fitting C, et al. Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and NOD1- and NOD2- activating agonists[J]. Eur J Immunol, 2005, 35: 2459–2470.
    [73]Tada H, Aiba S, Shibata K-I, et al. Synergistic effect of Nod1 and Nod2 agonists with toll-like receptor agonists on human dendritic cells to generate interleukin-12 and T helper Type 1 cells [J]. Infect Immun, 2005, 73: 7967–7976.
    [74]Fritz JH, Le Bourhis L, Sellge G, et al. Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity [J]. Immunity, 2007, 26: 445– 459.
    [75]Kobayashi K, Hernandez LD, Galan JE, et al. IRAK-M is a negative regulator of Toll-like receptor signaling. [J] Cell, 2002, 110: 191–202.
    [76]Suzuki N, Suzuki S, Duncan GS, et al. Severe impairment of interleukin-1 and Toll-like receptor signaling in mice lacking IRAK-4 [J]. Nature, 2002, 416: 750–756.
    [77]Akira S, Takeda K. Toll-like receptor signaling. [J]Nat. Rev. Immunol, 2004, 4: p 499–511.
    [78]West AP, Koblansky AA, Ghosh S. Recognition and signaling by toll-like receptors [J]. Annu. Rev. Cell Dev. Biol., 2006, 22: 409–437.
    [79]Kawai T, Adachi O, Ogawa T, et al. Unresponsiveness of MyD88-deficient mice to endotoxin [J]. Immunity, 1999, 11:115-122.
    [80]Horng T, Barton GM, Flavell RA, et al. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors[J]. Nature, 2002, 420(6913):329-333.
    [81]Funami K, Matsumoto M, Oshiumi H, et al. The cytoplasmic 'linker region' in Toll-like-receptor 3 controls receptor localization and signaling[J]. International Immunology, 2004, 16 : 1143-1154.
    [82]Sasai M, Matsumoto M, Seya, T. The Kinase Complex Responsible for IRF-3-Mediated IFN-[beta] Production in Myeloid Dendritic Cells (mDC) [J]. Journal of Biochemistry, 2006, 139: 171-175.
    [83]Gantner BN, Simmons RM, Canavera SJ, et al. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. [J]J Exp Med, 2003, 197: 1107-1117.
    [84]Rogers NC, Slack EC, Edwards AD, et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins[J]. Immunity, 2005, 22:507-517.
    [85]Gross O, Gewies A, Finger K, et al. Card9 controls a non-TLR signaling pathway for innate anti-fungal immunity. [J] Nature, 2006, 442: 651-656.
    [86]Herre J, Marshall AS, Caron E, et al. Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages [J]. Blood, 2004, 104: 4038-4045.
    [87]Caparros E, Munoz P, Sierra-Filardi E, et al. DC-SIGN ligation on dendritic cells results in ERK and PI3K activation and modulates cytokine production [J]. Blood, 2006, 107: 3950-3958.
    [88]Hodges A, Sharrocks K, Edelmann M, et al. Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication [J]. Nat Immunol, 2007, 8: 569-577.
    [89]Geijtenbeek TB, van Vliet SJ, Koppel EA, et al. Mycobacteria target DC-SIGN to suppress dendritic cell function [J]. Exp Med, 2003, 197: 7-17.
    [90]Gringhuis SI, den Dunnen J, Litjens M, et al. C-type lectin DC-SIGN modulates toll-like receptor signaling via raf-1 kinase-dependent acetylation of transcription factor NF-kappaB [J]. Immunity, 2007, 26: 605-616.
    [91]Kobayashi K, Inohara, N, Hernandez LD, et al. RICK/Rip2/CARDIAK mediates signaling for receptors of the innate and adaptive immune systems [J]. Nature, 2002,416: 194–199.
    [92]Inohara N, Koseki T, Lin J, et al. An induced proximity model for NF-κB activation in the Nod1/RICK and RIP signaling pathways. [J] Biol. Chem., 2000, 275: 27823–27831.
    [93]Abbott DW, Wilkins A, Asara JM, et al. The Crohn’s disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO. [J] Curr. Biol., 2004, 14: 2217–2227.
    [94]Hayden M S, Ghosh, S. Signaling to NF-κB[J]. Genes Dev., 2004, 18: 2195–2224.
    [95]Pan Q, Kravchenko V, Katz A, et al. NF-kappa B-inducing kinase regulates selected gene expression in the Nod2 signaling pathway [J]. Infect. Immun., 2006, 74: 2121–2127.
    [96]Girardin SE, Tournebize R, Mavris M, et al. CARD4/Nod1 mediates NF-kappaB and JUK activation by invasive Shigella flexneri [J]. EMBO Rep., 2001, 2: p736–742.
    [97]da Silva Correia J, Miranda Y, Leonard N, et al. SGT1 is essential for Nod1 activation [J]. Proc. Natl. Acad. Sci. USA, 2007, 104:6764–6769.
    [98]Dufner A, Pownall S, Mak TW. Caspase recruitment domain protein 6 is a microtubule-interacting protein that positively modulates NF-kappaB activation [J]. Proc. Natl. Acad. Sci. U.S.A., 2006, 103: 988–993.
    [99]Chen CM, Gong Y, Zhang M, et al. Reciprocal cross-talk between Nod2 and TAK1 signaling pathways[J]. Biol Chem, 2004, 279: 25876-25882.
    [100]Mayor A, Martinon F, De Smedt T, et al. A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses [J]. Nat. Immunol, 2007, 8:497–503.
    [101]Gobbetti, M., et al. Latent bioactive peptides in milk proteins: proteolytic activation and significance in dairy processing. [J]Crit. Rev. Food Sci. Nutr, 2002,42: 223~239
    [102]庞广昌.[M]食品免疫论-关于胃肠黏膜免疫和细胞因子网络的科学.北京:科学出版社,2008,498~556
    [103]陈义.毛细管电泳技术及应用(第二版)[M].北京:化学工业出版社,2006.
    [104]D T, Nguyen, Zemann. Separation of derivatized carbohydrates by coelectroosmotic capillary electrophoresis [J]. Chromatographia,1997,46:113-121.
    [105]崔波,程云辉,种秋平.毛细管电泳在多肽分离和检测中的应用[J].食品与机械, 2004: 45-47.
    [106]梁振,张维冰,张玉奎. CZE-ESI-MS联用测定小肽混合物的研究[J].药物分析杂志, 2004(4): 213-215.
    [107]董标,董方霆,梁月琴,吴胜明,杨征.毛细管电泳测定阿片肽方法的探索. [R]军事医学科学院国家生物医学分析中心, 2005.
    [108]LU KE TOLL EY, JAMES W JORGENSON , M ARTHUR MOSEL EY. Very High Pressure Gradient LC/ MS/ MS .[J]. Analytical Chemistry , 2001 , 73 : 2985 - 29911
    [109]林炳承,邹雄,韩培祯.高效液相色谱在生命科学中的应用[M]济南:山东科学技术出版社,1996. 30-47 ,190-1931
    [110]De Jager W, Velthuis H, Prakken B J, et al. Simultaneous detection of 15 human cytokines in a single sample of stimulated peripheral blood mononuclear cells [J]. Clin Diagn Lab Immunol, 2003, 10:133-139.
    [111]Carson R T, Vignali D A. Simultaneous quantitation of 15 cytokines using a multiplexed flow cytometric assay [J]. J Immunol Methods, 1999, 227:41-52.
    [112]Fulton R J, McDade R L, Smith P L, et al. Advanced multiplexed analysis with the FlowMetrix system [J]. Clin Chem, 1997, 43:1749-1756.
    [113]Kardar G A, Jeddi-Tehrani M, Shokri F. Diminished Th1 and Th2 cytokine production in healthy adult nonresponders to recombinant hepatitis B vaccine[J]. Scand J Immunol, 2002, 55:311-314.
    [114]Hidaka T, Suzuki K, Kawakami M, et al. Dynamic changes in cytokine levels in serum and synovial fluid following filtration leukocytapheresis therapy in patients with rheumatoid arthritis [J]. J Clin Apheresis, 2001, 16: 74-81.
    [115]Romagnani S. The role of lymphocytes in allergic disease [J]. Allergy Clin Immunol, 2000, 105:399-408.
    [116]Agnello D., Lankford C.S., Bream J., et al. Cytokines and transcription factors that regulate T helper cell differentiation: new players and new insights. [J] Clin Immuno,2003,23:147-161
    [117]Trinchieri G, Scott P. Interleukin-12: basic principles and clinical applications.[J] Curr Top Microbiol Immunol,1999,238:57-78
    [118]O’Garra A., Arai N. The molecular basis of T helper 1 and T helper 2 cell differentiation.[J] Trends Cell Biol,2000,10: 542-550
    [119]Wynn TA., Morawetz R., Scharton-Kersten T., et al. Analysis of granulomaformation in double cytokine-deficient mice reveals a central role for IL-10 in polarizing both T helper cell 1- and T helper cell 2-type cytokine responses in vivo[J]. Immunol,1997,159:5014-5023
    [120]T. Hirano, K. Yasukawa, H. Harada, et al., Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin [J]. Nature, 1986,324:73-76
    [121]T.K. Teague, P. Marrack, J.W. Kappler, et al. IL-6 rescues resting mouse T cells from apoptosis[J]. Immunol, 1997,158:p5791-5796
    [122]M. Rincon, J. Anguita, T. Nakamura, et al. Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4+ T cells[ J]. Exp. Med, 1997,185: 461-469
    [123]S. Diehl. J. Anguita, A. Hoffmeyer, et al. Inhibition of Th1 differentiation by IL-6 is mediated by SOCS1.[J] Immunity, 2000:13805-13815
    [124]Moore. K.W. et al. Interleukin-10 and the interleukin-10 receptor. [J] Annu. Rev. Immunol, 2001,19: 683-765
    [125]Epstein–Barr virus gene BCRFI[J]. Science, 1990,248: 1230-1234
    [126]Hsu, D.H. et al. Expression of interleukin-10 activity by Epstein–Barr virus protein BCRF1[J]. Science 1990,250: 830-832
    [127]David M. Sansom, Claire N. Manzotti and Yong Zheng. What’s the difference between CD80 and CD86. TRENDS in Immunology[J]. 2003,6: 313-318

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700