Nrf2-ARE信号通路在癫痫脑损伤中的作用及莱菔硫烷的神经保护机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
癫痫是最常见的神经系统疾病之一,是多种病因导致的慢性脑部病变,以大脑神经元过度地、反复超同步化放电为特征,临床表现为短暂性中枢神经系统功能失常的综合征。癫痫反复发作可导致脑部神经元选择性损伤,甚至坏死丢失,从而引起胶质细胞增生、突触重构等脑结构和功能的可塑性变化;而大脑这些可塑性变化又使癫痫反复发作,是癫痫难治的主要原因之一,反复癫痫发作的患者常伴有认知功能损伤,其发生率约为30%-40%。
     癫痫的发病机制非常复杂,迄今尚未完全阐明,氧化应激损伤、谷氨酸兴奋性毒性、钙超载等多种因素都能诱导神经元异常放电触发癫痫。其中氧化应激产生的氧自由基连锁反应是神经元受损的核心病理环节。近年的研究结果证实,许多慢性疾病都与人体内氧化应激发生,累积过多的自由基(Free Radical, FR)有关,癫痫与氧化应激之间的关系日益成为科研工作者研究的热点。无论是癫痫动物模型还是癫痫患者的脑内均存在着活跃的氧化应激反应,癫痫发作时FR含量明显增加,远远超过机体对FR的清除能力。大量的FR可以直接使脂质、蛋白质及DNA等大分子物质发生氧化损伤,从而破坏细胞膜及其它细胞结构,同时FR还能通过抑制线粒体功能引起细胞凋亡。因此,针对氧自由基在癫痫脑损伤病理机制中重要作用,抑制氧化应激和清除氧自由基可能是治疗癫痫的重要策略。
     转录因子NF-E2相关因子(NF-E2-related factor2,Nrf2)是细胞氧化应激反应中的关键因子,通过与抗氧化反应元件(antioxidant responseelement,ARE)相互作用调节抗氧化蛋白和Ⅱ相解毒酶的表达。Nrf2是机体调节抗氧化反应的重要转录因子,正常生理情况下位于细胞浆中,在细胞浆中与Keapl结合形成复合体,且被泛素蛋白酶迅速降解,从而保持其低活性的生理状态。当机体受到氧自由基和内源性毒素等攻击后Nrf2与Keapl解离,其半衰期明显延长,然后转位进入细胞核,与抗氧化反应元件ARE结合后诱导抗氧化蛋白和Ⅱ相解毒酶基因的表达。到目前为止,已证实经Nrf2-ARE信号路径调节的可编码内源性保护基因超过200个。它们在增强组织抗氧化能力、保护组织细胞免受毒物损伤、抗肿瘤、抗炎症和抗凋亡中起着重要的作用,其中血红素氧合酶1(hemeoxygenase1,HO-1)和依赖还原型辅酶/Ⅱ醌氧化还原酶1(NADPH:quinone oxidoreductase1,NQO1)是该通路编码的重要的抗氧化酶。在中枢神经系统上调HO-1和NQO1的表达,能够减少氧自由基和内源性毒素对神经元的毒性作用。既往研究证实,激活Nrf2-ARE信号通路上调其基因产物的表达对神经系统疾病如帕金森病、脑出血、脑梗死和脑外伤等,具有很强的神经保护功能。但是,Nrf2-ARE信号通路在癫痫发病中表达改变,及其对海马神经元的保护作用还未见明确相关报道。
     莱菔硫烷(Sulforaphane,SF)是一种广泛存在于十字花科蔬菜的异硫氰酸盐,具有抗氧化、抗肿瘤和免疫调节等多种生物学特性,作为化学预防药物已引起广大研究者的关注。既往研究证实,SF是Nrf2-ARE信号通路重要的激活剂,能够诱发Nrf2磷酸化转位入核,与ARE结合,正向调控抗氧化蛋白和Ⅱ相解毒酶的表达,清除自由基从而对机体细胞起到保护作用。但SF对癫痫的神经保护作用及其具体分子机制尚未见明确报道。
     本实验主要采用杏仁核电点燃癫痫大鼠模型,观察癫痫大鼠模型海马组织中氧化应激参数(丙二醛和谷胱甘肽)的表达改变;Nrf2及其编码的基因产物HO-1和NQO1的表达改变;同时进一步验证以Nrf2-ARE信号通路为靶点的药物SF对海马组织氧化应激的改善情况及对神经元的保护作用。为阐明癫痫的病理生理机制提供实验依据,同时为癫痫治疗提供新的靶点,为抗癫痫药物的选择提供新的思路。
     第一部分Nrf2-ARE信号通路在急性电点燃癫痫大鼠海马的表达及意义
     目的:观察急性电点燃癫痫大鼠海马组织中氧化应激参数(丙二醛和谷胱甘肽)及Nrf2-ARE信号通路的表达改变,以期为癫痫的治疗提供新的靶点。
     方法:采用杏仁核快速电点燃制备急性癫痫大鼠模型(每天刺激20次,刺激间隔时间10min,连续刺激2d,刺激电流为恒流,单向方波。),通过分光光度法检测大鼠海马组织中氧化应激参数(丙二醛和谷胱甘肽)表达改变;通过免疫组化和Western blot方法观察Nrf2、HO-1和NQO1在海马组织中蛋白水平的表达改变;同时通过Real-time PCR方法观察Nrf2mRNA、HO-1mRNA和NQO1mRNA在海马组织中基因水平的表达改变。
     结果:1、氧化应激参数的改变:与对照组相比,癫痫组大鼠海马组织中谷胱甘肽(Glutathione, GSH)含量明显降低(P<0.01)。与对照组相比,癫痫组大鼠海马组织中丙二醛(malondialdehyde, MDA)水平明显升高(P<0.01)。假手术组与对照组相比GSH与MDA差别无明显统计学意义(P>0.05)。
     2、免疫组化结果:Nrf2免疫反应在海马的锥体细胞和神经胶质细胞的胞浆和胞核均有表达;HO-1免疫反应主要在海马锥体细胞和神经胶质细胞的胞浆。对三组大鼠海马CA1、CA2和CA3区Nrf2和HO-1表达的平均光密度值(AOD)测量,癫痫组比对照组AOD值明显增高(P﹤0.01);假手术组和对照组相比,AOD值差别无明显统计学意义(P>0.05)。
     3、Western-blot结果:3.1、电点燃大鼠海马组织胞核内的Nrf2的表达明显增强,而在对照组和假手术组Nrf2表达相对较弱,Nrf2与H3免疫印迹条带相对吸光度比值电点燃组比对照组明显增加,具有明显统计学差异(P<0.01)。假手术组和对照组相比没有明显统计学差异(P>0.05)。3.2、电点燃大鼠海马组织胞浆内的HO-1的表达明显增强,而在对照组和假手术组HO-1表达相对较弱,HO-1与β-actin免疫印迹条带相对吸光度比值,电点燃组比对照组明显增加,具有统计学差异(P<0.01)。假手术组的吸光度比值和对照组相比没有明显统计学差异(P>0.05)。
     4、Real-time PCR实验结果:各组大鼠海马组织中Nrf2、HO-1和NQO1mRNA的表达水平以三种物质mRNA/GAPDHmRNA表示,与对照组Nrf2、HO-1和NQO1mRNA表达水平相比,电点燃组Nrf2、HO-1和NQO1mRNA表达水平明显增高,均具有统计学意义(P<0.01);假手术组Nrf2、HO-1和NQO1mRNA表达水平和对照组表达水平相比无明显统计学差异(P>0.05)。
     结论:急性癫痫发作可以导致海马组织发生氧化应激,导致脂质氧化代谢产物MDA含量增高和自由基清除剂GSH含量降低;急性癫痫发作可以诱导海马组织中Nrf2和其编码的基因产物HO-1和NQO1在蛋白和基因水平表达明显增强。说明Nrf2-ARE信号通路与癫痫发病关系密切,可能是癫痫治疗的新的靶点。
     第二部分莱菔硫烷对慢性电点燃癫痫大鼠的脑保护作用研究
     目的:观察莱菔硫烷对慢性电点燃癫痫大鼠的抗癫痫作用及对认知功能的影响;同时观察其对海马神经元的保护作用。
     方法:采用慢性杏仁核电点燃制备癫痫大鼠模型(每天电刺激1次,连续刺激15d,刺激电流为恒流,单向方波。),在点燃过程中给予大鼠腹腔注射SF(5mg/kg/day)。通过对大鼠点燃过程中发作等级和后放电持续时间(afterdischarge duration,ADD)比较,观察SF的抗癫痫作用;通过Morris水迷宫监测癫痫大鼠的认知功能及SF对其的改善作用;通过尼氏染色和透射电镜观察癫痫大鼠海马神经元形态学改变及SF的神经保护作用。
     结果:1SF对慢性癫痫模型点燃过程的影响在连续给与15次亚惊厥电刺激的过程中,所有的大鼠均出现了不同程度的癫痫发作。连续15次电刺激后,在电点燃组中所有的大鼠均达到了完全点燃的标准(连续出现3次4-5级发作),而在电点燃+SF组的大鼠中仅有4只达到了点燃标准。对两组大鼠的发作等级比较后发现在第9-15天的时候具有明显的统计学差异(在第9-14天时P<0.05,在第15天时P<0.01)。同时,连续给予15次电刺激过程中所有大鼠的ADD逐渐延长,比较电点燃组和电点燃+SF组发现,在第7-15天的时候具有明显的统计学差异(在第9-10天时P<0.05,在第11-15天时P<0.01)。对照组和SF组没有出现癫痫发作。
     2Morris水迷宫检测结果
     2.1定位航行实验结果:每日逃避潜伏期取其平均值进行比较,结果显示,(1)对照组、电点燃组、SF+电点燃组和SF组四组大鼠的逃避潜伏期在第1和2天无统计学意义(P>0.05)。在第1和2天,与对照组大鼠的逃避潜伏期相比较,电点燃组大鼠及SF+电点燃组大鼠的逃避潜伏期均有延长趋势。(2)实验第3、4、5天,各组逃避潜伏期均比第1、2天有缩短趋势,在第3、4和5天,与对照组大鼠的逃避潜伏期相比较,电点燃组大鼠的逃避潜伏期均明显延长(P<0.05);SF+电点燃组大鼠的逃避潜伏期较电点燃组大鼠均明显缩短(P<0.05),但与对照组比较仍明显延长(P<0.05);SF组大鼠的逃避潜伏期和对照组没有明显变化(P>0.05)。
     2.2空间探索试验结果:电点燃组大鼠120s内穿越平台区域的次数明显低于对照组(P<0.01);SF+电点燃组大鼠120s内穿越平台区域的次数与电点燃组比较次数均明显增多(P<0.01)。在平台象限的游泳时间为:与对照组相比,电点燃组明显减少(P<0.01),SF+电点燃组在平台象限的游泳时间与电点燃组比较明显增多(P<0.01),SF组和对照组相比无显著性差异(P>0.05)。
     3尼氏染色结果:对照组大鼠海马神经元形态完整、核仁清晰,胞浆内尼氏体丰富,锥体细胞排列规则紧密,没有明显神经元丢失;与对照组相比,电点燃组大鼠海马神经元丢失明显,排列紊乱,可见细胞皱缩,染色质凝集成块、核固缩、尼氏体数量减少;SF治疗后海马组织神经元边缘清晰,神经元没有明显丢失,结构正常,仅少量染色质凝集、尼氏体数量较癫痫组显著增加。SF单独用药组海马组织神经元和对照组没有明显改变。
     4透射电极观察海马CA1区超微结构变化:对照组电镜观察:神经元形态完整,结构清晰。胞核呈圆形,染色质均匀分布。胞质内细胞器丰富,可见线粒体、粗面内质网、滑面内质网和大量的多核糖体。线粒体呈圆形或椭圆形,嵴清晰可见。粗面内质网和高尔基体发达。轴突中神经微丝微管清晰可见。突触前、后膜结构清晰,突触前膜靠近突触间隙一侧有较多圆形的突触囊泡,突触间隙清晰。电点燃组电镜观察:海马神经元胞核肿胀、形态不规则,核内异染色质减少分散,胞核疏松、透明,有些出现核固缩现象。线粒体空泡化或均质化。神经微丝微管结构不清,可见聚集。突触前、后膜结构模糊不清,突触间隙增大,靠近突触前膜的突触囊泡减少。SF+电点燃组电镜观察:海马神经元核膜完整,核形态基本正常,染色质均匀分布,胞质中细胞器形态基本正常,有髓神经髓鞘完整。突触数量较多,形态接近于正常。突触前、后膜结构清楚,突触间隙清晰,突触前膜的突触囊泡较多。SF单组用药组电镜观察和正常对照组超微结构没有明显改变。
     结论:本研究通过给慢性电点燃大鼠腹腔注射SF后发现其具有明显的抗癫痫效果,同时对癫痫大鼠认知损伤也有一定的改善作用。进一步对癫痫模型海马组织的大体形态和超微结构观察发现,SF能有效防止癫痫发作对海马神经元的损伤。
     第三部分莱菔硫烷对慢性电点燃癫痫大鼠脑保护作用的机制研究
     目的:观察SF对癫痫大鼠海马组织中氧化应激和对Nrf2-ARE信号通路及其基因产物HO-1和NQO1表达的影响,探讨SF的脑保护作用机制。
     方法:采用杏仁核慢电点燃制备慢性癫痫大鼠模型(每天电刺激1次,连续刺激15d,刺激电流为恒流,单向方波),同时在点燃过程中给予SF(5mg/kg/day)腹腔注射,通过分光光度法检测大鼠海马组织中氧化应激参数(GSH和MDA)表达改变;通过Western blot实验方法观察Nrf2、HO-1和NQO1在海马组织中蛋白水平的表达改变;同时通过Real-time PCR实验方法观察Nrf2mRNA、HO-1mRNA和NQO1mRNA在海马组织中基因水平的表达改变。
     结果:1氧化应激参数GSH和MDA含量比较与对照组相比,电点燃组大鼠海马组织中GSH含量明显降低(P<0.01);与正常对照组相比,电点燃组大鼠海马组织中MDA水平明显升高(P<0.01)。SF治疗后明显升高了电点燃组大鼠海马组织中GSH水平(P<0.01),明显降低了电点燃组大鼠海马组织中MDA水平(P<0.01)。SF单独用药组与对照组相比MDA明显降低(P<0.01), GSH明显增高(P<0.01)。
     2Western blot检测Nrf2、HO-1和NQO1在海马组织中的表达改变
     Nrf2蛋白表达水平以H3作为参照,电点燃组大鼠与正常对照组相比,Nrf2水平没有明显统计学差异(P>0.05);SF治疗后可显著升高癫痫大鼠海马组织中Nrf2蛋白水平(P<0.01);与对照组相比,单独SF用药组也使Nrf2蛋白表达水平明显增高(P<0.01)。
     HO-1和NQO1蛋白表达水平以β-actin作为参照,癫痫组大鼠与正常对照组相比,HO-1和NQO1表达水平无明显统计学差异(P>0.05);SF治疗后可显著增高癫痫大鼠海马组织中HO-1和NQO1蛋白水平(p<0.01);与对照组相比,单独SF组也使大鼠海马组织中HO-1和NQO1蛋白表达水平明显增高(P<0.01)。
     3Real-time PCR检测Nrf2、HO-1和NQO1mRNA在海马组织的表达改变
     Nrf2、HO-1和NQO1mRNA表达水平以GAPDHmRNA作为参照。电点燃组大鼠与正常对照组相比, Nrf2mRNA、 HO-1mRNA和NQO1mRNA水平没有明显统计学差异(P>0.05);SF治疗后可显著升高癫痫大鼠海马组织中Nrf2mRNA、HO-1mRNA和NQO1mRNA表达(P<0.01);与对照组相比,单独SF组也使大鼠海马组织中Nrf2mRNA、HO-1mRNA和NQO1mRNA表达水平明显增高(P<0.01)。
     结论:SF能有效激活海马组织中Nrf2-ARE信号通路,同时改善癫痫发作导致的氧化应激状态,这可能是其脑保护的作用机制。该研究为阐明SF的神经保护作用机制提供实验依据,同时为抗癫痫药物的选择提供新的思路。
Epilepsy, one of the most common diseases of the nervous system, is thecause of excessive brain neurons repeatedly synchronization discharge, and isa transient of the central nervous system dysfunction clinical syndromeinduced by a variety of chronic brain diseases. Epilepsy can lead to brainneuron selective damage even necrosis, and cause glial cell hyperplasia,reconstructing synaptic plasticity of the brain structure and function change.These brain plasticity changes and repeated seizure are the leading causes ofrefractory epilepsy. At the same time, the patients often accompaniedcognitive dysfunction with repeated seizures, its incidence is about30%-40%.The pathogenesis of epilepsy is very complex, and has not been fullyelucidated, oxidative stress injury, glutamate toxicity of excitatory, calciumoverload and other factors can induce the abnormal discharge of neuronsinducing seizures. The oxidative stress induced oxygen free radical (FR) chainreaction is the core of the damaged neurons pathological link. The resultsconfirmed that many chronic diseases are linked to oxidative stress inducedexcessive free radicals in the human body. The relationship between epilepsyand oxidative stress have become the research focus. There are oxidative stressresponse in the brain of epilepsy animal models or people with epilepsy.Seizure induce FR increased significantly and far more than the body’s abilityto remove FR. Lots of FR can directly make the macromolecular substancessuch as lipid, protein and DNA oxidative damage damaging cell membraneand other cell structures, and FR also can cause apoptosis by inhibiting themitochondrial function. Therefore, in view of the important role of the oxygenfree radicals in the pathological mechanism of epileptic brain damage, theinhibition of oxidative stress and remove oxygen free radicals may be the important strategy for the treatment of epilepsy.
     The nuclear factor erythroid2-related factor2(Nrf2) is the key factor incell oxidative stress reaction, Nrf2through reaction with the antioxidantresponse element (ARE), which regulates the expression of a group ofcytoprotective enzymes. Nrf2is an important transcription factor ofadjustment oxidation reaction. Nrf2is located in the cytoplasm combined withKeap1in the physiological state, and is rapidly degraded by ubiquitinproteasome to maintain the low activity. When the body was attacked by suchas oxygen free radicals and endogenous toxin, the Nrf2dissociated with Keapl,and the half-life of Nrf2extended obviously, then Nrf2transposition into thenucleus, and combined with the ARE inducing the expression of a group ofcytoprotective enzymes. So far, it was confirmedn that the Nrf2-ARE signalpathway encoded endogenous protection more than200species. Theendogenous protection can strengthen antioxidant capacity of cell, protectcells from the toxic injury, in anti-tumor, anti-inflammatory and anti-apoptosisHeme oxygenase1(HO-1) and NADPH: quinone oxidoreductase1(NQO1)are important antioxidant enzymes of the signal pathway coding. The previousstudy confirmed that activation of Nrf2-ARE signaling pathways increasesthe expression of the gene products play nerve protection function in nervoussystem diseases such as Parkinson’s disease, cerebral hemorrhage, cerebralinfarction and cerebral trauma and so on. However, to our knowledge, theNrf2-ARE signal pathway and two Nrf2-regulated gene products (HO-1andNQO1) have not been studied after seizure.
     Sulforaphane (SF) is isothiocyanates of a widely exists in cruciferousvegetables which have the biological characteristics of anti-oxidation,anti-tumor and immune regulation and so on. SF as a chemical preventiondrug has aroused the attention of the researchers. The previous study confirmsthat SF is a important activator of Nrf2-ARE signal pathway, can induce Nrf2phosphorylation transposition into the nucleus, and combine ARE, regulatingthe expression of antioxidants and detoxifying enzyme, scavenging freeradicals to protect the body’s cells. However, to our knowledge, the neuroprotective effect and the molecular mechanism of SF have not beenstudied after seizure.
     The present study was aimed to examine oxidative stress parameters(malondialdehyde and glutathione) and determine the expression of Nrf2,HO-1and NQO1at protein or gene levels in hippocampus of amygdalakindling rats. And further to evaluating if activation of Nrf2-ARE signalpathway with sulforaphane (SF) in hippocampus can suppress the progressionof chronic amygdala kindling, and ameliorate the cognitive impairment andoxidative stress induced by epileptic seizure. The present study was aimed toclarify that the pathophysiology of epilepsy, and to provide new targets forepilepsy treatment.
     Part Ⅰ The expression and significance of Nrf2-ARE signaling pathwayin hippocampus of rapid amygdala kindling rats
     Objective: To observe oxidative stress parameters(malondialdehyde andglutathione) in hippocampus of rapid amygdala kindling rats and theexpression of Nrf2-ARE signal pathway.
     Methods: In the present study, Wistar rats were rapidly kindled in theamygdala. Twenty-four hours after the last seizure, the hippocampus of control,sham and kindled rats were examined for oxidative stress parameters(malondialdehyde and glutathione) by spectrophotometry, the expression ofNrf2, heme oxygenase-1(HO-1) and NAD(P)H:quinone oxidoreductase-1(NQO1) were determined using immunohistochemistry, Western blot andreal-time fluorescence quantitative polymerase chain reaction (PCR).
     Results:1The level of GSH in kindling group was significantly lowercompared to sham group (P <0.01) and the level of MDA was much higherthan that of sham group (P <0.01). There was no difference between controland sham groups(P>0.05).
     2To localize Nrf2and HO-1expression, immunohistochemical studywas performed. In kindling group, the immunoreactive intensity of Nrf2andHO-1significantly increased in hippocampus, and Nrf2expressed both atcytoplasm and nucleus. In addition, similar localization was found between Nrf2and HO-1in neurons and glial cells. The differences were shownbetween sham and kindling groups by AOD measurement in the expression ofNrf2(P <0.01) and HO-1(P <0.01). There was no difference between controland sham groups (P>0.05).
     3Western blot analysis was used to measure in protein level of Nrf2innuclear and HO-1in cytoplasm extracted from hippocampus. Groupdifferences were found between sham and kindling groups with the expressionof Nrf2(P <0.01) and HO-1(P <0.01). There was no difference betweencontrol and shamgroups (P>0.05).
     4The expression of Nrf2, HO-1and NQO1mRNA in hippocampus wasstudied by real-time fluorescence quantitative PCR. Group differences werefound between sham and kindling groups in the expression of Nrf2mRNA (P<0.01), HO-1mRNA (P <0.01) and NQO1mRNA (P <0.01). There was nodifference between control and sham groups (P>0.05).
     Conclusion:In conclusion, the results of the present study indicate thatthe seizure can induce oxidative stress in hippocampus of rats, which activateNrf2-ARE signal pathway to result in up-regulation of antioxidative anddetoxifying enzymes. Therefore, to activate Nrf2-ARE signal pathway may beone of the strategic targets for epilepsy therapies.
     Part ⅡThe brain protection of sulforaphane in chronic amygdalakindling rats
     Objective: To observe the role of of sulforaphane in the kindlingprogression and the cognitive impairment of chronic amygdala kindling rats.At the same time, to observe the neuroprotective effect for hippocampalneurons.
     Methods: The rats were kindled by one daily electric stimulation of theamygdala, Electric stimulation was delivered15times for the kindling. Thesulforaphane (5mg/kg/day) was injected intraperitoneally at30min beforeevery electric stimulation. The mean seizure stage and the after dischargeduration in the course of kindling were detected for sulforaphane antiepilepticeffect. Morris water maze (MWM) test assessed the cognitive function of kindled rats, and detected the role of sulforaphane. Using Nissal’s staining andtransmission electron microscope detected the role of sulforaphane inhippocampal neuron of kindled rats.
     Results:
     1The repeated administration of subconvulsive electric stimulationinduced severe seizures during the15kindling stimulation. Electricstimulation was terminated on the15th day. By this time, all of the kindlinggroup rats reached the kindling criterion, i.e.,ageneralized stage4or5at leastthree times, while8out of12rats treated with SF did not reach kindlingcriterion over this time. There were significant differences in seizure stagebetween the kindling and kindling+SF groups from the9th day to the15th day(P<0.05from the9th day to the14th dayand P<0.01on the15th day).Meanwhile, pretreatment with SF markedly decreased the after dischargeduration (ADD) as compared to the kindling group from the7th day to the15th day (P<0.05from the7th day to the10th day and P<0.01from the11thday to the15th day). In the control and SF groups, there were no seizureactivities.
     2In the Morris water maze, all animals showed a progressive decline inthe escape latency with training. Rats in the kindling group exhibitedsignificantly prolonged escape latency as compared to the control group(P<0.01). However, the poor performance was mitigated by pretreatment withSF(P<0.01). In the probe trial, the kindling group spent significantly less timein the target quadrant than the control group (P<0.01), while pretreatment withSF significantly improved the performance (P<0.01). The number of crossingthe plat form in the kindling group obviously decreased as compared to thecontrol group(P<0.01), while pretreatment with SF markedly increased thenumber of crossing(P<0.01). Inaddition, SF per se had no significant effectoncognition.
     3Nissl staining showed that: neurons in hippocampus of control groupwere clear with normal nucleolus, well-distributed karyotin and rich nisslbodies in kytoplasm, there was no significantly neuron loss. While in the kindled rats, neuron loss was obviously, with shrunken plasma body andpyknotic nuclei. In the kindling+SF group, most pyramid cells were normaland only a few showed chromatin condensation. The hippocampus neurons ofSF group were no significant change as compared to the control group.
     4In hippocampal CA1area of the rats in NC group,there were intactneurons,distinct structure,uniform chromatin,abundant apparatus,andintegrate myelin.In PTZ group,however,there were condensed nucleus,edematous neuron,swollen perikaryon with vacuole,reduced mitochondriaand Golgi apparatus and polyribosome;there was also Myelin-splitting nervefiber.In kindling+SF group,the neuron and neuropile were less swollen,karyotheca were normally intact,chromatin were uniform,the apparatus wererich and basically normal,and the myelin was complete and integrate.Incontral group,the synapses in hippocampal CA1area were abundant withdistinct pre-and-post synaptic membranes and rich synaptic vesicles.Thesynaptic cleft was clear.In kindling group,there were reduced synapses withindistinct pre-and-post synaptic membranes.In kindling+SF group,there weremore synapses than that in kindling group. The ultrastructure of hippocampusneurons in SF group were no significant change as compared to the controlgroup.
     Conclusions:In summary, the results from the present study demonstratethat SF could suppress the progression of amygdala kindling, also amelioratethe cognitive impairment induced by epileptic seizure. SF also can protecthippocampal neuron damage induced by seizures.
     Part Ⅲ The neuroprotection mechanism research of sulforaphane in inchronic amygdala kindling rats
     Objective: The present study was aimed to evaluate if activation ofNrf2-ARE signal pathway with SF in hippocampus can ameliorate oxidativestress induced by epileptic seizure, to explore the mechanism of brainprotection.
     Methods: The rats were kindled by one daily electric stimulation of theamygdala, Electric stimulation was delivered15times for the kindling. The sulforaphane (5mg/kg/day) was injected intraperitoneally at30min beforeevery electric stimulation. Twenty-four hours after the last seizure, thehippocampus of control, kindled, kindling+SF and SF rats were examined foroxidative stress parameters (malondialdehyde and glutathione) byspectrophotometry, the expression of Nrf2, heme oxygenase-1(HO-1) andNAD(P)H:quinone oxidoreductase-1(NQO1) were determined usingimmunohistochemistry, Western blot and real-time fluorescence quantitativepolymerase chain reaction (PCR).
     Results:
     1The level of Malondialdehyde (MDA) in the kindling group wasmuch higher as compared to the control group (P<0.01), and the level ofreduced glutathione (GSH) in the kindling group was significantly lower ascompared to the control group (P<0.01). However, pretreatment with SF ledto a noticeable decrease in the concentration of MDA (P<0.01) and asignificant increase in GSH level (P<0.01) as compared to the kindling group.Although SF treatment ameliorated theoxidative damage induced by seizures, the oxidative stress level wasstill higher than the control group (P<0.01). SF per se caused a decrease inthe oxidative stress as indicated by the significant decrease in MDA levelsand the significant increase in GSH levels as compared to the control group(P<0.05).
     2Western blot analysis of protein level of Nrf2in nuclear and proteinlevels of HO-1and NQO1in cytoplasm extracted from hippocampus. Theexpression of Nrf2in nuclear and the expression of HO-1and NQO1incytoplasm were not significantly different between control and kindlinggroups(P>0.05). However, pretreatment with SF led to significant increase inthe expression of Nrf2, HO-1and NQO1at protein levels (P<0.01) ascompared to the control and kindling groups. SF per se also causedsignificant increase in the expression of Nrf2, HO-1and NQO1at proteinlevels (P<0.01) as compared to the control group.
     3The expression of Nrf2, HO-1and NQO1mRNA in hippocampus was studied by real-time fluorescence quantitative PCR. The expressionof Nrf2, HO-1and NQO1mRNA were not significantly different betweencontrol and kindling groups(P>0.05). However, pretreatment with SF led tosignificant increase in Nrf2, HO-1and NQO1mRNA levels (P<0.01) ascompared to the control and kindling groups. SF per se also causedsignificant increase in Nrf2, HO-1and NQO1mRNA levels (P<0.01) ascompared to the control group.
     Conclusions: In summary, the results from the present studydemonstrate that SF could activate the Nrf2-ARE singal pathway, increasethe expression of antioxidative enzymes(HO-1and NQO1) and alsoameliorate oxidative stress induced by epileptic seizure. Therefore, toactivate Nrf2-ARE signal pathway maybe one of the strategic targets forepilepsy therapies.
引文
1J. Rowles, M. Olsen, Perspectives on the development of antioxidantantiepileptogenic agents, Mini Rev. Med. Chem.2012,12,1015–1027
    2A.A. Farooqui, W. Yi Ong, X.R. Lu, B. Halliwell, L.A. Horrocks,Neurochemical consequences of kainate-induced toxicity in brain:involvement of arachidonic acid release and prevention of toxicity byphospholipase A(2) inhibitors, Brain Res. Brain Res. Rev.2001,38,61–78
    3E. Mariani, M.C. Polidori, A. Cherubini, P. Mecocci, Oxidative stress inbrain aging, neurodegenerative and vascular diseases: an overview, J.Chromatogr. B: Analyt. Technol. Biomed. Life Sci.2005,827,65–75
    4E.J. Shin, J.H. Jeong, Y.H. Chung, W.K. Kim, K.H. Ko, J.H. Bach, J.S.Hong, Y. Yoneda, H.C. Kim, Role of oxidative stress in epileptic seizures,Neurochem. Int.2011,59,122–137
    5J. Zhao, N. Kobori, J. Aronowski, P.K. Dash, Sulforaphane reduces infarctvolume following focal cerebral ischemia in rodents, Neurosci. Lett.2006,393,108–112
    6H. Motohashi, F. Katsuoka, J.D. Engel, M. Yamamoto, Small Maf proteinsserve as transcriptional cofactors for keratinocyte differentiation in theKeap1-Nrf2regulatory pathway, Proc. Natl. Acad. Sci. U.S.A.2004,101,6379–6384
    7M. Zhang, C. An, Y. Gao, R.K. Leak, J. Chen, F. Zhang, Emerging roles ofNrf2and phase II antioxidant enzymes in neuroprotection, Prog. Neurobiol.2013,100,30–47
    8A.S. Ahmad, H. Zhuang, S. Doré, Heme oxygenase-1protects brain fromacute excitotoxicity, Neuroscience2006,141,1703–1708
    9J.H. Lim, K.M. Kim, S.W. Kim, O. Hwang, H.J. Choi, Bromocriptineactivates NQO1via Nrf2-PI3K/Akt signaling: novel cytoprotectivemechanism against oxidative damage, Pharmacol. Res.2008,57,325–331
    10Chen G, Fang Q, Zhang J, et al. Role of the Nrf2-ARE pathway in earlybrain injury after experimental subarachnoid hemorrhage. J Neurosci Res.2011,89,515-23
    11G. Paxinos, C. Watson, The Rat Brain in Stereotaxic Coordinates,Academic Press, Orlando, FL,1998
    12C.S. Liu, H.M. Wu, S.H. Kao, Y.H. Wei, Phenytoin-mediated oxidativestress in serum of female epileptics: a possible pathogenesis in the fetalhydantoin syndrome, Hum. Exp. Toxicol.1997,16,177–181
    13H. Ono, A. Sakamoto, N. Sakura, Plasma total glutathione concentrationsin epileptic patients taking anticonvulsants, Clin. Chim. Acta2000,298,135–143
    14T. Xie, W.P. Wang, Z.F. Mao, Z.Z. Qu, S.Q. Luan, L.J. Jia, M.C. Kan,Effects of epigallocatechin-3-gallate on pentylenetetrazole-inducedkindling, cognitive impairment and oxidative stress in rats, Neurosci. Lett.2012,516,237–241
    15J.M. Lee, J.A. Johnson, An important role of Nrf2-ARE pathway in thecellular defense mechanism, J. Biochem. Mol. Biol.2004,37,139–143
    16M.R. Vargas, J.A. Johnson, The Nrf2-ARE cytoprotective pathway inastrocytes, Expert Rev. Mol. Med.2009,3(11) e17
    17A. Cuadrado, P. Moreno-Murciano, J. Pedraza-Chaverri, The transcriptionfactor Nrf2as a new therapeutic target in Parkinson’s disease, Expert Opin.Ther. Targets2009,13,319–329
    18S. Petri, S. K rner, M. Kiaei, Nrf2/ARE signaling pathway: key mediatorin oxidative stress and potential therapeutic target in ALS, Neurol. Res. Int.2012;2012:878030
    19R. Motterlini, C.J. Green, R. Foresti, Regulation of heme oxygenase-1byredox signals involving nitric oxide, Antioxid. Redox Signal.2002,4,615–624
    20V. Radjendirane, P. Joseph, Y.H. Lee, S. Kimura, A.J. Klein-Szanto, F.J.Gonzalez, A.K. Jaiswal, Disruption of the DT diaphorase (NQO1) gene inmice leads to increased menadione toxicity, J. Biol. Chem.1998,273,7382–7389
    21J.L. Stringer, A. Gaikwad, B.N. Gonzales, D.J. Long Jr., L.M. Marks, A.K.Jaiswal, Presence and induction of the enzyme NAD(P)H:quinoneoxidoreductase1in the central nervous system, J. Comp. Neurol.2004,471,289–297
    22Calkins MJ, Johnson DA, Townsend JA, et al. The Nrf2/ARE pathway as apotential therapeutic target in neurodegenerative disease. Antioxid RedoxSignal.2009;11:497-508
    23Kraft AD, Lee JM, Johnson DA, et al. Neuronal sensitivity to kainic acid isdependent on the Nrf2-mediated actions of the antioxidant responseelement. J Neurochem.2006;98:1852-65
    1Casillas-Espinosa PM, Powell KL, O'Brien TJ. Regulators of synaptictransmission: roles in the pathogenesis and treatment of epilepsy. Epilepsia.2012,9:41-58
    2Sanchez RM, Ribak CE, Shapiro LA. Synaptic connections of hilar basaldendrites of dentate granule cells in a neonatal hypoxia model of epilepsy.Epilepsia.2012;531:98-108
    3Korczyn AD, Schachter SC, Brodie MJ, et al. Epilepsy, cognition, andneuropsychiatry (Epilepsy, Brain, and Mind, part2). Epilepsy Behav.2013;28:283-302
    4Rubio C, Rubio-Osornio M, Retana-Márquez S, et al. In vivo experimentalmodels of epilepsy. Cent Nerv Syst Agents Med Chem.2010;10:298-309.
    5Biagini G, D'Antuono M, Benini R, et al. Perirhinal cortex and temporallobe epilepsy. Front Cell Neurosci.2013;7:130
    6Farooqui AA, Yi Ong W, Lu XR, et al. Neurochemical consequences ofkainate-induced toxicity in brain: involvement of arachidonic acid releaseand prevention of toxicity by phospholipase A(2) inhibitors. Brain ResBrain Res Rev.2001;38:61-78
    7Figueiredo SM, Filho SA, Nogueira-Machado JA, et al. The anti-oxidantproperties of isothiocyanates: a review. Recent Pat Endocr Metab ImmuneDrug Discov.2013;7:213-25
    8Steele ML, Fuller S, Patel M, et al. Effect of Nrf2activators on release ofglutathione, cysteinylglycine and homocysteine by human U373astroglialcells. Redox Biol.2013;1:441-445
    9Zhao X, Sun G, Zhang J, et al. Transcription factor Nrf2protects the brainfrom damage produced by intracerebral hemorrhage. Stroke.2007;38:3280-3286
    10Zhao J, Kobori N, Aronowski J,et al. Sulforaphane reduces infarct volumefollowing focal cerebral ischemia in rodents. Neurosci Lett.2006;393:108-12
    11Fernández-Gajardo R, Matamala JM, Carrasco R, et al. Novel therapeuticstrategies for traumatic brain injury: acute antioxidant reinforcement. CNSDrugs.2014;28:229-48
    12Tarozzi A, Angeloni C, Malaguti M, et al. Sulforaphane as a potentialprotective phytochemical against neurodegenerative diseases. Oxid MedCell Longev.2013;2013:415078
    13Chang BS, Lowenstein DH. Epilepsy. N Engl J Med.2003;349:1257-66.
    14Lenzi M, Fimognari C, Hrelia P. Sulforaphane as a promising molecule forfighting cancer. Cancer Treat Res.2014;159:207-23
    15Campbell MR, Karaca M, Adamski KN, et al. Novel hematopoietic targetgenes in the NRF2-mediated transcriptional pathway. Oxid Med CellLongev.2013;2013:120305
    16Ping Z, Liu W, Kang Z, et al. Sulforaphane protects brains againsthypoxic-ischemic injury through induction of Nrf2-dependent phase2enzyme. Brain Res.2010;1343:178-85
    17Nowinski WL, Chua BC, Volkau I, et al. Simulation and assessment ofcerebrovascular damage in deep brain stimulation using a stereotactic atlasof vasculature and structure derived from multiple3-and7-tesla scans. JNeurosurg.2010;113:1234-41
    18Morroni F, Tarozzi A, Sita G, et al. Neuroprotective effect of sulforaphanein6-hydroxydopamine-lesioned mouse model of Parkinson's disease.Neurotoxicology.2013;36:63-71
    19Kan MC, Wang WP, Yao GD, et al. Anticonvulsant effect ofdexmedetomidine in a rat model of self-sustaining status epilepticus withprolonged amygdala stimulation. Neurosci Lett.2013;543:17-21
    20Biagini G, D'Antuono M, Benini R, et al. Perirhinal cortex and temporallobe epilepsy. Front Cell Neurosci.2013;7:130
    21Faure JB, Marques-Carneiro JE, Akimana G, et al. Attention and executivefunctions in a rat model of chronic epilepsy. Epilepsia.2014Feb22.12549
    22Henshall DC, Araki T, Schindler CK, et al. Activation of Bcl-2-associateddeath protein and counter-response of Akt within cell populations duringseizure-induced neuronal death. J Neurosci.2002;22(19):8458-65
    23Gilman SC, Bonner MJ, Pellmar TC. Free radicals enhance basal releaseof D-[3H]aspartate from cerebral cortical synaptosomes. J Neurochem.1994;62:1757-63
    24Slater CR, Lyons PR, Walls TJ, et al. Structure and function ofneuromuscular junctions in the vastus lateralis of man. A motor pointbiopsy study of two groups of patients. Brain.1992;115:451-78
    25Xue Y, Xie N, Lin Y, et al. Role of PI3K/Akt in diazoxide preconditioningagainst rat hippocampal neuronal death in pilocarpine-induced seizures.Brain Res.2011;1383:135-40
    1Rowley S, Patel M. Mitochondrial involvement and oxidative stress intemporal lobe epilepsy. Free Radic Biol Med.2013,62:121-31
    2Xu D, Miller SD, Koh S. Immune mechanisms in epileptogenesis. FrontCell Neurosci.2013;7:195
    3Milder J, Patel M. Modulation of oxidative stress and mitochondrialfunction by the ketogenic diet. Epilepsy Res.2012;100:295-303
    4Calkins MJ, Johnson DA, Townsend JA, et al. The Nrf2/ARE pathway as apotential therapeutic target in neurodegenerative disease. Antioxid RedoxSignal.2009;11:497-508
    5Fimognari C, Hrelia P. Sulforaphane as a promising molecule for fightingcancer. Mutat Res.2007;635:90-104
    6Sharma R, Sharma A, Chaudhary P, et al. Role of4-hydroxynonenal inchemopreventive activities of sulforaphane. Free Radic Biol Med.2012;52:2177-85
    7Vomhof-Dekrey EE, Picklo MJ Sr. The Nrf2-antioxidant response elementpathway: a target for regulating energy metabolism. J Nutr Biochem.2012;23:1201-6
    8Keum YS. Regulation of Nrf2-Mediated Phase II Detoxification andAnti-oxidant Genes. Biomol Ther (Seoul).2012;20:144-151
    9Vargas MR, Johnson JA. The Nrf2-ARE cytoprotective pathway inastrocytes. Expert Rev Mol Med.2009;11:e17
    10Johnson JA, Johnson DA, Kraft AD,et al. The Nrf2-ARE pathway: anindicator and modulator of oxidative stress in neurodegeneration. Ann N YAcad Sci.2008,1147:61-9
    11Yang C, Zhang X, Fan H, et al. Curcumin upregulates transcription factorNrf2, HO-1expression and protects rat brains against focal ischemia.Brain Res.200928;1282:133-141
    12Ahmad AS1, Zhuang H, Doré S. Heme oxygenase-1protects brain fromacute excitotoxicity. Neuroscience.200615;141:1703-1708
    13Colín-González A L, Orozco-Ibarra M, Chánez-Cárdenas ME, et al. Hemeoxygenase-1(HO-1) upregulation delays morphological and oxidativedamage induced in an excitotoxic/pro-oxidant model in the rat striatum.Neuroscience.2013;231:91-101
    14Lim JH, Kim KM, Kim SW, et al. Bromocriptine activates NQO1viaNrf2-PI3K/Akt signaling: novel cytoprotective mechanism againstoxidative damage. Pharmacol Res.200857:325-31
    15Chen G, Fang Q, Zhang J, et al. Role of the Nrf2-ARE pathway in earlybrain injury after experimental subarachnoid hemorrhage. J Neurosci Res.2011,89:515-23
    16Ahmad AS, Zhuang H, Doré S. Heme oxygenase-1protects brain fromacute excitotoxicity. Neuroscience.2006;141:1703-8
    17Stringer JL, Gaikwad A, Gonzales BN,et al. Presence and induction of theenzyme NAD(P)H: quinone oxidoreductase1in the central nervoussystem. J Comp Neurol.2004;471:289-97
    18Smeyne M1, Smeyne RJ. Glutathione metabolism and Parkinson's disease.Free Radic Biol Med.201362:13-25
    19Ghanizadeh A. Malondialdehyde, Bcl-2, superoxide dismutase andglutathione peroxidase may mediate the association of sonic hedgehogprotein and oxidative stress in autism. Neurochem Res.2012
    37:899-901
    20Xie T, Wang WP, Mao ZF, et al. Effects of epigallocatechin-3-gallate onpentylenetetrazole-induced kindling, cognitive impairment and oxidativestress in rats. Neurosci Lett.201216;516:237-41
    21Zhao X, Sun G, Zhang J, et al. Transcription factor Nrf2protects the brainfrom damage produced by intracerebral hemorrhage. Stroke.2007;38:3280-6
    22Zhao J, Kobori N, Aronowski J,et al. Sulforaphane reduces infarct volumefollowing focal cerebral ischemia in rodents. Neurosci Lett.2006;393:108-12
    23Fernández-Gajardo R, Matamala JM, Carrasco R, et al. Novel therapeuticstrategies for traumatic brain injury: acute antioxidant reinforcement. CNSDrugs.201428:229-48
    24Tarozzi A, Angeloni C, Malaguti M, et al. Sulforaphane as a potentialprotective phytochemical against neurodegenerative diseases. Oxid MedCell Longev.2013:415078
    1J. S. Stamler, D. J. Simon, O. Jaraki et al.,“S-nitrosylation of tissue-typeplasminogen activator confers vasodilatory and antiplatelet properties onthe enzyme,” Proceedings of the National Academy of Sciences of theUnited States of America,1992,17;8087–8091
    2J. Emerit, M. Edeas, F. Bricaire,“Neurodegenerative diseases andoxidative stress,” Biomedicine and Pharmacotherapy,2004,58;39–46
    3D. M. Tabima, S. Frizzell, M. T. Gladwin,“Reactive oxygen and nitrogenspecies in pulmonary hypertension,” Free Radical Biology and Medicine,2012,9;1970–1986
    4M. Maes, P. Galecki, Y. S. Chang, et al.“A review on the oxidative andnitrosative stress (O&NS) pathways in major depression and their possiblecontribution to the (neuro)degenerative processes in that illness,” Progressin Neuro-Psychopharmacology and Biological Psychiatry,2011,35;676–692
    5K. J. Barnham, C. L. Masters, A. I. Bush,“Neurodegenerative diseases andoxidatives stress,” Nature Reviews Drug Discovery,2004,3;205–214
    6L. Vercueil,“Epilepsy and neurodegenerative diseases in adults: a clinicalreview,” Epileptic Disorders,2006,8; S44–S54
    7C. D. McCullagh, D. Craig, S. P. McIlroy, et al.“Risk factors fordementia,” Advances in Psychiatric Treatment,2001,7;24–31
    8A. J. Rowan,“Epilepsy and the elderly,” Epilepsy and Behavior,2000,1;S12–S14
    9P. Masnou,“Epilepsie du sujet ag′e,” La Lettre du neurologue,2001,5;337–341,.
    10A. C. Van Cott,“Epilepsy and EEG in the elderly,” Epilepsia,2002,43;94–102
    11L. J. Stephen and M. J. Brodie,“Epilepsy in elderly people,” The Lancet,2000,355;1441–1446
    12R. Tallis, P. Boon, E. Perucca, et al.“Epilepsy in elderly people:management issues,” Epileptic Disorders,2002,4; S33–S39
    13E. Trinka,“Epilepsy: comorbidity in the elderly,” Acta NeurologicaScandinavica,2003,180;33–36
    14T. T. S¨ rvfn,“Acute and chronic seizures in patients older than60years,”Mayo Clinic Proceedings,2001,76;175–183
    15D. P. Jones,“Disruption of mitochondrial redox circuitry in oxidativestress,” Chemico-Biological Interactions,2006,163;38–53
    16D. Harman,“Aging: a theory based on free radical and radiationchemistry,” Journal of gerontology,1956,11;298–300
    17D. Harman,“The biologic clock: the mitochondria?” Journal of theAmerican Geriatrics Society,1972,20;145–147
    18Q. Kong C. L. G. Lin,“Oxidative damage to RNA: mechanisms,consequences, and diseases,” Cellular and Molecular Life Sciences,2010,67;1817–1829
    19D. Malinska, B. Kulawiak, A. P. Kudin et al.,“Complex III-dependentsuperoxide production of brain mitochondria contributes to seizure-relatedROS formation,” Biochimica et Biophysica Acta,2010,1797;1163–1170
    20A. Y. Estevez, S. Pritchard, K. Harper et al.,“Neuroprotective mechanismsof cerium oxide nanoparticles in a mouse hippocampal brain slicemodel ofischemia,” Free Radical Biology and Medicine,2011,51;1155–1163
    21B. Halliwell,“Free radicals, proteins and DNA: oxidative damage versusredox regulation,” Biochemical Society Transactions,1996,24;1023–1027
    22I. Silver, M. Erecinska,“Oxygen and ion concentrations in normoxic andhypoxic brain cells,” Advances in Experimental Medicine and Biology,1998,454;7–16
    23O. Kann, R. Kov′acs,“Mitochondria and neuronal activity,” AmericanJournal of Physiology,2007,292; C641–C657
    24S. Waldbaum, L. P. Liang, M. Patel,“Persistent impairment ofmitochondrial and tissue redox status during lithium-pilocarpine-inducedepileptogenesis,” Journal of Neurochemistry,2010,115;1172–1182
    25M. Valko, C. J. Rhodes, J. Moncol, et al.“Free radicals, metals andantioxidants in oxidative stress-induced cancer,” Chemico-BiologicalInteractions,2006,160;1–40
    26V. J. Tang, K.M. Konigsfeld, J. A. Aguilera, et al.“DNA binding hydroxylradical probes,” Radiation Physics and Chemistry,2012,81;46–51
    27M. Valko, D. Leibfritz, J.Moncol, et al.“Free radicals and antioxidants innormal physiological functions and human disease,” International Journalof Biochemistry and Cell Biology,2007,39;44–84
    28S. A. A. Comhair, S. C. Erzurum,“Antioxidant responses tooxidant-mediated lung diseases,” American Journal of Physiology,2002,283; L246–L255
    29M. Gulumian, J. A. van Wyk,“Hydroxyl radical production in the presenceof fibres by a Fenton-type reaction,” Chemico-Biological Interactions,1987,62;89–97
    30P. Voss, M. Engels, M. Strosova,et al.“Protective effect of antioxidantsagainst sarcoplasmic reticulum (SR) oxidation by Fenton reaction,however without prevention of Ca-pump activity,” Toxicology in Vitro,2008,22;1726–1733
    31C. Szab′o, H. Ischiropoulos, R. Radi,“Peroxynitrite: biochemistry,pathophysiology and development of therapeutics,” Nature Reviews DrugDiscovery,2007,6;662–680
    32M. Whiteman, J. P. E. Spencer, A. Jenner, et al.“Hypochlorousacid-induced DNA base modification: potentiation by nitrite: biomarkersof DNA damage by reactive oxygen species,” Biochemical andBiophysical Research Communications,1999,257;572–576
    33R. C. Silva, A. A. Goncalves,“Esp′ecies reativas do oxigenio e asdoenc as respirat′orias emgrandes animais,” Ci encia Rural,2010,40;994–1002
    34J. Lim′on-Pacheco, M. E. Gonsebatt,“The role of antioxidants andantioxidant-related enzymes in protective responses to environmentallyinduced oxidative stress,” Mutation Research,2009,674;137–147
    35L. M. Ellerby, D. E. Cabelli, J. A. Graden,et al.“Copper-zinc superoxidedismutase: why not pHdependent?” Journal of the American ChemicalSociety,1996,118;6556–6561
    36J. M. Mat′es, F. S′anchez-Jim′enez,“Antioxidant enzymes and theirimplications in pathophysiologic processes,” Frontiers in Bioscience,1999,4; D339–D345
    37S. Usui, K. Komeima, S. Y. Lee et al.,“Increased expression of catalaseand superoxide dismutase2reduces cone cell death in retinitispigmentosa,”Molecular Therapy,2009,17;778–786
    38M. Bjornstedt, M. Hamberg, S. Kumar, etal.“Human thioredoxinreductase directly reduces lipid hydroperoxides by NADPH andselenocystine strongly stimulates the reaction via catalytically generatedselenols,” Journal of Biological Chemistry,1995,270;11761–11764
    39J. Gromadzinska, E. Reszka, K. Bruzelius, et al.“Selenium and cancer:biomarkers of selenium status and molecular action of seleniumsupplements,” European Journal of Nutrition,2008,47;29–50
    40G. Powis, W. R. Montfort,“Properties and biological activities ofthioredoxins,” Annual Review of Biophysics and Biomolecular Structure,2001,30;421–455
    41M. Bjornstedt, J. Xue, W. Huang, e al.“The thioredoxin and glutaredoxinsystems are efficient electron donors to human plasma glutathioneperoxidase,” Journal of Biological Chemistry,1994,269;29382–29384
    42S. Wassmann, K. Wassmann, G. Nickenig,“Modulation of oxidant andantioxidant enzyme expression and function in vascular cells,”Hypertension,2004,44;381–386
    43J. Nordberg, E. S. J. Arn′er,“Reactive oxygen species, antioxidants, andthe mammalian thioredoxin system,” Free Radical Biology and Medicine,2001,31;1287–1312
    44J. M.May, J. D.Morrow, R. F. Burk,“Thioredoxin reductase reduces lipidhydroperoxides and spares α-tocopherol,” Biochemical and BiophysicalResearch Communications,2002,292;45–49
    45M. M. Nelson, D. L. Cox, Lehninger Principles of Biochemistry, W. H.Freeman, New York,2005, NY, USA
    46H. Nohl, A. V. Kozlov, K. Staniek, et al.“The multiple functions ofcoenzyme Q,” Bioorganic Chemistry,2001,29;1–13
    47E. G. Bliznakov,“Cardiovascular diseases, oxidative stress andantioxidants: the decisive role of coenzyme Q10,” CardiovascularResearch,1999,43;248–249
    48A. L. B. S. Barreiros, J. M. David, J. P. David,“Estresse oxidativo:relac ao entre gerac ao de esp′ecies reativas e defesa do organismo,”Qu′mica Nova,2006,29;113–123
    49E. Niki,“Antioxidants in relation to lipid peroxidation,” Chemistry andPhysics of Lipids,1987,44;227–253
    50I. Rahman, S. K. Biswas, A. Kode,“Oxidant and antioxidant balance in theairways and airway diseases,” European Journal of Pharmacology,2006,533;222–239
    51World Health Organization, Epilepsy in the WHO Africa Region, Bridgingthe Gap: The Global Campaign against Epilepsy,“Out of the Shadows”,World Health Organization, Geneva, Switzerland,2004
    52A. K. Ngugi, C. Bottomley, I. Kleinschmidt, et al.“Estimation of theburden of active and lifetime epilepsy: a meta-analytic approach,”Epilepsia,2010,51;883–890
    53S. D. Shorvon,“The etiologic classification of epilepsy,” Epilepsia,2011,52;1052–1057
    54S. D. Shorvon,“The causes of epilepsy: changing concepts of etiology ofepilepsy over the past150years,” Epilepsia,2011,52;1033–1044
    55J. C. Amatniek, W. A. Hauser, C. DelCastillo-Castaneda et al.,“Incidenceand predictors of seizures in patients with Alzheimer’s disease,” Epilepsia,2006,47;867–872
    56M. Arundine, M. Tymianski,“Molecular mechanisms ofcalcium-dependent neurodegeneration in excitotoxicity,” Cell Calcium,2003,34;325–337
    57S. J. Chang, B. C. Yu,“Mitochondrialmatters of the brain: mitochondrialdysfunction and oxidative status in epilepsy,” Journal of Bioenergetics andBiomembranes,2010,42;457–459
    58C. G. Wasterlain, D. G. Fujikawa, L. Penix, et al.“Pathophysiologicalmechanisms of brain damage from status epilepticus,” Epilepsia,1993,34;S37–S53
    59L. P. Liang, M. Patel,“Seizure-induced changes in mitochondrial redoxstatus,” Free Radical Biology and Medicine,2006,40;316–322
    60A. J. Bruce, M. Baudry,“Oxygen free radicals in rat limbic structures afterkainate-induced seizures,” Free Radical Biology and Medicine,1995,18;993–1002
    61M. R. Gluck, E. Jayatilleke, S. Shaw, et al.“CNS oxidative stressassociated with the kainic acid rodent model of experimental epilepsy,”Epilepsy Research,2000,39;63–71
    62Y. C. Chuang,“Mitochondrial dysfunction and oxidative stress inseizure-induced neuronal cell death,” Acta Neurologica Taiwanica,2010,19;3–15
    63H. R. Cock,“The role of mitochondria and oxidative stress in neuronaldamage after brief and prolonged seizures,” Progress in Brain Research,2002,135;187–196
    64L. P. Liang, Y. S.Ho, M. Patel,“Mitochondrial superoxide production inkainate-induced hippocampal damage,” Neuroscience,2000,101;563–570
    65D. C.Wallace, X. Zheng, M. T. Lott et al.,“Familialmitochondrialencephalomyopathy (MERRF): genetic, pathophysiological, andbiochemical characterization of a mitochondrial DNA disease,” Cell,1988,55;601–610
    66J. M. Shoffner, M. T. Lott, A. M. S. Lezza, et al.“Myoclonic epilepsy andragged-red fiber disease (MERRF) is associated with a mitochondrialDNA tRNA(Lys) mutation,” Cell,1990,61;931–937
    67S.B.Wu, Y. S. Ma,Y.T.Wu, et al.“Mitochondrial DNA mutation-elicitedoxidative stress, oxidative damage, and altered gene expression in culturedcells of patients with MERRF syndrome,” Molecular Neurobiology,2010,41;256–266
    68G. Zsurka, M. Baron, J. D. Stewart et al.,“Clonally expandedmitochondrial DNA mutations in epileptic individuals with mutated DNApolymerase γ,” Journal of Neuropathology and Experimental Neurology,2008,67;857–866
    69G. Zsurka, K. G. Hampel, I. Nelson et al.,“Severe epilepsy as the majorsymptom of new mutations in the mitochondrial tRNAPhe gene,”Neurology,2010,74;507–512
    70G. Zsurka, W. S. Kunz,“Mitochondrial dysfunction in neurologicaldisorders with epileptic phenotypes,” Journal of Bioenergetics andBiomembranes,2010,42;443–448
    71Y. C. Chuang, S. D. Chen, T. K. Lin et al.,“Upregulation of nitric oxidesynthase II contributes to apoptotic cell death in the hippocampal CA3subfield via a cytochrome c/caspase-3signaling cascade followinginduction of experimental temporal lobe status epilepticus in the rat,”Neuropharmacology,2007,52;1263–1273
    72E. J. Shin, J. H. Jeong, Y. H. Chung et al.,“Role of oxidative stress inepileptic seizures,” Neurochemistry International,2011,59;122–137
    73S. Waldbaum, M. Patel,“Mitochondrial dysfunction and oxidative stress: acontributing link to acquired epilepsy?” Journal of Bioenergetics andBiomembranes,2010,42;449–455
    74J. Folbergrov′a, W. S. Kunz,“Mitochondrial dysfunction in epilepsy,”Mitochondrion,2011,12;35–40
    75Milder J1, Patel M. Modulation of oxidative stress and mitochondrialfunction by the ketogenic diet. Epilepsy Res.2012,100:295-303
    76S.G. Jarrett, L. P. Liang, J. L. et al.“Mitochondrial DNA damage andimpaired base excision repair during epileptogenesis,” Neurobiology ofDisease,2008,30;130–138
    77M. Patel,“Mitochondrial dysfunction and oxidative stress: cause andconsequence of epileptic seizures,” Free Radical Biology and Medicine,2004,37;1951–1962
    78A. P. Kudin, G. Zsurka, C. E. Elger, et al.“Mitochondrial involvement intemporal lobe epilepsy,” Experimental Neurology,2009,218;326–332
    79D. J. Costello, N. Delanty,“Oxidative injury in epilepsy: potential forantioxidant therapy?” Expert Review of Neurotherapeutics,2004,4;541–553
    80F. Azam, M. V. V. Prasad, N. Thangavel,“Targeting oxidative stresscomponent in the therapeutics of epilepsy,”Current Topics inMedicinalChemistry,2012,12;994–1007
    81N. R. Temkin, A. D. Jarell, G. D. Anderson,“Antiepileptogenic agents:how close are we?” Drugs,2001,61;1045–1055
    82A. Legido,“Prevention of epilepsy,” Revista de Neurologia,2002,34;186–195
    83L. J. Willmore, W. J. Triggs,“Effect of phenytoin and corticosteroids onseizures and lipid peroxidation in experimental posttraumatic epilepsy,”Journal of Neurosurgery,1984,60;467–472
    84N. R. Temkin,“Antiepileptogenesis and seizure prevention trials withantiepileptic drugs: meta-analysis of controlled trials,” Epilepsia,2001,42;515–524
    85S. A. Hamed, M. M. Abdellah,“Trace elements and electrolyteshomeostasis and their relation to antioxidant enzyme activity in brainhyperexcitability of epileptic patients,” Journal of PharmacologicalSciences,2004,96;349–359
    86W. L¨oscher, D. Schmidt,“New horizons in the development ofantiepileptic drugs,” Epilepsy Research,2002,50;3–16
    87Y. Rong, S. R. Doctrow, G. Tocco,et al.“EUK-134, a synthetic superoxidedismutase and catalase mimetic, prevents oxidative stress and attenuateskainate-induced neuropathology,” Proceedings of the National Academy ofSciences of the United States of America,1999,96;9897–9902
    88K. Sudha, A. V. Rao, A. Rao,“Oxidative stress and antioxidants inepilepsy,” Clinica Chimica Acta,2001,303;19–24
    89K.Wojtal, A. Gniatkowska-Nowakowska, and S. J. Czuczwar,“Is nitricoxide involved in the anticonvulsant action of antiepileptic drugs?” PolishJournal of Pharmacology,2003,55;535–542
    90W. J. Streit, N. W. Sammons, A. J. Kuhns, et al.“Dystrophic microglia inthe aging human brain,” Glia,2004,45;208–212
    91J. A. Sloane, W. Hollander, M. B. Moss, et al.“Increased microglialactivation and protein nitration in white matter of the aging monkey,”Neurobiology of Aging,1999,20;395–405
    92K. I. Ogura, M. Ogawa, M. Yoshida,“Effects of ageing on microglia in thenormal rat brain: immunohistochemical observations,” NeuroReport,1994,5;1224–1226
    93A. M. Bodles, S. W. Barger,“Cytokines and the aging brain—what wedon’t know might help us,” Trends in Neurosciences,2004,27;621–626
    94E. M. Blalock, K. C. Chen, K. Sharrow et al.,“Gene microarrays inhippocampal aging: statistical profiling identifies novel processescorrelated with cognitive impairment,” Journal of Neuroscience,2003,23;3807–3819
    95T. Lu, Y. Pan, S. Y. Kao et al.,“Gene regulation and DNA damage in theageing human brain,” Nature,2004,429;883–891
    96A. Terao, A. Apte-Deshpande, L. Dousman et al.,“Immune response geneexpression increases in the aging murine hippocampus,” Journal ofNeuroimmunology,2002,132;99–112
    97L. Erraji-Benchekroun, M. D. Underwood, V. Arango et al.,“Molecularaging in human prefrontal cortex is selective and continuous throughoutadult life,” Biological Psychiatry,2005,57;549–558
    98W. S. T. Griffin,“Inflammation and neurodegenerative diseases,”American Journal of Clinical Nutrition,2006,83;470S–474S
    99A. L. Jefferson, J. M.Massaro, P. A.Wolf et al.,“Inflammatory biomarkersare associated with total brain volume: the Framingham Heart study,”Neurology,2007,68;1032–1038
    100A. Vezzani, T. Granata,“Brain inflammation in epilepsy: experimentaland clinical evidence,” Epilepsia,2005,46;1724–1743
    101A. Vezzani,“Inflammation and epilepsy,” Epilepsy Currents,2005,5;1–6
    102J. Peltola, J. Laaksonen, A. M. Haapala, et al.“Indicators of inflammationafter recent tonic-clonic epileptic seizures correlate with plasmainterleukin-6levels,” Seizure,2002,11;44–46
    103K. A. Lehtim¨aki, T. Ker¨anen, H. Huhtala et al.,“Regulation of IL-6system in cerebrospinal fluid and serum compartments by seizures: theeffect of seizure type and duration,” Journal of Neuroimmunology,2004,152;121–125
    104A. Verrotti, R. Pascarella, D. Trotta,et al.“Hyperhomocysteinemia inchildren treated with sodium valproate and carbamazepine,” EpilepsyResearch,2000,41;253–257
    105S. A. Hamed, E. A. Hamed, R. Hamdy, et al.“Vascular risk factors andoxidative stress as independent predictors of asymptomatic atherosclerosisin adult patients with epilepsy,” Epilepsy Research,2007,74;183–192
    106C. T. Ekdahl, J. H. Claasen, S. Bonde, et al.“Inflammation is detrimentalfor neurogenesis in adult brain,” Proceedings of the National Academy ofSciences of the United States of America,2003,100;13632–13637
    107E. O. Sanya,“Peculiarity of epilepsy in elderly people: a review,” WestAfrican Journal of Medicine,2010,29;365–372
    108W. A. Hauser,“Seizure disorders: the changes with age,” Epilepsia,1992,33; S6–S14
    109H.Wallace, S. Shorvon, R. Tallis,“Age-specific incidence and prevalencerates of treated epilepsy in an unselected population of2,052,922andage-specific fertility rates of women with epilepsy,” The Lancet,1998,
    352;1970–1973
    110E. Olafsson, P. Ludvigsson, G. Gudmundsson, et al.“Incidence ofunprovoked seizures and epilepsy in Iceland and assessment of theepilepsy syndrome classification: a prospective study,” The LancetNeurology,2005,4;627–634
    111W. A. Hauser, J. F. Annegers, L. T. Kurland,“Incidence of epilepsy andunprovoked seizures in Rochester, Minnesota:1935–1984,” Epilepsia,1993,34;453–468
    112K. J. Werhahn,“Epilepsy in the elderly,” Deutsches¨ Arzteblattinternational,2009,106;135–142
    113D. A. Sun, S. Sombati, R. J. DeLorenzo,“Glutamate injury-inducedepileptogenesis in hippocampal neurons: an in vitro model ofstroke-induced ‘epilepsy’,” Stroke,2001,32;2344–2350
    114B. Stegmayr, K. Asplund, P. O. Wester,“Trends in incidence, case-fatalityrate, and severity of stroke in Northern Sweden,1985–1991,” Stroke,1994,25;1738–1745
    115C. Helmer, K. P′er`es, L. Letenneur et al.,“Dementia in subjects aged75years or over within the PAQUID cohort: prevalence and burden byseverity,” Dementia and Geriatric Cognitive Disorders,2006,22;87–94
    116H. Ramaroson, C. Helmer, P. Barberger-Gateau, et al.“Prevalence ofdementia and Alzheimer’s disease among subjects aged75years or over:updated results of the PAQUID cohort,” Revue Neurologique,2003,159;405–411
    117E. Von Strauss, M. Viitanen, D. De Ronchi, et al.“Aging and theoccurrence of dementia: findings from a population-based cohort with alarge sample of nonagenarians,” Archives of Neurology,1999,56;587–592
    118D. C. Hesdorffer, W. A. Hauser, J. F. Annegers, et al.“Dementia andadult-onset unprovoked seizures,” Neurology,1996,46;727–730
    119C. Cordonnier, H. H′enon, P. Derambure, et al.“Early epileptic seizuresafter stroke are associated with increased risk of new-onset dementia,”Journal of Neurology, Neurosurgery and Psychiatry,2007,78;514–516
    120C. Cordonnier, H. H′enon, P. Derambure, et al.“Influence of pre-existingdementia on the risk of poststroke epileptic seizures,” Journal ofNeurology, Neurosurgery and Psychiatry,2005,76;1649–1653
    121H. Mangge, G. Almer, M. Truschnig-Wilders, et al.“Inflammation,adiponectin, obesity and cardiovascular risk,” Current MedicinalChemistry,2010,17;4511–4520
    122R. M. Adibhatla, J. F. Hatcher,“Altered lipid metabolism in brain injuryand disorders,” Sub-Cellular Biochemistry,2008,49;241–268
    123R. Muralikrishna Adibhatla, J. F. Hatcher, R. J. Dempsey,“PhospholipaseA2, hydroxyl radicals, and lipid peroxidation in transient cerebralischemia,” Antioxidants and Redox Signaling,2003,5;647–654
    124R. M. Adibhatla, J. F. Hatcher,“Phospholipase A2, reactive oxygenspecies, and lipid peroxidation in CNS pathologies,” Journal ofBiochemistry andMolecular Biology,2008,41;560–567
    125H. Esterbauer, R. J. Schaur, H. Zollner,“Chemistry and Biochemistry of4-hydroxynonenal, malonaldehyde and related aldehydes,” Free RadicalBiology andMedicine,1991,11;81–128
    126K. Uchida,“4-Hydroxy-2-nonenal: a product and mediator of oxidativestress,” Progress in Lipid Research,2003,42;318–343
    127O. Vittos, B. Toana, A. Vittos, et al.“Lipoprotein-associatedphospholipase A2(Lp-PLA2): a review of its role and significance as acardiovascular biomarker,” Biomarkers,2012,17;289–302
    128T. I. Williams, B. C. Lynn, W. R. Markesbery, et al.“Increased levels of4-hydroxynonenal and acrolein, neurotoxic markers of lipid peroxidation,in the brain inmild cognitive impairment and early Alzheimer’s disease,”Neurobiology of Aging,2006,27;1094–1099
    129C. Papatheodoropoulos,“Age-related changes in excitability andrecurrent inhibition in the rat CA1hippocampal region,” EuropeanJournal of Neuroscience,1996,8;510–520
    130D. S. Kerr, L. W. Campbell, M. D. Applegate, et al.“Chronicstress-induced acceleration of electrophysiologic and morphometricbiomarkers of hippocampal aging,” Journal of Neuroscience,1991,11;
    1316–1324

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700