基于LCOS的视频全息显示系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
3D显示在现在社会生活中具有重要的意义,而全息显示将会是最有希望实现真3D显示的技术,全息显示可以提供物体波的全部信息,具有极好的深度与视差,可以提供人类对3D信息所需要的所有生理和心理暗示。
     1948年由英国科学家Dennis Gabor首先提出"holography"——全息术,从而开辟了光学中的一个崭新领域;他也因此而获得1971年的诺贝尔物理学奖。1966年,Brown和Lohmann等人提出了计算机产生全息术,做出了世界上第一张计算全息图。计算图的制作在计算机上实现,克服了光全息不能实时显示、不能显示现实世界中不存在的物体已经全息图制作需要极其严格的限制条件等缺点。因此计算全息显示被认为是未来真三维显示的主流。近些年,1994年,MIT多媒体实验室的用声光调制器实现了世界上第一台动态三维全息显示系统。2007年德国SeeReal TechnologiesGmbH开发出了基于LCOS的三维视频全息技术的立体显示器。
     空间光调制器是现代全息显示中非常重要的器件,它可以根据输入信号对入射光波进行相应调节。由于纯相位的空间光调制器对光的利用效率以及衍射效率都很高,所以人们对纯相位的空间光调制器研究又是更加热衷。随着近些年液晶技术的发展,液晶开始被用于制作成空间光调制器。液晶空间光调制器具有很多优点,特别是近几年开发出的硅基液晶技术-LCOS,这种空间光调制器具有衍射效率高、开口率大、分辨率高,并且可以实现近似纯相位调制等特点。
     本文介绍了空间光调制器的分类,并着重说明了液晶空间光调制器的发展及现状,研究了目前用于制作成LCOS面板的液晶模板种类。使用琼斯矩阵详细分析了光在LCOS面板中的调制过程,介绍了改进的FDTD算法的主要过程,并运用此算法模拟了光在LCOS中的传播过程。此外,通过具体实验测量了three five systems公司生产的最新LCOS面板的相位调制范围及反射效率。使用两块不同类型的LCOS面板为核心搭建了视频全息显示系统,以纯相位编码的方式产生全息图,可以得到很好的结果。最后对两系统显示的全息图结果进行分析比较,得出那种类型的LCOS面板交适合用于视频全息显示。
3D Display plays a important role in the current social life, while the holographic display will be the most promising technology to achieve true 3D display。Holographic display provides all the information of the object wave, with excellent depth and parallax and all implicative details which are physically and psychologically needed for 3D understanding.
     In 1947, Dr. Dennis Gabor introduced the holography and he opening up a new area of optical so fundamental that he eventually won, in 1971, the Nobel Prize in Physics. In 1966, Brown and Lohmann, who propose computer-generated holography, made a calculation of the world's first hologram. The generation of computational hologram is completed in computer, which overcame the defects of optical holography which can not realize real time display, display the objects that do not physically exist and needs strict restricted condition. Therefore holographic display based on computational holography is considered as the popular 3-D display technology in the future. In recent years,1994, MIT Media Lab's use AOM achieve the first dynamic three-dimensional holographic display system in the world,2007, based on LCOS TechnologiesGmbH developed a three-dimensional video holographic display system.
     Spatial light modulator is a crucial device for holographic display, which can modulate incident light according to the input signal. Due to its high efficiency of light use and diffraction in phase-only modulation, SLM has gained great interests. Liquid crystal spatial light modulator especially the liquid crystal on silicon technology-LCOS that has developed in recent years, has so many advantages, high diffraction efficiency, high fill factor, high resolution, and near phase-only modulation is achievable. Liquid crystal spatial light modulator, especially the liquid crystal on silicon technology-LCOS that has developed in recent years, has merits such as high diffraction efficiency, high fill factor, high resolution, and making near phase-only modulation achievable.
     In this paper, we introduce the classification of SLM first and emphasize the development and current situation.The liquid crystal panel that is made into LCOS panel has been researched, and we use the Jones Matrix to analyze the process of light modulation in the LCOS panel. An improved FDTD algorithm is introduced, to simulate the propagation of light through LCOS. In addition, the phase modulate range and reflex reflectivity of the three five systems company's latest LCOS panel were measured by specific experiment. Based on two different LCOS panels, we built holographic video display systems, and holographs were generated with phase-only encoding,and resulted well. Finally, the results of two holographic video display systems were compared, and, we will give the result that which kind of LCOS panel is suitable for holographic video display systems.
引文
[1]http://www.enet.com.cn/display/,2010-4-1.
    [2]http://baike.baidu.com/view/230225.htm?fr=ala0_1,2010-3-27.
    [3]Gabor Dennis. A new microscopic principle [J]. Nature,1948,161(4098): 777~778.
    [4]Kollin J. S., Benton S. A., and Jepsen M. L.. Real-time display of 3-D computed holograms by scanning the image of an ascousto-optic Modulator [J]. Proceedings of SPIE,1989,1136:178~180.
    [5]Lucente Mark. Diffraction-Specific Fringe Computation for Electro-Holography, MIT Dept. of Electrical Engineering and Computer Science (D). MIT Dept. of Electrical Engineering and Computer Science,1994.
    [6]R. Haussler, A. Schwerdtner, N. Leister. Large holographic displays as an alternative to stereoscopic displays [J]. SPIE,2008.
    [7]Norbert Leister, Armin Schwerdtner, Gerald Fiitterer, Steffen Buschbeck. Full-color interactive holographic projection system for large 3D scene reconstruction [J]. SPIE,2008.
    [8]A. Schwerdtner, R. Haussler, N. Leister. Large Holographic Displays for Real-Time Applications [J]. SPIE,2008.
    [9]王启明.液晶空间光调制器相位调制特性研究及其应用[D].浙江大学光学工程,2008.
    [10]Sangrok Lee. A liquid crystal on silicon color sequential display using frame buffer pixel circuits [D]. Department of Electrical and Computer Engineering Duke University,2003.
    [11]http://baike.baidu.com/view/7687.htm?fr-ala0_1_1,2010-03-09.
    [12]http://www.ty360.com/technology/touyin-06.htm,2007-9-20.
    [13]王新久.液晶光学和液晶显示[M].北京:科学出版社,2006.156~172.
    [14]mark stephen starzomski. Characterization and applications of phase modulating liquid crystal display[D]. Dalhousie university electrical and computer engineering,1999.
    [15]王梦遥,潘炜,罗斌,邹喜华,张伟利.铁电液晶基空间光调制器的灰度响应特性[J].光学精密工程,2007,15(4):460-466.
    [16]http://wenda.tianya.cn/wenda/thread?tid=2d9e 15f41be41426,2010-3-24.
    [17]刘静.扭曲向列型液晶纯相位空间光调制器[D].大连理工大学测试计量技术与仪器,2007.
    [18]任秀云.扭曲向列液晶空间光调制器的波面变换特性及其应用[D].山东师范大学光学专业,2005.
    [19]凌志华.STN-LCD技术的发展[J].液晶与显示,2002,04:233-242.
    [20]M. Ohtsu, Tadashi Akahane and Toshiharu Tako. Birefringence of n-type nematic liquid crystals due to electrically induced deformations of vertical alignment[J].Appl. Phys,1974,13:621.
    [21]M. Klasen, M. Bremen and K. Tarumi. New liquid-crystal materials for active matrix displays with negative dielectric anisotropy and low rotational viscosity[J]. Appl. Phys.2000,39:1180-1182.
    [22]Rober J. Collier, Christoph B. Burckhardt, Lawrence H. Lin. Optical Holography [M]. Academic Press New York and London,1971,10~207.
    [23]Richard Patrick Muffoletto. Numerical techniques for fresnel diffraction in computational holography [D]. Louisiana State:Louisiana State University,2006.
    [24]王大鹏.面向数字微镜器件的全息编码研究[D].安徽大学计算机应用技术,2007.
    [25]韩超.基于数字微镜器件的全息编码与显示[D].安徽大学计算机应用技术,2009.
    [26]葛爱明,隋展,徐克璹.反射型LCOS器件纯相位调制特性的研究[J].物理学报,2003,52(10):2481~2485.
    [27]Kanghua Lu, Bahaa E.A. Saleh.. Theory and design of the liquid crystal TV as an optical spatial light modulator[J]. Opt. Eng,1990,29(3):240~246.
    [28]Cohn Soutar, Kanghua Lu.. Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell[J]. Optical Engineering, 1994,33(8):2704~2712.
    [29]N Konforti, E Marom, and S T Wu.. Phase-only modulation with twisted liquid-crystal spatial light modulators[J]. Opt. Lett,1988,13(3):251~253.
    [30]H. S. Kwok.. Parameter space representation of liquid crystal display operating modes[J]. Appl. Phys,1996,80(7):3687~3693
    [31]S. T. Tang, F. H. Yu, J. Chen.. Reflective twisted nematic liquid crystal displays. Ⅱ. Elimination of retardation film and rear polarizer[J]. Appl. Phys, 1997,82(9):5924~5929
    [32]R. C. Jones. New calculus for the treatment of optical systems[J]. Opt. Soc. Am. 1941,31:488.
    [33]A. Lien. A detailed derivation of extended Jones matrix representation for twisted nematic liquid crystal displays[J]. Liquid Crystals.1997,22:171-175.
    [34]Yongmin Lee, James Gourlay.. Multi-phase modulation for nematic liquid crystal on silicon backplane spatial light modulators using pulse-width modulation driving scheme[J]. Elsevier B.V,2004,236:313~322
    [35]陈西园,单明.斜入射条件下的琼斯矩阵[J].辽宁石油化工大学学报,2004,24(4):93-96.
    [36]HaiTao Dai, KeShu Xu,YanJun Liu, Xin Wang, Jianhua Liu.. Characteristics of LCOS Phase-only spatial light modulator and its applications [J]. Elsevier B.V, 2004,238:269~276
    [37]J. C. Maxwell. A dynamical theory of the electromagnetic field[J]. Philos. Trans. R. Soc. Lond. A.1865,155:459-512.
    [38]代勇.二维光子晶体的FDTD计算[D].华中科技大学电磁场与微波技术专业,2006.
    [39]朱志宏.用时域有限差分方法(FDTD)研究光子晶体传输特性[D].国防科学技术大学光学工程专业,2002.
    [40]李南京.阻抗边界条件的研究及其在FDTD法中的应用[D].西北工业大学电子工程系电磁场与微波技术专业,2002.
    [41]张烜.FDTD模拟光波在二维光子晶体中的传播[D].东南大学物理电子学,2005.
    [42]K. S. Yee. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Trans. Antenn. Propag. 1966,14:302-307.
    [43]J. A. Roden., S. D. Gedney., M. P. Kesler., J. G. Maloney and P. H. Harms. Time-domain analysis of periodic structures at oblique incidence:Orthorgonal and nonorthogonal fdtd implementation[J]. IEEE Trans. Microwave Theory Tech. 1998,46:420-427.
    [44]J. P. Berenger. A perfectly matched layer for the absorption of electromagnetic waves[J]. Computat. Phys.1994,23:185-200.
    [45]J. P. Berenger. Three-dimensional perfectly matched layer for the absorption of electromagnetic waves [J]. Computat. Phys.1996,23:363-379.
    [46]W. C. Chew and W. H. Weedon. A 3d perfectly matched medium from modified maxwell's equations with streched coordinates [J]. Microwave and Optical technology Lett.1994,7:599-604.
    [47]Z. S. Sacks, D. M. Kingsland, R. Lee, and J.-F. Lee. A perfectly matched anisotropic absorber for use as an absorbing boundary condition[J]. IEEE Trans. Antenn. Propag.1995,43:1460-1463.
    [48]R. Mittra and U. Pekel. A new look at the perfectly matched layer (pml) concept for the refectionless absorption of electromagnetic waves[J]. IEEE Micro. Guided W. 1995,5:84-86.
    [49]S. D. Gedney. An anisotropic perfectly matched layer-absorbing medium for the truncation of fdtd lattices[J]. IEEE Trans. Antenn. Propag.1996,44:1630-1639.
    [50]J. A. Roden and S. D. Gedney. Convolution pml (cpml):An effcient fdtd implementation of the cfs-pml for arbitrary media[J]. Microw. Opt. Techn. Let.2000, 27:334-339.
    [51]A. Taflove and S. C. Hagness, Computational Electrodynamics: Finite-Difference Time-Domain Method. Norwood, MA:Artech House,2nd ed,2000.
    [52]苏绍卓.基于FDTD模拟TM波传播的数值稳定性分析[D].北京邮电大学电子工程学院,2009.
    [53]Jen-Chun Chao., Wei-Yen Wu. Diffraction characteristics of a liquid crystal polarization grating analyzed using the finite-difference time-domain method[J]. Optics Express.2007,15(25):16702-16711.
    [54]Chulwoo Oh and Michael J. Escuti. Time-domain analysis of periodic anisotropic media at oblique incidence:an efficient FDTD implementation[J]. Optics Express.2006,14(24):11870-11884.
    [55]Emmanouil E. Kriezis. Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method[J]. Elsevier Science B.V. 2000,69(77):200-205.
    [56]Xinghua Wang., Bin Wang. Finite-difference time-domain simulation of a liquid-crystal optical phased array[J]. Opt. Soc. Am. A.2005,20(2):346-354.
    [57]Charles M. Titus 1, Philip J. Bos1, Jack R. Kelly, and Eugene C. Gartland. Comparison of Analytical Calculations to Finite-Difference Time-Domain Simulations of One-Dimensional Spatially Varying Anisotropic Liquid Crystal Structures[J]. Japanese Journal of Applied Physics.1999,38(3A):1-27.
    [58]谢国震,尹宝银.新型聚合物液晶器件光学特性的FDTD模拟[J].焦作大学学报.2005,19(3):64-66.
    [59]Bin Wang, David B. Chung and Philip J. Bos. Finite-Difference Time-Domain Optical Calculations of Polymer-Liquid Crystal Composite Electrodiffractive Device[J]. Appl. Phys.2004,43:176-181.
    [60]代永平.南开大学LCOS技术研究进展[J].现代显示,2005,56:27~31
    [61]HaiTao Dai, KeShu Xu,YanJun Liu, Xin Wang, Jianhua Liu. Characteristics of LCOS Phase-only spatial light modulator and its applications[J]. Elsevier B.V, 2004,238:269-276
    [62]何勇,陈磊,王青.移相式泰曼—格林红外干涉仪及其应用[[J].红外与激光工程.2003,32(4):335-339.
    [63]郁道银,谈恒英.工程光学[M].北京:机械工业出版社.2004,230-232.
    [64]陈怀新,隋展,陈祯培.液晶电视(LCTV)的光学调制特性及其应用[J].中国激光.2000,27(8):741-745.
    [65]R. Barnett. Digital Watermarking:Application, Techniques, and Challenges, IEEE Electronics and Communication Engineering Journal, Auguest,1999,173-183.
    [66]洪丽,石端文.迈克尔逊干涉仪的调节[J].2007,4.
    [67]徐鹏.液晶空间光调制器光调制特性测量及其在光学图像处理中的应用研究[D].山东大学光学工程,2005.
    [68]王启明.液晶空间光调制器相位调制特性研究及其应用[D].浙江大学信息学院光学工程,2008.
    [69]程鸿飞,高鸿锦.反射型扭曲向列相液晶显示器工作模式的演化[J].液晶与显示,2001,16(1):38-43.
    [70]Brown, B. R., and Lohmann, A. W., Computer Generated Binary Holograms [J], IBM Journal of Research and Development,1969,13,160-167.
    [71]Lesem, L. B., Hirsch, P. M., and Jordan Jr., J. A., The Kinoform:A New Wavefront Reconstruction Device [J], IBM Journal of Research and Development, 1969,13,150-155.
    [72]F.Wyrowski and O.Bryngdahl, Iterative Fourier-transform algorithm applied to computer holography[J]. Opt. Soc. Am. A5,1988.1058-1065
    [73]J.R.Fienup. Iterative method applied to image reconstruction and to computer-generated holograms[J]. Opt.Eng.1980.19:297-305
    [74]Fahri Yaras, Metodi Kovachev, Rossitza Ilieva. Holographic reconstructions using phase-only spatial light modulators[J]. IEEE,2008,28(30):PD1-PD4
    [75]Tomoyoshi Ito.. Color electroholography by three colored reference lights simultaneously incident upon one hologram panel[J]. Optics Express, 2004,12(18):4320~4325
    [76]J. R. Moore, N. Collings, W. A. Crossland.. The Silicon Backplane Design for an LCOS Polarization-Insensitive Phase Hologram SLM[J]. IEEE, 2008,20(1):60~62
    [77]A. Georgiou, J. Christmas.. Liquid crystal over silicon device characteristics for holographic projection of high-definition television images[J]. Applied Optics, 2008,47(26):4793~4803
    [78]韩超,韦穗.余弦二值编码纯相位全息图的数字微镜器件显示[J].光学学报,2008,28(4):659~663
    [79]Ignacio Moreno, Claudio Iemmi, Andre's Ma'rquez, Juan Campos, and Marla J. Yzuel. Modulation light efficiency of diffractive lenses displayed in a restricted phase-mostly modulation display[J]. Appl. Opt.2004,43,:6278-6284
    [80]R. D. Juday. Optimal realizable filters and the minimum Euclidean distance principle[J]. Appl. Opt.1993,32:5100-5111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700