白光LED用碱土金属硅酸盐荧光粉的制备及光谱性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白光LED因其具有体积小、节能、环保、寿命长等优点而引起人们的广泛关注,被称为第四代照明光源。实现白光LED最成熟方式是荧光粉转换法,因此白光LED用荧光粉的制备和性能越来越受到人们的重视。
     稀土硅酸盐体系发光材料由于其化学稳定性好,耐水性强,发光颜色多样,应用广泛等特点,越来越引起人们的重视。本论文采用凝胶-燃烧法成功合成了稀土离子激活的系列白光LED用碱土金属多硅酸盐荧光粉,借助XRD、EDS、SEM、荧光光谱等现代测试手段,对合成产物进行了分析和表征,得出以下结论:
     1.采用凝胶-燃烧法成功合成了Eu2+掺杂的新型碱土多硅酸盐蓝色发光材料Sr2MgSi3O9:Eu2+,属四方晶系(Tetragonal)。其一次颗粒近似球形,粒径在100 nm左右。激发光谱分布在250~450 nm的波长范围,主激发峰位于424 nm处,次激发峰位于400 nm处,可以被InGaN管芯产生的近紫外辐射有效激发。发射光谱也为一宽带,最大发射峰位于470 nm附近,是典型的Eu2+的4f5d-4f跃迁导致的。Sr2MgSi3O9:Eu2+是一种很有前途用于白光LED的蓝色荧光粉。此外,探讨了Eu2+的掺杂浓度、还原温度及共掺杂离子等对材料发光亮度的影响。
     2.采用凝胶-燃烧法合成Ce3+、Tb3+共掺的新型发光材料Sr2MgSi3O9:Ce3+,Tb3+。该发光材料与Sr2MgSi2O7具有相似的晶体结构,同属四方晶系。样品一次颗粒近似球形,粒径在100 nm左右。Sr2MgSi3O9:Tb3+的激发光谱为一位于249 nm的宽带,发射光谱主要由473 nm,491nm,547 nm,585 nm等一系列发射峰组成,其中473 nm(5D3→7F3)为主发射峰,547 nm(5D4→7F5)为次发射峰;样品Sr1.955MgSi3O9:Tb3+0.04,Ce3+0.005的激发光谱由峰值分别249 nm和335 nm的双激发带组成,其中后者为主激发带。在335 nm激发下,其发射光谱由两部分组成,其中400 nm附近的带状发射对应于Ce3+的发射,而491 nm,547 nm,588 nm处的发射峰归属为Tb3+的5D4→7FJ(J = 6, 5, 4)跃迁发射,最强峰位于547 nm,对应Tb3+的5D4→7F5跃迁。此外,探讨了Ce3+掺杂量对样品发光亮度的影响,发现Ce3+可以把能量传递给Tb3+,对Tb3+起到敏化作用。
     3.采用凝胶-燃烧法合成Eu3+掺杂的新型碱土多硅酸盐红色发光材xSrO·MgO·ySiO2(x = 1~2,y = 2~3)。Sr2MgSi3O9:Eu3+和SrMgSi2O6:Eu3+的晶体结构均与Sr2MgSi2O7相似,同属四方晶系。其激发和发射光谱分析表明:激发光谱在220~300 nm之间出现一宽带吸收,归属于O2--Eu3+之间的电荷迁移带,300 nm以后出现的锐线峰为Eu3+的f-f跃迁吸收峰,其最强锐线峰位于400 nm,对应于Eu3+的基态到5L6激发态跃迁吸收。因此,荧光粉可以被InGaN管芯产生的紫外辐射有效激发。发射光谱由两个强发射峰组成,分别位于592 nm和618 nm处,分别属于典型的Eu3+的5D0→7F1和5D0→7F2跃迁。此外,探讨了发光中心Eu3+浓度、共掺杂离子Ti4+和Gd3+以及电荷补偿剂Li+,Na+,K+对样品发光特性的影响。
     4.采用凝胶-燃烧法合成Eu2+掺杂的碱土氯硅酸盐蓝色荧光粉Sr4Si3O8Cl4:Eu2+。该发光材料与Sr4Si3O8Cl4具有相同的晶体结构,属正交晶系。激发光谱分布在250~400 nm的一个较宽的波长范围,可以被InGaN管芯产生的紫外及近紫外辐射有效激发。在324 nm的紫外光激发下,Sr4Si3O8Cl4:Eu2+产生一个主峰位于484 nm的宽带发射,是典型的Eu2+的4f5d-4f跃迁导致的。通过在基质中掺杂Mg2+改变Eu2+的晶体场环境,使得Sr4-xMgxSi3O8Cl4:Eu2+发射光谱发生明显变化,当Mg2+浓度x从0增加到2.0时,发射主峰的位置由484 nm移到436 nm,即:发射光谱发生蓝移,发光颜色从蓝绿变为蓝色;激发主峰从324 nm移到343 nm,即激发光谱发生红移,故stokes位移减小,样品的发光效率提高。同时发现,当Mg2+掺杂浓度大于0.5时,样品的发光强度随着Mg2+浓度的增加而增大,蓝光发射增强。
White light emitting diodes (LED) have attracted widespread interest due to their little volume, energy-saving, high efficiency, mercury pollution-free, long service life and so on, so it is honored to the fourth generation illuminating sources. The most mature method for achieving White LED is phosphor conversion. Therefore, more and more attention has been paid to the preparation and the properties of the phosphors for White LED.
     Alkaline earth polysilicate phosphors have more advantages on chemical stability, heat stability, excellent water resistance, varied luminescence color and wide application, so more attention is focused on this kind of phosphors.
     So in our present work, a series of alkaline earth polysilicate phosphors doped with rare earth ions for White LED were successfully synthesized by gel-combustion method. The as-synthesized phosphors were investigated by X-ray diffraction analysis (XRD), Energy Dispersive Spectrometer (EDS), Scanning Electron Microscope (SEM) and Fluorescence spectrophotometer. According to that, we get some valuable conclusions as follows:
     1. Eu2+ doped novel alkaline earth polysilicate blue emitting phosphors Sr2MgSi3O9:Eu2+ were synthesized by gel-combustion method. The phosphors possess the tetragonal crystal structure. The initial particles of the phosphors are nearly spherical in shape, and the grain size is about 100nm in diameter. The excitation spectrum of Sr2MgSi3O9:Eu 2+ is a broad band in the range of 250~450nm,the main peak is at 424nm and the secondary peak is at 400nm. So, the phosphors can be excited efficiently by UVLED chip with the near-UV radiation of 360~400 nm. The emission spectrum is also a broad band, and the emission peak is at about 470nm which is ascribed to Eu2+ ions typical transition from 4f5d to 4f. Sr2MgSi3O9:Eu2 + shows good prospect for blue phosphors of white LED. Moreover, the effects of the doping concentration of Eu2+, the sintering temperature and the co-doped ions on the luminescence properties of the phosphors have been discussed.
     2. Ce3+, Tb3+ co-doped novel phosphors Sr2MgSi3O9:Tb3+,Ce3+ were synthesized by gel-combustion method. Sr2MgSi3O9:Tb3+ and Sr2MgSi3O9:Tb3+,Ce3+ phosphors possess the similar tetragonal crystal structure as that of Sr2MgSi2O7. The initial particles of as-synthesized phosphors are nearly spherical in shape, and the particle size is about 100nm in diameter. The excitation spectrum of Sr2MgSi3O9:Tb3+ is a broad band and the main peak is at 249nm. The emission spectrum is composed of a series of peaks, located respectively at 473nm, 491nm, 547nm and 585nm. The main peak is at 473nm (5D3→7F3), and the secondary peak is at 547nm (5D4→7F5). The excitation spectrum of Sr1.955MgSi3O9:Tb3+0.04, Ce3+0.005 displays two broad bands with two peaks around 249nm and 335nm respectively; the latter peak is much stronger than the former. Under 335nm irradiation, the emission spectrum is composed of two parts. One part is a broad band at around 400nm, which belongs to the emission of Ce3+. The other part is composed of a series of peaks, located respectively at 491nm, 547nm and 588nm. These emission peaks are ascribed respectively to Tb3+ ions transition of 5D4→7FJ (J = 6, 5, 4) in Sr2MgSi3O9:Tb3+,Ce3+. The main emission peak is at 547nm (5D4→7F5). Moreover, the effect of Ce3+ doping amount on luminescent intensity was discussed. It is found that energy transfer from Ce3+ to Tb 3+ is efficient and sensitization lie in Ce3+ to Tb3+ in Sr2MgSi3O9 host under UV light.
     3. Eu3+ doped novel alkaline earth polysilicate red phosphors xSrO·MgO·ySiO2(x = 1~2,y = 2~3) were synthesized by gel-combustion method. The as-synthesized phosphors possess the similar tetragonal crystal structure as that of Sr2MgSi2O7. The excitation spectrum of samples presents wide band absorption between 220~300nm, which is ascribed to the charge transfer between Eu3+-O2-. The sharp peaks after 300nm belong to f-f transition of Eu3+, and the strongest sharp peak is located at 400nm. Therefore, samples can be efficiently excited by ultraviolet radiation from InGaN chip. The emission spectrum consists of two strong emission peaks at 592nm and 618nm, which are ascribed to 5D0→7F1 and 5D0→7F2 respectively. Moreover, the effect of the doping concentration of Eu3+, co-dope Gd3+ , Ti4+ and charge compensation agent Li+, Na+ and K+ on luminescent properties were discussed.
     4. Eu2+ doped the series of Sr4Si3O8Cl4:Eu2+ blue-green phosphors were synthesized by gel-combustion method. The as-synthesized phosphors have the same orthorhombic crystal structure as that of Sr4Si3O8Cl4. The excitation spectrum of Sr4Si3O8Cl4:Eu2+ is a broad band in the range of 250~400nm, and the main peak at 324nm, which can be excited efficiently by UV and NUV radiation generated by UVLED chip. Under the radiation of 324nm, the emission spectrum is also a broad band with the main emission peak at about 484nm. It’s ascribed to Eu2+ ions typical transition from 4f5d to 4f. Sr4Si3O8Cl4:Eu2+ shows good prospect for blue-green phosphors of white LED. It is found that doping Mg2+ ion in host leads to blue shift of the emission spectrum of Sr4-xMgxSi3O8Cl4: Eu2+. The reason is that doping Mg2+ ions change the crystal field of Eu2+. The main emission peak shifts from 484nm to 436nm when the concentration of Mg2+ changes from 0 to 2.0, the emitting colour varies from blue-green to blue; the main excitation peak shifts from 324nm to 343nm, so stokes shifts decrease, and luminous efficiency is improved. Moreover, it is found that the luminescent intensity increases with the increase of the concentration of Mg2+ when the concentration of Mg2+ is excess to 0.5, and blue emitting becomes strong.
引文
[1]徐时清.固体照明光源—白光LED的研究进展[J].中国计量学院学报, 2006, 17(3): 188-191.
    [2]黄尚廉.发展节能环保固态照明光源研究[J].重庆大学学报, 2005, 11(3): 1-2.
    [3] Holonyak N J, Bevaqua S F. Coherent (visible) light emission from Ga(As1-xPx) junctions[J]. Appl. Phys. Lett., 1962, 82(1): 74-82.
    [4] S Nakamura, T Mukai, M Senoh, et al. Candela-class high-Brightness InGaN/AlGaN double-hetero structure blue-light-emitting diodes [J]. Appl. Phys. Lett., 1994, 64 (13): 1687-1689.
    [5]许文翠,牛萍娟,付贤松,等.无荧光粉转换白光LED的研究和进展[J].光机电信息, 2009, 26(8): 25-29.
    [6]张国义.固体照明光源的基石—氮化镓基白光发光二极管[J].物理学和高新技术, 2004, 33(11): 833-842.
    [7] K Bando. InGaN/YAG white LED for mobile devices and general illuminations[C]. SID Conference Record of the International Display Research Conference. 2001: 545-548.
    [8] N Narendran, L Deng. Characterizing LEDs for general illumination applications: mixed-color and phosphor-based white sources[J]. Proc. Spie-Int. Soc. Opt. Eng, 2001, 44: 137-147.
    [9] Subramanian Muthu, Schuurmans F J, Pashley M D. Red, Green and Blue LED Based White Light Generation: issues and control [J]. Industry Applications Conference, 2002, 8(2): 327-333.
    [10]蒋大鹏,赵成久,侯凤勤,等.白光发光二极管的制备技术及主要特性[J].发光学报, 2003, 5(24): 385-389.
    [11]郑子樵,李红英.稀土功能材料[M].化学工业出版社, 2003: 166.
    [12]黎兆林. LED照明新一代的绿色光源[J].研究与探讨, 2007, (4): 34-36.
    [13]徐修冬,许贵真,吴占超,等.白色发光二极管用荧光粉研究进展(I)[J].中山大学学报(自然科学版), 2007, 46(5): 124-128.
    [14] Heesun Yang, Dong-Kyoon Lee, Yong-Seog Kim. Spectral variations of nano-sized Y3Al5O12:Ce phosphors via codoping/substitution and their white LED characteristics[J]. Materials Chemistry and Physics, 2009, 114( 2-3): 665-669.
    [15] Jan Tou?, Martin Horváth, Ladislav Pína, et al. High-resolution application of YAG:Ce andLuAG:Ce imaging detectors with a CCD X-ray camera[J]. Detectors and Associated Equipment, 2008, 591(1): 264-267.
    [16] Ho Seong Jang, Won Bin Im, Dong Chin Lee, et al. Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs[J]. Journal of Luminescence, 2007, 126(2): 371-377.
    [17] Na Zhang, Dajian Wang, Lan Li, et al. YAG:Ce phosphors for WLED via nano-pesudoboehmite sol-gel route[J]. Journal of Rare Earths, 2006, 24(3): 294-297.
    [18]罗昔贤,于晶杰,林广旭,等.长余辉发光材料研究进展[J].发光学报, 2002, 23(5): 497-502.
    [19]罗昔贤,段锦霞,林广旭,等.新型硅酸盐长余辉发光材料[J].发光学报, 2003, 24(2): 165-170.
    [20] Fei Qin, Chang Chengkang, Mao Dali. Luminescent properties of Sr2MgSi2O7 and Ca2MgSi2O7 long lasting phosphors activated by Eu2+, Dy3+ [J]. Journal of Alloys and Compounds, 2005, 390 (1-2): 133-137.
    [21] Wang Xiaoxin, Lin Yuanhua, Zhang Zhongtai. Eu and Dy Co-doped Sr2MgSi2O7 based long afterglow photoluminescent materials [J]. Ceramic Society, 2002, 30(2): 216-219.
    [22]史艳宁,何大伟,梁忠益,等. Ba2MgSi2O7:RE荧光粉发光性能的研究[J].光谱学与光谱分析, 2006, 26(5): 809-811.
    [23] Park J K, Kim C H, Park S H, et al. Application of strontium silicate yellow phosphor for white light-emitting diodes [J]. Appl. Phys. Lett., 2004, 84: 1647-1649.
    [24] Pardha Saradhi M, Varadaraju U V. Photoluminescence studies on Eu2+-activated Li2SrSiO4 a potential orange-yellow phosphor for solid-state lighting [J]. Chem. Mater, 2006, 18: 5267-5272.
    [25]罗昔贤,曹望和,孙菲.硅酸盐基质白光LED用宽激发带发光材料研究进展[J].科学通报, 2008, 39(5): 1010-1016.
    [26]夏威,雷明凯,罗昔贤,等.宽激发带稀土激活碱土金属硅酸盐发光材料特性研究[J].光谱学与光谱分析, 2008, 28(1): 41-46.
    [27] Liu Hongli, He Dawei, Shen Fang, et al. Luminescence properties of green-emitting phosphor (Ba1-xSrx)2SiO4:Eu2+for white LEDS[J]. Journal of rare earths, 2006, 24: 121-124.
    [28] Ding Weijia, Wang Jing, Zhang Mei, et al. Luminescence properties of new Ca10(Si2O7)3Cl2:Eu2+ phosphor[J]. Chemical Physics Letters, 2007, 435: 301-305.
    [29]杨志平,刘玉峰. Eu2+激活的Ca3SiO5绿色荧光粉的制备和发光特性研究[J].物理学报, 2004, 55(9): 4949-4950.
    [30] Liu J, Lian H Z, Shi C S, et al. Eu2+-doped high-temperature phase Ca3SiO4Cl2―A yellowish orange phosphor for whitelight-emitting diodes [J]. J. Electrochem. Soc., 2005, 152(11): G880-G884.
    [31] Rong-Jun Xie, Naoto Hirosaki, Takayuki Suehiro, et al. A Simple, Efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white light-emitting diodes [J]. Chem. Mater, 2006, 18(23): 5578-5583.
    [32] Zhang Mei, Wang Jing, Ding Weijia, etal. Luminescence properties of M2MgSi2O7:Eu2+ (M = Ca, Sr) phosphors and their effects on yellow and blue LEDs for solid-state lighting [J]. Optical Material, 2007, 30: 571-578.
    [33] Kim J S, Lim K T, Jeong Y S, et al. Full-color Ba3MgSi2O8:Eu2+,Mn2+ phosphors for white-light-emitting diodes[J]. Sol. Stat. Comm., 2005, 135 (1-2): 21-24.
    [34] Wang Jilei, Wang Dajian, Li Lan, et al. Preparation of single host silicate phosphors for white LEDs and its photoluminescent properties [J]. Chinese Journal of Luminescence, 2006, 27(4): 463-468.
    [35] Yang Woan-Jen, Luo Liyang. Luminescence and energy transfer of Eu and Mn coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED [J]. Chem. Mater, 2005, 17: 3883-3888.
    [36]杨志平,刘玉峰,王利伟,等.用于白光LED的单一基质白光荧光粉Ca2SiO3Cl2: Eu2+,Mn2+的发光性质[J].物理学报, 2007, 56(1): 546-550.
    [37]孙晓园,张家骅,张霞,等.新一代白光LED照明用一种适于近紫外光激发的单一白光荧光粉[J].发光学报, 2005, 26 (3): 404-406.
    [38] Bo Liu, Linjie Kong, Chaoshu Shi, et al. White-light long-lasting phosphor Sr2MgSi2O7:Dy3+ [J]. Journal of Luminescence, 2007, 122-123: 121-124.
    [39]李盼来,杨志平,王志军,等. Sr2SiO4:Dy3+材料制备及发光特性[J].高等学校化学学报, 2008, 29(3): 457-460.
    [40] Yuanhua Lin, Cewen Nan, Xisong Zhou. Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors [J]. Materials Chemistry and Physics, 2003, 82: 860–863.
    [41] Wen Pan, Guiling Ning. Synthesis and luminescence properties of Sr3MgSi2O8:Eu2+, Dy3+ by a novelsilica-nanocoating method [J]. Sensors and Actuators, 2007, 139: 318-322.
    [42] A A Sabbagh Alvani, F Moztarzadeh, A A Sarabi. Preparation and properties of long afterglow in alkaline earth silicate phosphors co-doped by Eu2O3 and Dy2O3 [J]. Journal of Luminescence, 2005, 115: 147-150.
    [43] Geng X J, Chen Y J, Qiu G M, et al. Synthesis of long afterglow photoluminescent materials Sr2MgSi2O7:Eu2+, Dy3+by sol-gel Method [J]. Journal of Rare Earth, 2005, 23(2): 292-294.
    [44]毛大立,赵莉,常程康,等.纳米Sr2MgSi2O7:Eu2+,Dy3+的长余辉发光行为[J].无机材料学报, 2005, 20(1): 220-224.
    [45]李东平,缪春燕,刘丽芳,等.燃烧法合成新型蓝色硅酸盐长余辉材料及其发光性能的研究[J].稀有金属, 2004, 28(4): 662-665.
    [46]缪春燕,李东平,罗昔贤,等.燃烧法快速合成新型蓝色硅酸盐长余辉材料[J].中国陶瓷, 2003, 39(6): 27-29.
    [47] G J Talwar, C P Joshi, S V Moharil, et al. Combustion synthesis of Sr3MgSi2O8:Eu2+ and Sr2MgSi2O7:Eu2+ phosphors[J]. Journal of Luminescence, 2009, 129(11): 1239-1241.
    [48]彭子飞,余军保,罗彩芹,等.燃烧法制备Zn2SiO4:Eu3+红色荧光粉及其发光性能[J].中国稀土学报, 2008, 26(2): 234-238.
    [49]张迈生,祁家雄,杨燕生. Sol-Gel法和微波辐射法合成亚纳米级Zn2SiO4:Mn2+,Er3+高效绿色荧光体[J].发光学报, 1999, 20(3): 258-261.
    [50]张迈生,祁家雄,杨燕生. Sol-Gel法和微波法合成亚纳米级Zn2SiO4:Mn2+高效绿色荧光体[J].无机材料学报, 1999, 14(3): 479-482.
    [51]梁青,刘文芳,宋会花. Sr2MgSi2O7/Eu2+0.01,RE3+0.02长余辉发光材料的微波合成[J].河北师范大学学报/自然科学版, 2009, 33(2): 207-209.
    [52]蒋玉萍.新型绿色照明光源LED及其发展前景[J].电源世界, 2005, (9): 38-40.
    [53]余德芳.新型的半导体光源—白光LED[J].世界电子元器件, 2000, 15(3): 46-48.
    [54]聂蓉,陈益民,骆德汉,等.白光LED应用于室内照明的分析与探讨[J].灯与照明, 2009, 33(1): 37-40.
    [55] Guo Chongfeng, Huang Dexiu, Su Qiang. Methods to improve the fluorescence intensity of CaS: Eu2+ red-emitting phosphor for white LED [J]. Materials Science and Engineering B, 2006, 130:189-193.
    [56] Sivakumar V, Varadaraju U V. An orange-red phosphor under Near-UV excitation for white light emitting diodes[J]. J. Electrochem. Soc., 2007, 154 (1) : J28-J31.
    [57] Wang Zhengliang, Liang Hongbin, Zhou Liya, et al. Luminescence of (Li0.333Na0.334K0.333)Eu(MoO4)2 and its application in near UV InGaN-based light-emitting diode[J]. Chemical Physics Letters, 2005, 412: 313-316.
    [58]李群,滕晓明,庄卫东,等.稀土长余辉发光材料的研究现状和发展趋势[J].稀土, 2005, 26(4): 62-68.
    [59]杨云霞,徐志珍,唐泽伸,等. SiO2玻璃涂层的碱土铝酸盐长余辉荧光粉及其制备方法[P].中国, 1324910A. 2001.
    [60] Park J K, Lim M A, Kim C H, et al. White light-emitting diodes of GaN-based Sr2SiO4:Eu and the luminescent properties[J]. Appl. Phys. Lett., 2003, 82(5): 683-685.
    [61] Lim M A, Park J K, Kim C H, et al. Luminescence characteristics of green light emitting Ba2SiO4:Eu2+ phosphor[J]. J Mater. Sci. Lett., 2003, 22 (19): 1351-1353.
    [62] Yoo J S, Kim S H, Yoo W T, et al. Control of spectral properties of st rontium alkaline earth silicate europium phosphors for LED applications[J]. J. Electrochem. Soc., 2005, 152(5): G382-G385.
    [63] Kee-Sun Sohn, Bonghyun Cho, Hee Dong Park, et al. Effect of heat treatment on photoluminescence behavior of Zn2SiO4: Mn phosphors[J]. Journal of the European Ceramic Society, 2000, 20(8): 1043-1051.
    [64]翟永清,孟媛,曹丽莉,等.蓝色长余辉发光材料Sr2MgSi2O7:Eu2+,Ln3+的合成和性质[J].材料导报, 2007, 21(8): 125-128.
    [65] Fang Ying, Zhuang Weidong, Cui Xiangzhong,, et al. Study on Ca8Mg(SiO4)4Cl2:Eu2+ dope with Sr2+[J]. J. Rare Earths, 2006, 24(S1): 145-148.
    [66]郭庆捷,徐明霞,曹佩玲. Eu2+激活的碱土铝酸盐长余辉发光材料的研究现状[J].稀有金属材料与工程, 2004 , 33(3): 225-228.
    [67]陈哲,谢鸿,严有为. Eu2+掺杂浓度对BAM光谱特性的影响[J].光谱学与光谱分析, 2007 , 27(4): 657-659.
    [68]李强,高濂,严东升.纳米Y2O3:Eu3+的荧光特性[J].无机材料学报, 1997, 12(2): 237-241.
    [69]尤洪鹏,吴雪艳,洪广言,等. BaLaB9O16:Eu,Tb的真空紫外光谱特性[J].中国稀土学报, 2001, 19(6): 609-610.
    [70]陶怡,李岚,王达健,等. Tb3+, Mn2+作为激活剂的PDP绿色荧光粉的研究[J].液晶与显示, 2005, 20(4): 296-301.
    [71] Hou Tao, He Dawei, Zhou Dan. Photoluminescence of Ca3MgSi2O8: RE (RE = Eu,Ce,Tb) [J].硅酸盐学报, 2006, 32(14): 1452-1455.
    [72]刘霁,李万万,孙康.白光LED及其涂敷用荧光粉的研究进展[J].材料导报, 2007, 21(8): 116-120.
    [73]张希艳,卢利平,米晓云,等.硫化物基荧光粉的表面包覆及性能研究[J].长春理工大学学报(自然科学版), 2007, 30(4): 1-3.
    [74]孟黎清,罗绍华.新型稀土长余辉蓄能材料及其在涂料中的应用[J].特种功能型涂料, 2004, 4:13-16.
    [75] Wang Xiaoxin, Lin Yuanhua, Zhang Zhongtai. Eu and Dy Co-doped Sr2MgSi2O7 based long afterglow photoluminescent materials [J]. Ceramic Society, 2002, 30(2): 216.
    [76]刘端阳,何大伟,康凯,等. (Y, Gd)Al3(BO3)4:Ce,Tb光谱特性及稀土离子间的能量传递[J].中国稀土学报, 2004, 22(4): 473-475.
    [77] Khatkar S P, Taxak V B, Han Sang Do, et al. Combustion synthesis and luminescent properties of MIn2O4: xTb (M = Ca and Sr) phosphors[J]. Materials Chemistry and Physics, 2006, 98: 528-531.
    [78] Ren Zhouyun, Tao Chunyan, Yang Hua, et al. A novel green emitting phosphor SrAl2B2O7: Tb3+ [J]. Materials Letters, 2007, 61: 1654-1657.
    [79]邱克辉,李俊峰,高小明,等. SrAl2O4:Tb3+,Ce3+发光材料的合成与发光特性[J].发光学报, 2004, 25(2): 197-201.
    [80] Yu Xibin, Xu Xiaolin, Pingyue, et al. A new luminescent material, SrZnO2:Tb3+ [J]. Materials Letters, 2005, 59: 1178-1182.
    [81] E De la Rosa, R A Rodríguez, R Meléndrez, et al. Thermoluminescence characterization of Tb3+ and Ce3+ doped nanocrystalline Y3Al5O12 exposed to X- andβ-ray irradiation [J]. Optical Materials, 2004, 27(2): 293-299.
    [82]李彬,史延慧,孙书菊. Tb3+,Ce3+离子在Al6Si2O13中的光致发光[J].吉林大学自然科学学报, 1996, 3(3): 87-90.
    [83]张中太,张俊英.无机光致发光材料及应用[M].北京:化学工业出版社, 2005: 3.
    [84] Yoshitakat, Makotok, Toshikim. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres [J]. Nature, 2006, 441(7091): 325-328.
    [85] M Pardha Saradhi , U V Varadaraju. Photoluminescence studies on Eu2+-activated Li2SrSiO4-a potential orange-yellow phosphor for solid-state lighting [J]. Chem. Mater, 2006, 18: 5267-5272.
    [86] Nishida Toshio, Ban Tomoyuki, Kobayashi Naoki. High-color-rendering light sources consisting of a 350nm ultraviolet light-emitting diode and three-basal-color phosphors [J]. Physics Letters, 2003, 82(22): 3817-3819.
    [87] Pan Y X, Wu M M, Su Q. Tailored photoluminescence of YAG: Ce3+ phosphor through various methods [J]. Journal of Physics and Chemistry of Solids, 2004, 65(5): 845-850.
    [88] Jang H S, Im W B, Lee D C, et al. Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via Pr [J]. J. Lumin., 2007, 126(2): 371-377.
    [89]王继磊,王达健,李岚,等.硅酸盐单基质白光LED荧光体的制备和光谱性质[J].发光学报(Eng), 2006, 27(4): 463-468.
    [90] S Ekambaram, M Maaza. Combustion synthesis and luminescent properties of Eu3+ -activated cheap red phosphors [J]. J. Alloys. Compd., 2005, 395(1-2): 132-134.
    [91] Xiaoyuan Sun, Jiahua Zhang, Xia Zhang, et al. A white light phosphor suitable for near ultraviolet excitation [J]. Journal of Luminescence, 2007, 122-123: 955-957.
    [92] W B Im, J H Kang, D C Lee, et al. Origin of PL intensity increase of CaMgSi2O6:Eu2+ phosphor after baking process for PDPs application[J]. Solid State Communications, 2005, 133: 197-201.
    [93] X X Wang, Z T Zhang Z L Tang, et al. Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor [J]. Mater. Chem. Phys., 2003, 80: 1-5.
    [94] Jia Dongdong, JiaWeiyi, Jia Yi. Long persistent alkali-earth silicate phosphors doped with Eu2+, Nd3+ [J]. J. Appl. Phys., 2007, 101(2): 1-6.
    [95] Yang Fu, Liu Yingliang, Rong Jianhua, et al. Energy Transfer of Gd3+→Eu3+ in P-SiO2[J]. Chinese Jouranlv of Inorganic chenmistry, 2005, 21(5): 643-646.
    [96]汪萍,李其华,廉世勋等. Gd3+,Sm3+共激活La2O2S:Eu3+的发光特性[J].材料导报, 2009, 23(8): 19-21.
    [97]徐丽,刘素霞,容建华,等. Gd3+,Eu3+在介孔Y2O3中的能量传递[J].稀土, 2009, 30(1): 44-48.
    [98] Kyeong Youl Jung, Joo Hyun Kim, Yun Chan Kang. Luminescence enhancement of Eu-doped calcium magnesium silicate blue phosphor for UV-LED application [J]. Journal of Luminescence, 2009, 129(6): 615-619.
    [99] Xin Min Zhang, Wen Lan Li, Hyo Jin Seo. Luminescence and energy transfer in Eu2+, Mn2+ co-doped Li4SrCa(SiO4)2 for white light-emitting-diodes[J]. Physics Letters A, 2009, 373(38): 3486-3489.
    [100] Ji Young Jin, Hyung Gu Kim, Chang Hee Hong,et al. White light emission from a blue LED, combined with a sodium salt of fluorescein dye[J]. Synthetic Metals, 2007, 157( 2-3): 138-141.
    [101]孙家跃,夏志国,杜海燕.用碱土氯硅酸盐基稀土光致发光材料的研究[J].国外建材科技, 2004, 25(4): 11-12, 20.
    [102]赵惠玲,刘世香,王明文,等. Sr8Si4O12Cl8: Eu3+ M3+ (M3+ = Bi3+,Gd3+)中Eu3+的敏化发光[J].硅酸盐学报, 2007, (5): 15.
    [103]孙家跃,夏志国,杜海燕. (Sr,Ca)4Si3O8Cl4基质中Eu2+的发光特性研究[J].光谱学光谱分析, 2005, 25(11): 1760-1763.
    [104]杨志平,杨广伟,王少丽,等. Sr5SiO4Cl6:Eu2+蓝白色荧光粉的发光特性研究[J].中国稀土学报, 2007, 25(6): 668-671.
    [105]雷芳,徐崇福,杨敏丽,等.溶胶-凝胶法合成蓝色荧光粉SrAl2Si2O8:Eu2+[J].发光学报, 2006, 27(4): 479-483.
    [106]翟永清,冯仕华,孔令帅,等.新型超细蓝色荧光粉Sr2MgSi3O9:Eu2+的合成及发光性质[J].人工晶体学报, 2009, 38(5): 1078-1082.
    [107] Van Uitert L G. An empirical relation fitting the position in energy of the lower d-band edge for Eu2+or Ce3+ in various compounds [J] J. Luminescence, 1984, 29(1): 1-9.
    [108] Jia Guo Wang, Guo Bao Li, Shu Jian Tian, et al. The composition, luminescence, and structure of Sr8[Si4O12]Cl8: Eu2+[J]. Mater.Res. Bull, 2001, (36): 2051-2057.
    [109]黄世华,楼立人.能量传递中敏化剂发光强度与浓度的关系[J].发光学报, 1990, 11(1): 1-7.
    [110] Dexter D L, Schulman James H. Theory of concentrationquenching in inorganic phosphors [J]. J. Chem. Phys., 1954, 22(6): 1063-1070.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700