BaSnO_3染料敏化太阳能电池的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球变暖,大气污染问题日趋严重化以及常规能源供应耗尽,开发和利用可再生绿色能源已成为人类社会所面临的重大课题。今天,太阳能发电被广泛认为是一种可持续增长的、绿色可再生的能源技术,而太阳能电池已经渐渐应用于各种各样的领域,从消费电子、小尺度分布式系统到兆瓦规模的集中火力发电厂都能发现它的存在。目前,太阳能电池是以固态光伏电池为主导的。以后太阳能电池将会向低廉高效的方向发展,染料敏化太阳能电池(Dye-Sensitized Solar Cell, DSSC)则正是因为这样的优势而获得了广泛的关注。虽然这种电池已经具有适度的光电转化效率,可是仍有许多方面需要进一步改进,比如电子的传输以及光吸收范围等。
     自从瑞士洛桑联邦理工学院的Gr?tzel教授发明了这种由染料拓宽半导体纳米多孔薄膜光吸收范围的太阳能电池之后,许多的学术以及商业研究机构都对其产生了很大的兴趣并投入了大量的资金与精力去提高其效率以及组装电池的更好方法。尤其是在之后的6年中,Gr?tzel教授的小组得到美国国家再生能源实验室(NREL)的证明将其电池效率提高至10%。染料敏化太阳能电池一般是由纳米晶氧化物半导体做成的薄膜电极,染料敏化剂,电解液,对电机以及透明导电衬底组成。具有代表性的就是将二氧化钛薄膜作为电池阳极,铂电极作为对电极,然后加入溶于有机溶剂的I3?/I?溶液作为电解液,这样就组成了一个具有三明治结构的DSSC。由于具有廉价,市场资源充足,无毒,生物相适性,并且可以大规模用在保健品以及绘画颜料上,TiO2是作为DSSC阳电极材料的最佳选择。但是二氧化钛也有很大的光催化性质,有可能分解染料,因而有出现了很多关于其它材料的报道。
     以前的对工作电极材料的研究都只是针对二元氧化物,比如TiO2,ZnO,SnO2,Nb2O5和In2O3。相对而言,多元氧化物很少有人研究过。据我们所知仅仅的报道只有SrTiO3和最近的Zn2SnO4。与二元氧化物相比,多元氧化物的材料具有更自由的条件去调节材料的化学和物理性质,接着通过这种对其性能的改变而寻找到最适合作为电池工作阳极材料。本文通过利用不同方法制备BaSnO3颗粒并测试其形貌和光学性质,研究了不同制备方法对物质的性质的影响。通过表面光电压和将其作为工作电极组装成染料敏化太阳能电池,研究了不同制备方法的BaSnO3颗粒性质之间的差异和电池不同效率之间的关系,并得到了1.1%的光电转化效率。主要作了以下有意义的工作:
     1.分别使用共沉淀,水热和固相三种方法制备出颗粒大小在0.1-1.1μm范围内的BaSnO3颗粒,分别利用X射线衍射,扫描电子显微镜,比表面积仪,拉曼光谱研究其结构与形貌情况,并研究了其敏化前后的表面光电压特性曲线。其结果显示共沉淀法制备的BaSnO3样品具有最好的光电效应并且与N719具有最好的相互作用有可能做成敏化太阳能电池。
     2.分别以三个不同方法制备的BaSnO3样品为原料,加入水、分散剂后进行研磨,把所得的浆料涂敷在导电玻璃上成膜,550 oC热处理30 min后,在N719染料的乙醇溶液(5×10-5 M)中浸泡24 h,得到BaSnO3/染料电极。用夹子把BaSnO3/染料电极和镀Pt的对电极夹紧,在两者之间滴加电解液,即完成染料敏化太阳能电池的制作。并使用CHI660电化学工作站测试电池的光电转化性能。得到1.1%的光电转化效率。
     3.通过改进后的水热法制备出具有菱形十二面体结构的BaSnO3颗粒,并利用X射线衍射,扫描电子显微镜,,拉曼光谱,红外光谱研究其结构与形貌情况。其结果当温度上升至240 oC时得到所需结构,其颗粒大小也由240 oC时的10μm长大到270 oC时的15μm。当温度上升到280 oC时,颗粒大小突然降至4μm。探测各个温度所得样品时的紫外可见吸收和表面光电压性质,我们发现控制BaSnO3颗粒的大小可以改变其表面光电压性质。
Due to global warming and a depleting natural gas supply, there is a need to find alternative energy sources. Solar electricity is a steadily growing energy technology today and solar cells have found markets in variety of applications ranging from consumer electronics and small scale distributed power systems to centralized megawatt scale power plants. Solar energy conversion is dominated by expensive solid-state photovoltaic cells. As low-cost cells continue to develop, the dye sensitized solar cell (Dye-Sensitized Solar Cell, DSSC) has generated considerable interest as an efficient alternative. Although already moderately efficient, this cell offers numerous areas for improvement, both electronically and optically.
     Since Professor M. Gr?tzel in EPFL introduced the nanoporous films into dye-derived wideband semiconductor research and made the breakthrough in the photoelectric conversion efficiency of dye-sensitized solar cells, academic and commercial interests have been paid on DSSCs for their high efficiency, their potential low-cost and simple assemble technology, especially in the past 6 years since Gr?tzel and his group team at EPFL were able to demonstrate the first 10% efficient cells certified by NREL in USA. Dye-sensitized solar cell is composed of nanocrystalline semiconductor oxide film electrode, dye sensitizers, electrolytes, counter electrode and transparent conducting substrate. Typically, dye-derived nanocrystalline titania films were used as photoanode, platinized counter electrode, filled with electrolyte solution of I3?/I? in organic solvent, then the sandwiched solar cells are formed. Due to low-cost price, abundance in the market, nontoxicity, and biocompatiblity, and as it is also used widely in health care products as well as in paints, TiO2 becomes the best choice in semiconductor till now. But, some semiconductors have been applied to built new structures and avoid the oxidation of dye.
     Previous research has been limited to simple binary oxides, including TiO2, ZnO, SnO2, Nb2O5 and In2O3. In contrast, the application of multication oxides has been rarely explored. To our best knowledge, the only reported ternary oxides are SrTiO3 and s Zn2SnO4. In comparison with simple binary oxides, multication oxides have more freedom to tune the materials’chemical and physical properties by altering the compositions.
     Different preparation methods including coprecipitation, hydrothermal and solid state reaction are employed to synthesize BaSnO3 particles to optimize the photoelectric activities of electrode materials. The photoelectric properties of BaSnO3 particles and the performances of DSSCs are investigated by surface photovoltage spectroscopy and current–voltage measurements. The light-to-electricity conversion of 1.1% is preliminarily reached on the DSSC made of the coprecipitation-derived BaSnO3 particles.
     1. Different preparation methods including coprecipitation, hydrothermal and solid state reaction are employed to synthesize BaSnO3 particles to optimize the photoelectric activities of electrode materials. Which have a size distribution in the range of 0.3-1.1μm. The cell of coprecipitation-derived BaSnO3 particles exhibits the best photovoltaic performance, which is attributed to sufficient dye adsorption and good electronic interaction between BaSnO3 and dye. The results suggest that the controlling synthesis process would be a key strategy to apply appropriate material for dye-sensitized solar cells.
     2. The BaSnO3 film was obtained by scraping method. BaSnO3 slurry was prepared by grinding the mixture of BaSnO3 powder water, dispersant acetylacetone and Triton X-100. Then the slurry was scraped on the conductive glass plate. The BaSnO3 film was heated at 550 oC for 30 min to remove some impurities and produce nanoporous. BaSnO3 /dye electrode was fabricated by immersing the nanoporous BaSnO3 film into dye N719 solution(5×10-5 M)for 24 h. The cell was assembled by dropping an electrolyte solution into the space between the BaSnO3 /dye electrode and the counter eletrode. Then the performance test was carried on electrochemical workstation CHI660. The light-to-electricity conversion of 1.1% is preliminarily reached on the DSSC made of the coprecipitation-derived BaSnO3 particles.
     3. BaSnO3 grains with the shapes of rhombic dodecahedron have been synthesized via a facile modified hydrothermal approach. The crystallization behavior and the morphology evolution of the sample during heating treatment have been studied with the X-ray diffraction, scanning electron microscopy, Raman scattering and Fourier transform infrared spectroscopy. The sample with the single-phase of BaSnO3 can be obtained at the hydrothermal temperature of 240 oC, and the grain size of the product grows with increasing temperature from 10μm to 15μm before 270 oC. But, the grain size was decreased sharply to 4μm when the temperatures at 280 oC. The ultraviolet-visible absorption spectroscopy and surface photovoltage spectroscopy analysis indicated that controlling the size and shape of perovskite oxides is of great importance in photophysical properties of BaSnO3 powder.
引文
1. Nozik, A. J. Advanced Concepts for Photovoltaic Cells, NCPV and Solar Program Review Meeting Proceedings, Golden, 2003: 422
    2.雷永泉,《二十一世纪新材料丛书—新能源材料》,天津,天津大学出版社, 2002: 222
    3. Tributsch H, Gerischer H, The use of semiconductor electrodes in the study of photochemical reactions, Phys. Chem., 1996, 73: 251
    4. Tsubomura H. Matsumura M, Nomura Y, Amamiya T, Dye sensitized zinc oxide: aqueous electrolyte: platinum photocell, Nature, 1976, 261 (5559): 402
    5. O’Regan B, Gr?tzel M, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991, 353 (6346): 737
    6. Gr?tzel M, The advent of mesoscopic injection solar cells, Progress in Photovoltaics: Research and Applications, 2006, 14: 429
    7.施敏,《现代半导体器件物理》,北京,科学出版社,2001: 100.
    8.程黎放,王瑜,戴松元,邬钦崇,王孔嘉,纳米晶体TiO2多孔膜的制备、性能及其在太阳能电池中的应用,材料研究学报,1996, 10(4): 404
    9. Green A N M, Palomares E, Haque S A, Kroon J M and Durrant J R, Charge Transport versus Recombination in Dye-Sensitized Solar Cells Employing Nanocrystalline TiO2 and SnO2 Films, The Journal of Physical Chemistry B, 2005,109, 25:12525
    10. Sayama K, Sugihara H and Arakawa H, Photoelectrochemical Properties of a Porous Nb2O5 Electrode Sensitized by a Ruthenium Dye, Chemistry of Materials, 1998, 10 (12): 3825
    11. Guo P and Aegerter M A, RU(II) sensitized Nb2O5 solar cell made by the sol-gel process, Thin Solid Films, 1999, 351 (2): 290
    12. Quintana M, Edvinsson T, Hagfeldt A and Boschloo G, Comparison of Dye-Sensitized ZnO and TiO2 Solar Cells: Studies of Charge Transport and Carrier Lifetime, The Journal of Physical Chemistry C, 2007, 111 (27): 1035
    13. Tan B, Toman E, Li Y G and Wu Y Y, Zinc Stannate (Zn2SnO4) Dye-Sensitized Solar Cells, Journal of the American Chemical Society, 2007, 129 (14): 4162
    14. Burnside S, Moser J E, Brooks K and Gr?tzel M, Nanocrystalline Mesoporous Strontium Titanate as Photoelectrode Material for Photosensitized Solar Devices: Increasing Photovoltage through Flatband Potential Engineering, The Journal of Physical Chemistry B, 1999,103 (42): 9328
    15.陈炜,孙晓丹,李恒德,翁端,染料敏化太阳能电池的研究进展,世界科技研究与发展,2004,26 (5): 27
    16.杨术明,染料敏化纳米晶太阳能电池,郑州,郑州大学出版社,2007: 85
    17. Wang P, Zakeeruddin S M, Moser J E, Nazeeruddin M K, Sekiguchi T, Gratzel M, A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat. Mater., 2003, 2 (6): 402
    18. Wang H, Li H, Xue B, Wang Z, Meng Q, Chen L, Solid-state compositeelectrolyte LiI/3-hydroxypropionitrile/SiO2 for dye-sensitized solar cells. J. Am. Chem.Soc., 2005, 127 (17): 6394
    1. O’Regan B, Gr?tzel M, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991, 353: 737
    2. Nazeeruddin M K, Kay A, Rodicio I, Gr?tzel M et al. Conversion of light to electricity by cis-X2Bis(2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes, J. Am. Chem. Soc., 1993, 115: 6382
    3. Gr?tzel M, Mesoporous oxide junctions and nanostructured solar cells, Current Opinion in Colloid & Interface Science, 1999, 4: 314
    4. Satyen K. Deb, Dye-sensitized TiO2 thin-film solar cell research at the National Renewable Energy Laboratory (NREL), Solar Energy Materials and Solar Cells, 2005, 88: 1
    5. Gr?tzel M, Prog. The advent of mesoscopic injection solar cells, Photovolt: Res. Appl., 2006, 14:429
    6. Gr?tzel M, Solar energy conversion by dye-sensitized photovoltaic cells, Inorg. Chem., 2005, 44: 6841
    7. Ehret A, Stuhl L, Spite M T, Spectral sensitization of TiO2 nanocrystalline electrodes with aggregated cyanine dyes, J. Phys. Chem. B, 2001, 105: 9960
    8. Hara K, Kurashige M, Dan-oh Y et al. Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells, New J. Chem., 2003, 27: 783
    9.田昭武等,电化学研究方法[M],北京:北京科学出版社,1984: 372
    10. Pan J, Xu Y, Benko G et al. Stepwise charge separation from a ruthenium-tyrosine complex to a nanocrystalline TiO2 film, J. Phys. Chem. B, 2004,108: 12904
    11.杨术明,染料敏化纳米晶太阳能电池,郑州,郑州大学出版社,2007: 85
    12.黄惠忠等,纳米材料分析[M],北京:化学工业出版社,2003: 295
    13.陈体衔等,实验电化学[M],福建:厦门大学出版社,1998: 582
    1. Subbarao E C. Ceramics dielectrics for capacitors. Ferroelectrics, 1981, 35: 143
    2. Chu X F. Dilute CH3SH-sensing characteristics of BaSnO3 thick film sensor, Mater Sci Eng B, 2004, 106: 305
    3. Lumpe U, Gerblinger J, Meixner H. Nitrogen oxide sensors based on thin films of BaSnO3,Sens Actuat B, 1995, 26: 97
    4. Lumpe U, Gerblinger J, Meixner H. Carbon-monoxide sensors based on thin films of BaSnO3,Sens Actuat B, 1995, 25: 657
    5. Azad A , Shyan L L W, Yen P T , et al Synthesis , processing andmicrostructural characterization of CaSnO3 and SrSnO3 ceramics, J Alloys and Compounds, 1999 , 282 (1 - 2) : 109
    6. Upadhyay S, Parkash O and Kumar D, Characterization of Barium Stannate BaSnO3. J. Mater. Sci. Lett. 1997, 16: 1330
    7. Coffen W W, Ceramic and dielectric properties of the stannates. J. Am. Ceram. Soc. 1951, 36: 207
    8. Kutty T R N and Vivekanadan R, BaSnO3 fine powders from hydrothermal preparations, Mater. Res. Bull., 1987, 22: 1457
    9. Udawatte C P and Yoshimura M, Preparation of well-crystallized BaSnO3 powders under hydrothermal conditions. Mater. Lett., 2001, 47: 7
    10. Jaeger L, Volker L, Mueller T, Abicht H, Roessel M and Goerls H, Barium stannate powders form hydrothermal synthesis and by thermolysis of barium-tin (IV)–glycolates, Z. Anorg. Allg. Chem.,2004, 630: 189
    11. Zhang W F, Tang J W and Ye J H, Structural, photocatalytic, and photophysical properties of perovskite MSnO3 (M = Ca, Sr, and Ba) photocatalysts, Journal of Materials Research, 2007, 22 (7): 1859
    12. Jha P, Arya P R and Ganguli A K, Dielectric properties of lead zirconium titanates with nanometer size grains synthesized by the citrate precursor route, MaterialsChemistry and Physics, 2003, 82 (2): 355.
    13. Nakade S, Saito Y, Kubo W, Kanzaki T, Kitamura T, Wada Y and Yanagida S, Enhancement of electron transport in nano-porous TiO2 electrodes by dye adsorption, Electrochemistry Communications, 2003, 5(9): 804
    14. Jaeger L, Volker L, Mueller T, Abicht H, Roessel M and Goerls H, Barium stannate powders form hydrothermal synthesis and by thermolysis of barium-tin (IV)–glycolates. Z. Anorg. Allg. Chem. 2004, 630: 189
    15. CerdàJ, Arbiol J, Dezanneau G, Díaz R and Morante J R, Sens. Actuators, B 2002, 84: 21
    16. Balamurugan K, Kumar N H, Ramachandran B, Rao M S R, Arout Chelvane J, Santhosh P N, Magnetic and optical properties of Mn-doped BaSnO3, Solid State Commun. 2009, 149: 884
    17. Zhang Y F, Zhang H R, Wang Y F and Zhang W F, Efficient Visible Spectrum Sensitization of BaSnO3 Nanoparticles with N719, The Journal of Physical Chemistry C, 2008, 112(23): 8553
    18. Cahen D, Hodes G and Gr?tzel M, Nature of Photovoltaic Action in Dye-Sensitized Solar Cells, The Journal of Physical Chemistry B, 2000, 104 (9): 2053
    19. Harry C, Gatos, Lagowski J,Surface Photovoltage Spectroscopy-A New Approach to the Study of High-Gap Semiconductor Surfaces, Journal of Vacuum Science and Technology, 1973, 10 (1): 130
    1. Gr?tzel M, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells, Journal of Photochemistry and Photobiology A, 2004, 164(1): 3
    2. Regan B O and Gr?tzel M, A low cost, high-efficiency solar cell base on dye-sensitized colloidal TiO2 films, Nature, 1991, 353(2): 737
    3. Falaras P, Synergetic effect of carboxylic acid functional groups and fractal surface characteristics for efficient dye sensitization of titanium oxide, Solar Energy Materials & Solar Cells, 1998, 53 (2): 163.
    4. Falaras P, Gr?tzel M and Hugot-Le Goff A, Dye Sensitization of TiO2 Surfaces Studied by Raman Spectroscopy, Journal of The Electrochemical Society, 1993, 140: L92
    5. Kay A and Gr?tzel M, Dye-Sensitized Core-Shell Nanocrystals: Improved Efficiency of Mesoporous Tin Oxide Electrodes Coated with a Thin Layer of an Insulating Oxide, Chemistry of Materials, 2002, 14: 2930
    6. Hara K, Horiguchi T, Kinoshita T, Sayama K, Sugihara H and Arakawa H, Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells, Solar Energy Materials & Solar Cells, 2000, 64:115
    7. Green A N M., Palomares E, Haque S A, Kroon J M and Durrant J R, Charge Transport versus Recombination in Dye-Sensitized Solar Cells Employing Nanocrystalline TiO2 and SnO2 Films, The Journal of Physical Chemistry B, 2005, 109: 12525
    8. Sayama K, Sugihara H and Arakawa H, Photoelectrochemical Properties of a Porous Nb2O5 Electrode Sensitized by a Ruthenium Dye, Chemistry of Materials, 1998, 10: 3825
    9. Guo P and Aegerter M A, RU(II) sensitized Nb2O5 solar cell made by the sol-gel process, Thin Solid Films, 1999, 351: 290
    10. Quintana M, Edvinsson T, Hagfeldt A and Boschloo G, Comparison ofDye-Sensitized ZnO and TiO2 Solar Cells: Studies of Charge Transport and Carrier Lifetime, The Journal of Physical Chemistry C, 2007, 111: 1035
    11. Tan B, Toman E, Li Y G and Wu Y Y, Zinc Stannate (Zn2SnO4) Dye-Sensitized Solar Cells, Journal of the American Chemical Society, 2007, 129: 4162
    12. Burnside S, Moser J E, Brooks K and Gr?tzel M, Nanocrystalline Mesoporous Strontium Titanate as Photoelectrode Material for Photosensitized Solar Devices: Increasing Photovoltage through Flatband Potential Engineering, The Journal of Physical Chemistry B, 1999, 103: 9328
    13. Baxter J B and Aydil E S, Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires, Solar Energy Materials & Solar Cells, 2006, 90: 607
    14. Zhang W F, Tang J W and Ye J H, Structural, photocatalytic, and photophysical properties of perovskite MSnO3 (M = Ca, Sr, and Ba) photocatalysts, Journal of Materials Research, 2007, 22: 1859
    15. Maekawa T, Kurosaki K and Yamanaka S, Thermal and mechanical properties of polycrystalline BaSnO3, Journal of Alloys and Compounds, 2006, 416: 214
    16. Zhang Y F, Zhang H R, Wang Y F and Zhang W F, Efficient Visible Spectrum Sensitization of BaSnO3 Nanoparticles with N719, The Journal of Physical Chemistry C, 2008, 112: 8553
    17. Kutty T R N and Vivekanadan R, BaSnO3 fine powders from hydrothermal preparations, Materials Research Bulletin, 1987, 22: 1457
    18. Fukai Y, Y Kondo, Mori S and Suzuki E, Highly efficient dye-sensitized SnO2 solar cells having sufficient electron diffusion length, Electro - chemistry Communications, 2007, 9: 1439
    19. Jha P, Arya P R and Ganguli A K, Dielectric properties of lead zirconium titanates with nanometer size grains synthesized by the citrate precursor route, Materials Chemistry and Physics, 2003, 82: 355.
    20. Nakade S, Saito Y, Kubo W, Kanzaki T, Kitamura T, Wada Y and Yanagida S, Enhancement of electron transport in nano-porous TiO2 electrodes by dye adsorption, Electrochemistry Communications, 2003, 5: 804
    21. Cahen D, Hodes G and Gr?tzel M, Nature of Photovoltaic Action in Dye-Sensitized Solar Cells, The Journal of Physical Chemistry B, 2000, 104: 2053
    22. Pérez León C, Kador L, Peng B and Thelakkat M. Influence of the Solvent on the Surface-Enhanced Raman Spectra of Ruthenium(II) Bipyridyl Complexes, The Journal of Physical Chemistry B, 2005, 109: 5783
    23. Schlichth?rl G, Huang S Y, Sprague J and Frank A J, Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy, The Journal of Physical Chemistry B, 1997, 101: 8141.
    24. Li A D Q and Li L S, Photovoltage Enhancement: Analysis of Polaron Formation and Charge Transport at the Junctions of Organic Polythiophene and Inorganic Semiconductors, The Journal of Physical Chemistry B, 2004, 108: 12842
    25. Qi M H and Liu G F, Surface Photovoltage, Luminescence, and Cyclic Voltammetry on the First Series of Lanthanide(III) Monobenzoporphyrin Compound Liquid Crystals and Relative Transition Metal Benzoporphyrin Compound Liquid Crystals, The Journal of Physical Chemistry B, 2003, 107: 7640
    26. Jing L Q, Xu Z L, Shang J, Sun X J, Cai W M and Guo H C, The preparation and characterization of ZnO ultrafine particles, Materials Science and Engineering A, 2002, 332:356
    27. Yang J H, Yang W S, Chai X D, Chen Y M, Li L S, Cao Y A, Bai Y B, Wang D J and Li T J, Improved surface photovoltaic response of nanoparticulate TiO2-pyridine derivative monolayer/n-Si(111) assembly, Synthetic Metals, 1997, 86: 2127
    1. Mao Y B, Banerjee S and Wong S S, Hydrothermal synthesis of perovskite nanotubes. Chem. Commun. 2003, 3: 408
    2. Hernandez B A, Chang K S, Fisher E R and Dorhout P K, Sol–gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes, Chem. Mater. 2002, 14: 480
    3. Dias A and Ciminelli V S T, Electroceramic materials of tailored phase and morphology by hydrothermal technology. Chem. Mater. 2003, 15: 1344
    4. Mao Y B, Banerjee S and Wong S S, Large-Scale Synthesis of Single-Crystalline Perovskite Nanostructures. J. Am. Chem. Soc. 2003, 125: 15718
    5. Urban J J, Spanier J E, Ouyang L, Yun W S and Park H, Single-crystalline barium titanate nanowires. Adv. Mater. 2003, 15: 423
    6. Yun W S, Urban J J, Gu Q and Park H, Vapor-liquid-solid and vapor-solid growth of phase-change Sb2Te3 nanowires investigated by scanned probe microscopy Nano Lett. 2002, 2: 447
    7. Urban J J, Yun W S, Gu Q and Park H, Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate J. Am. Chem. Soc. 2002, 124: 1186
    8. O’Brien S, Brus L and Murray C B, Synthesis of Monodisperse Nanoparticles of Barium Titanate: Towards a Generalized Strategy of Oxide Nanoparticle Synthesis. J. Am. Chem. Soc. 2001, 123: 12085
    9. Liu C, Zou B S, Rondinone A J and Zhang Z J, Sol-Gel Synthesis of Free-Standing Ferroelectric Lead Zirconate Titanate Nanoparticles J. Am. Chem. Soc. 2001, 123: 4344
    10. Udawatte C P, Kakihana M and Yoshimura M, Preparation of pure perovskite-type BaSnO3 powders by the polymerized complex method at reduced temperature, Solid State Ionics 1998, 23:108
    11. Mizoguchi H, Woodward P M, Park C H, and Keszler D A, Strong near-infrared luminescence in BaSnO3. J. Am. Chem. Soc. 2004, 126: 9796.
    12. Jayaraman J, Mangamma G, Gnanasekaran T and Periaswami G, Evaluation of BaSnO3 and Ba(Zr,Sn)O3 solid solutios as semiconductor sensor materials. Solid State Ionics 1996, 86: 1111
    13. Maekawa T, Kurosaki K and Yamanaka S, Thermal and mechanical properties of polycrystalline BaSnO3, J. Alloys Compd. 2006, 416: 214
    14. Zhang W F, Tang J W and Ye J H, Structural, photocatalytic, and photophysical properties of perovskite MSnO3 (M = Ca, Sr, and Ba) photocatalysts, J. Mater. Res. 2007, 22: 1859
    15. Vivian M i, Buscaglia M T, Buscaglia V, Leoni M and Nanni P, Barium perovskites as humidity sensing materials. J. Eur. Ceram. Soc. 2001, 21: 1981.
    16. Upadhyay S, Parkash O and Kumar D, and Characterization of Barium Stannate BaSnO3. J. Mater. Sci. Lett. 1997, 16: 1330
    17. Coffen W W, Ceramic and dielectric properties of the stannates. J. Am. Ceram. Soc. 1951, 36: 207
    18. Udawatte C P, Kakihana M and Yoshimura M, Preparation of pure perovskite-type BaSnO3 powders by the polymerized complex method at reduced temperature Solid State Ionics 1998, 108: 23
    19. Kutty T R N and Vivekanadan R, BaSnO3 fine powders from hydrothermal preparations, Mater. Res. Bull. 1987, 22: 1457
    20. Udawatte C P and Yoshimura M, Preparation of well-crystallized BaSnO3 powders under hydrothermal conditions. Mater. Lett. 2001, 47: 7
    21. Jaeger L, Volker L, Mueller T, Abicht H, Roessel M and Goerls H, Barium stannate powders form hydrothermal synthesis and by thermolysis of barium-tin (IV)–glycolates. Z. Anorg. Allg. Chem. 2004, 630: 189
    22. Lu W and Schmidt H, Hydrothermal synthesis of nanocrystalline BaSnO3 using a SnO2·xH2O sol, J. Eur. Ceram. Soc. 2005, 25: 919
    23. Zhang Y F, Zhang H R, Wang Y F and Zhang W F, Efficient Visible Spectrum Sensitization of BaSnO3 Nanoparticles with N719, The Journal of Physical Chemistry C, 2008, 112: 8553
    24. Lindgren T, Wang H L, Beermann N, Vayssieres L, Hagfeldt A and Lindquist S E,Aqueous photoelectrochemistry of hematite nanorod array. Sol. Energ. Mater. Sol. C 2002, 71: 231
    25. Yan Y F, Al-Jassim M M and Wei S H, Oxygen-vacancy mediated adsorption and reactions of molecular oxygen on the ZnO surface. Phys. Rev. B 2005, 72: 161307
    26. Kronik L and Shapira Y, Surface photovoltage of semiconductor structures: At the crossroads of physics, chemistry and electrical engineering. Surf. Interface Anal. 2001, 31: 954
    27. Lin Y H, Wang D J, Zhao Q D, Yang M and Zhang Q L, A Study of Quantum Confinement Properties of Photogenerated Charges in ZnO Nanoparticles by Surface Photovoltage Spectroscopy, J. Phys. Chem. B 2004, 108: 3202
    28. Jha P, Arya P R and Ganguli A K, Dielectric properties of lead zirconium titanates with nanometer size grains synthesized by the citrate precursor route, Mater. Chem. Phys. 2003, 82: 355
    29. Yu C Z, Tian B Z, Fan J, Stucky G D and Zhao D Y, Nonionic block copolymer synthesis of large-pore cubic mesoporous single crystals by use of inorganic salts. J. Am. Chem. Soc. 2002, 124: 4556
    30. Wang Z L, Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies. J. Phys. Chem. B 2000, 104: 1153
    31. Sun Y G and Xia Y N, Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298: 2176
    32. CerdàJ, Arbiol J, Dezanneau G, Díaz R and Morante J R, Perovskite-type BaSnO3 powders for high temperature gas sensor applications, Sens. Actuators, B 2002, 84: 21
    33. Balamurugan K, Kumar N H, Ramachandran B, Ramachandra Rao M S, Arout Chelvane J, Santhosh P N. Magnetic and optical properties of Mn-doped BaSnO3, Solid State Commun. 2009, 149: 884
    34. Jia C W, Xie E Q, Zhao J G and Peng A H, Visible and near-infrared photoluminescences of europium-dopedtitania film J. Appl. Phys. 2006, 100: 23529
    35. Jing L, Xin B, Yuan F, Xue L, Wang B and Fu H, Effects of Surface OxygenVacancies on Photophysical and Photochemical Processes of Zn-Doped TiO2 Nanoparticles and Their Relationships, J. Phys. Chem. B 2006, 110: 17860

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700