火灾烟颗粒偏振光散射特征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火灾探测是感知火灾发生和减轻火灾损失的关键技术之一,光电感烟探测器在火灾探测中发挥着越来越重要的作用,然而光电感烟探测器存在着不能有效区分火灾烟颗粒与非火灾烟颗粒如粉尘等而发生误报的突出问题。常规的光电感烟探测器利用烟颗粒对非偏振光的散射原理进行火灾探测,而颗粒对偏振光散射包含颗粒性质更丰富的信息,因此,研究火灾烟颗粒与干扰源颗粒对偏振光的散射特征,并由散射特征估计颗粒的特征,对烟颗粒与干扰源颗粒加以区分,将可能在减少光电感烟探测器误报方面具有重要的应用价值,同时可以推动颗粒光散射理论及利用光散射特征估计颗粒特性方法的发展。
     论文从颗粒光散射的基本约束方程及解的表示形式分析颗粒偏振光散射特征的主要影响因素:颗粒的大小、形貌和折射率,而这些影响均可以使用颗粒对偏振光散射的Muller矩阵进行描述;利用分析颗粒SEM(Scanning ElectronMicroscopy)图像的方法,对烟颗粒及粉尘颗粒的大小、形貌特征进行研究,建立烟颗粒与粉尘颗粒的形貌模型,利用国内外已有对颗粒性质的研究成果分析烟颗粒与粉尘颗粒折射率的区别;根据烟颗粒与粉尘颗粒形貌特征及尺度大小,使用颗粒光散射计算的DDA(Discrete Dipole Approximation)方法,对不同形貌、大小、折射率的颗粒的光散射Muller矩阵进行计算,分析了颗粒不同特征引起的散射Muller矩阵元素随散射角分布的变化,由此分析利用颗粒光散射Muller矩阵差别估算颗粒性质差别的方法。
     改造和发展已有的基于电光调制器、波片、偏振片等光偏振态变换器件的烟颗粒光散射Muller矩阵测量系统,改进其光学系统与数据采集方式,提出使用偏振调制的光标定波片、偏振片等光学器件光轴方向的方法,对测量系统进行校准、测试与测量精度的估算,利用该测量系统,完成对典型烟与粉尘颗粒光散射Muller矩阵的实际实验测量。
     研究结果表明,烟颗粒与粉尘颗粒由于颗粒大小、形貌、折射率引起的对偏振光散射的Muller矩阵随散射角的分布不同可以通过理论计算得到,并可以被实验检测到;通过颗粒光散射Muller矩阵的不同元素随散射角的变化,可以估计颗粒大小、形貌、折射率等颗粒性质的差异。因此,若感烟探测器依据颗粒对偏振光散射原理工作,通过检测光散射Muller矩阵元素随散射角的变化对检测的颗粒做更细致的分类,有可能在有效降低光电探测器的误报率方面取得突破。
Fire detection is an essential way to preventing the occurrence of a fire, and photoelectric smoke detectors are playing an increasing important role in fire detections. Normally, photoelectric smoke detectors use scattering of non-polarized by smoke particles to sensing the exists of smoke in the detector chamber, and false alarms are commonly met for in the using photoelectric smoke detectors, because they can not distinguish between smoke and other nuisance aerosols, like dust. It is possible to obtain more detail information of the characteristics of the particles with the polarized light scattering method, so it can be an effect way and valuable practically and theoretically to draw the false alarm rate by studying the polarized light scattering properties by different particles, analyzing the cause factors of different light scattering patterns which is equivalents to analyzing the particle characteristics using the light scattering pattern.
     The work begin with the introductions of the basic equations and the form of the solutions of light scattering, and then the factors that can influence the polarized light scattering patterns which can be presented by the light scattering Muller matrices were analyzed, that is the particles' size, morphologies, and complex refract indices. The study on the morphologies and size of smoke and dust particles were carried out using the particles' SEM(Scanning Electron Microscopy) images, and the shape models for smoke and dust particles were established, the difference between smoke and dust's complex refract indices were investigated based on the existing research results. The calculation of particles with different size, morphologies, and complex refract index were implemented using the DDA(Discrete Dipole Approximation) method, with the resulting Muller matrices, the different scattering pattern between particles with different size, morphologies, and complex refract index were analyzed using the statistics methods, and the possible methods to estimate the size, morphologies and complex refract index with the scattering pattern were discussed.
     The platform which measure the light scattering Muller matrices of smoke particles based on light polarization state transformation devices such as the electronic optical modulator, polarizer, quad wave plates and polarization analyzer were improved, including the improvement of the optical system and the signal equitation methods. The methods to calibrate the alignments and orientations of the quad wave plates and the polarization analyzer using the polarization modulated light were established with which the system were carefully calibrated, and the system were tested with estimating the precisions of the measurements, and the light scattering Muller matrices of several typical smoke and dust particles were measured using the platform.
     The research results showed that, the different Muller matrices distribution patterns on the scattering angles of particles with different size, morphologies and complex refract indices can be predicted using the calculations and measurements with the experiment platform, and the the properties of particle size, morphologies, complex refract indices can be inferred from the Muller matrices as the functions of scattering angles. It can be concluded that using polarized light scattering, the smoke detectors could be used to distinguish between different particles, and the false alarm rate could be reduced, and could induce breakthrough achievements for photoelectric smoke detection.
引文
范维澄,王清安,姜冯辉等.1995.火灾学简明教程[M].合肥:中国科学技术大学出版社.
    国家环境保护局科技标准司.1991a.GB/T 13268-91.大气试验粉尘标准样品黄土尘[S].北京:中华人民共和国环境保护部.http://www.sepa.gov.cn/tech/hjbz/bzwb/dqhjbh/jcgfffbz/199208/t19920801_67576.htm.
    国家环境保护局科技标准司.1991b.GB/T 13269-91.大气试验粉尘标准样品煤飞灰[S].北京:中华人民共和国环境保护部.http://www.sepa.gov.cn/tech/hjbz/bzwb/dqhjbh/jcgfffbz/199208/t19920801_67577.htm.
    国家环境保护局科技标准司.1991c.GB/T 13270-91.大气试验粉尘标准样品模拟大气尘[S].北京:中华人民共和国环境保护部.http://www.zhb.gov.cn/tech/hjbz/bzwb/dqhjbh/jcgfffbz/199208/t19920801_67578.htm.
    国家技术监督局.1993.GB4715-93.点型感烟火灾探测器技术要求及试验方法[S].北京:国家技术监督局.
    疏学明.2004.火灾烟雾颗粒历经测量与散射特性研究[D].合肥:中国科学技术大学.
    疏学明、方俊、申世飞等.2006.火灾烟雾颗粒凝并分形特性研究[J].物理学报,55(9):4466-4471.
    谢启源.2006.火灾烟颗粒光散射模型的研究[D].合肥:中国科学技术大学.
    赵建华.2000.基于多波长激光散射的火灾烟雾识别研究[D].合肥:中国科学技术大学.
    AHRENS M.2004.False Alarms and Unwanted Activations From:U.S.Experience with smoke Alarms and other Fire Detection/Alarm Equipment[R].1 Batterymarch Park,Quincy,MA:National Fire Protection Association.
    AHRENS M.2008.Home Smoke Alarms-the Data as Context for Decision[R].1 Batterymarch Park,Quincy,MA:National Fire Protection Association.
    ASLAN M M,MANICKAVASAGAM S,MENGUC M P,et al.2006.Size and Shape Prediction of Colloidal Metal Oxide MgBaFeO Particles from Light Scattering Measurements[J].Journal of Nanoparticle Research,8:1337-1351.
    BATTAGLIA A,MANTOVANI S.2005.Forward Monte Carlo Computations of Fully Polarized Microwave Radiation in Non-Isotropic Media[J].Journal of Quantitative Spectroscopy & Radiative Transfer,95:285-308.
    BOHREN C F,HUFFMAN D R.1983.Absorption and Scattering of Light By Small Particles[M].New York:John Wiley & Sons Inc.
    CHANG H,CHARALAMPOPOULOS T T.1990.Determination of the Wavelength Dependence of Refractive Indices of Flame Soot[J]. Proceedings: Mathematical and Physical Sciences, 430(I880):577-591.
    Chazette P, Liousse C. 2001. A case study of optical and chemical ground apportionment for urban aerosols in Thessaloniki[J]. Atmospheric Environment, 35:2497-2506.
    Delplancke F. 1997. Automated High-Speed Muller Matrix Scatterometer[J]. Applied Optics, 36(22):5388-5395.
    Devoe H. 1964. Optical Properties of Molecular Aggregate. I. Classical Model of Electronic Absorption and Refraction[J]. The Journal of Chemical Physics, 41(2):393-400.
    Devoe H. 1965. Optical Properties of Molecular Aggregate. II. Classical Model of Electronic Absorption and Refraction[J]. The Journal of Chemical Physics, 43(9):3I99-3208.
    Draine B T, Flatau P J. 1994. Discrete-Dipole Approximation for Scattering Calculations[J]. Journal of the Optical Society of America A, 11(4):1491—1499.
    Draine B T, GOODMAN J. 1993. Beyond Clausius-Mossotti: Wave Propagation on a Polarizable Point Lattice and THe Discrete Dipole Approximation[J]. The Astrophysical Journal, 405:685-697.
    Dubovik O, Smirnov A, HOLBEN B N, et al. 2000. Accuracy Assessments of Aerosol Optical Properties Retrieved from Aerosol Robotic Network (AERONET) Sun and Sky Radiance Measurements[J]. Journal of Geophysical Research, 105(D8):9791-9806.
    FILIPPOV A V, ZURITA M, ROSNER D E. 2000. Fractal-like Aggregates: Relation between Morphology and Physical Properties[J]. Journal of Colloid and Interface Science, 229:261-273.
    GOODMAN J, DRAINE B T, FLATAU P J. 1991. Application of Fast-Fourier-Transform Techniques to the Discrete-Dipole Approximation[J]. Optics Letters, 16(15): 1198-1200.
    HOVENIER J, VOLTEN H, MUNOZ O, et al. 2003. Laboratory Studies of Scattering Matrices for Randomly Oriented Particles: Potentials, Problems, and Perspectives[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 79-80:741-755.
    Hovenier J W. 2000. Measuring Scattering Matrices of Small Particles at Optical Wave-lengths[M]//Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications. San Diego: Academic Press:355-366.
    KELLER A, Loepfe M, Nebiker P, et al. 2006. On-line Determination of the Optical Properties of Particles Produced by Test Fires[J]. Fire Safety Journal, 41:266-273.
    KLUSEK C, Manickavasagam S, MENGUC M P. 2003. Compendium of Scattering Matrix Element Profiles for Soot Agglomerates[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 79-80:839-859.
    KOYLU U O, Faeth G M, Farias T L, et al. 1995. Fractal and Projected Structure Properties of Soot Aggregates[J]. Combustion and Flame, 100:621-633.
    Levy R C, REMER L A, Dubovik 0. 2007. Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land[J]. Journal of Geophysical Research, 112(D13210):l-15.
    LOEPFE M, RYSER P, Tompkin C, et al. 1997. Optical Properties of Fire and Non-fire Aerosols[J]. Fire Safety Journal, 29:185-194.
    MACKEY J R, SALARI E, Tin P. 2003. Modulation, Alignment and Calibration Methods for Phase-Modulated Optical Polarimeters[J]. Optical Engineering, 42(5): 1460-1466.
    MACKOWSKI D W, MISHCHENKO M I. 1996. Calculation of the T Matrix and the Scattering Matrix for Ensembles of Spheres[J], Journal of The Optical Society of America A, 13(11):2266-2278.
    MANICKAVASAGAM S, MENGUC M P. 2004. Scattering Matrix Elements of Fractal-Like Soot Agglomerates[J]. Applied Optics, 36(6): 1337—1351.
    MlSHCHENKO M I. 2002. Vector Radiative Transfer Equation for Arbitrarily Shaped and Arbitrarily Oriented Particles: A Microphysical Derivation From Statistical Electromagnetics [J]. Applied Optics, 41 (33):7114-7134.
    MlSHCHENKO M I, Travis L D, Mackowski D W. 1996. T-Matrix Computations of Light Scattering by Nonspherical Particles: A Review[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 55(5):535-575.
    MlSHCHENKO M I, Travis L D, Lacis A A. 2002. Scattering, Absorption, and Emission of Light by Small Particles[M]. UK: Cambridge University Press.
    MlSHCHENKO M I, VIDEEN G, Babenko V A, et al. 2004. T-matrix Theory of Electromagnetic Scattering by Particles and Its Applications: A Comprehensive Reference Database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 88:357-406.
    MlSHCHENKO M I, Travis L D, Lacis A A. 2006. Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering[M]. UK: Cambridge University Press.
    MUNOZ O, VOLTEN H, DE Haan J F, et al. 2001. Experimental Determination fo Scattering Matrices of Randomly Oriented Fly Ash and Clay Particles at 442 and 633 nm[J]. Journal of Geophysical Research, 106(D19):22833-22844.
    MUINONEN K. 1996. Light Scattering by Gaussian Random Particles[J]. Earth, Moon and Planets, 72:339-342.
    NEE S M F. 2003. Error Analysis for Mueller Matrix Measurement[J]. Journal of the Optical Society of America A, 20(8): 1651-1657.
    NEIMARK A V, KOYLU U O, ROSNER D E. 1996. Extended Characterization of Combustion-Generated Aggregates: Self-Affinity and Lacunarities[Jl. Journal of Colloid and Interface Science, 180:4466-4471.
    Nousiainen T, Muinonen K. 1999. Light Scattering by Gaussian, Randomly Oscillating Rain-drops[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 63:643-666.
    PERRY R J, HUNT A J, HUFFMAN D R. 1978. Experimental Determinations of Mueller Scattering Matrices for Nonspherical Particles[J]. Applied Optics, 17(17):2700-27l0.
    Prather D W, Shi S Y. 1999. Formulation and Application of the Finite-Difference Time-Domain Method for the Analysis of Axially Symmetric Diffractive Optical Elements[J]. Journal of the Optical Society of America A, 16(5): 1131-1142.
    Pratt W K. 2001. Digital Image Processing: PIKS Inside, Third Edition[M]. New York, Chichester, Weinheim, Brisbane, Singapore, Toronto: John Wiley & Sons Inc.
    PURCELL E M, PENNYPACKER C R. 1973. Scattering and Absorption of Light by Nonsphercial Dielectric Grains[J]. The Astrophysical Journal, 186:705-714.
    ROZANOV V, KOKHANOVSKY A. 2006. The Solution of the Vector Radiative Transfer Equation Using the Discrete Ordinates Technique: Selected applications[J]. Atmospheric Research, 79:241-265.
    SHKURATOV Y, Ovcharenko A.ZUBKO E, et al. 2004. The Negative Polarization of Light Scattered from Particulate Surfaces and of Independently Scattering Particles[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 88:267-284.
    SIEWERT C. 1998. A Discrete-Ordinates Solution for Radiative-Transfer Models that Include Polarization Effects[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 64:227-254.
    SlEWERT C E. 2007. A Note on Radiative Transfer in a Finite Layer[J]. Journal of Physics A: Mathematical and Theoretical, 40:1785-1789.
    SINGHAM S B, BOHREN C F. 1988. Light Scattering by an Arbitrary Particle: the Scattering order Formulation of the Coupled-Dipole Method[J]. Journal of The Optical Society of America A, 5(11): 1867-1872.
    SORENSEN C M. 2001. Light Scattering by Fractal Aggregates: A Review[J]. Aerosol Science and Technology, 35:648-687.
    Stagg B J, CHARALAMPOPOULOS T T. 1993. Refractive Indices of Pyrolytic Graphite, Amorphous Carbon, and Flame Soot in the Temperature Range 25 ℃ to 600 ℃[J], Combustion and Flame, 94(4):381-396.
    Sun W, Nousiainen T, Muinonen K, et al. 2003. Light Scattering by Gaussian Particles: A Solution with Finite-Difference Time-Domain Technique[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 79-80:1083-1090.
    Tanre D, Remer L A, Kaufman Y J, et al. 1999. Retrieval of Aerosol Optical Thickness and Size Distribution over Ocean from the MODIS Airborne Simulator during TARFOX[J], Journal of Geophysical Research, 104(D2):2261-2278.
    Van De HULST H C. 1957. Light Scattering by Small Particles[M]. New York: John Wiley & Sons Inc.
    Volten H, Munoz O, Rol E, et al. 2001. Scattering Matrices of Mineral Aerosol Particles at 441.6 nm and 632.8 nm[J]. Journal of Geophysical Research, 106(D15): 17375-17401.
    VOLTEN H, NOZ O M, HOVENIER J W, et al. 2005. WWW Scattering Matrtrix Database for Small Mineral Particles at 441.6 nm and 632.8 nm[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 90:191-206.
    WALKER J G, CHANG P C Y, HOPCRAFT K I, et al. 2004. Independent Particle Size and Shape Estimation from Polarization Fluctuation Spectroscopy[J]. Measurement Science and Technology, 15:771-776.
    Wang A Z, Wang J, Yang Z L, et al. 2004. Research on Dust-proof Performance of Photoelectric Smoke Detector[C]//AUBE '04 13th International Conference on Automatic Fire Detection Proceedings. Germany: ZVD University Duisburg-Essen:636-646.
    Waterman P C. 1979. Matrix Methods in Potential Theory and Electromagnetic Scattering[J]. Journal of Applied Physics, 50(7):4550-4566.
    Weiland T. 1996. Time Domain Electromagnetic Field Computation with Finite Difference Methods[J]. International Journal of Numerical Modelling : Electronic Networks, Devices and Fields, 9:295-319.
    WEINERT D W, CLEARY T G, MULHOLLAND G W, et al. 2002. Light Scattering Characteristics and Size Distribution of Smoke and Nuisance AerosoIs[C]//Fire Safety Science -Proceedings of the Seventh International Symposium On Fire Safety Science. Gaithersburg, Maryland, USA: International Association for Fire Safety Science:209-220.
    Xu R L. 2002. Particle Characterization: Light Scattering Methods[M]. New York, Boston, Dordrecht, London, Moscow: Kluwer Academic Publishers.
    ZHAO F S. 2000. Determination of the Complex Index of Refraction and Size Distribution of Aerosols from Polar NepheIometer Measurements[J]. Applied Optics, 38(12):2331—2336.
    ZUBKO E, SHKURATOV Y, KISELEV N N, et al. 2006a. DDA simulations of light scattering by small irregular particles with various structure[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 100:483-488.
    ZUBKO E, SHKURATOV Y, VIDEEN G. 2006b. Discrete-Dipole Analysis of Backscatter Features of Agglomerated Debris Particles Comparable in Size with Wavelength[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 100:483-488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700