新型亚波长光栅及其在通信光探测器中应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本工作围绕亚波长光栅(SWG)展开,这种衍射光学元件周期长度小于入射光波长,只有零级衍射波才可以传导,其余的高级次衍射波均为倏逝波。SWG可视为一种特殊薄膜,其折射率为具有周期分布折射率的光栅层的平均折射率,调整SWG结构参数,使折射率在一定范围内连续可变。对入射光波长或入射角等物理量的微小的变化,SWG的衍射波的强度会发生突变。
     论文研究了工作在光通信C波段的InP基SWG,SWG周期小于1.55μm,采用电子束光刻(EBL)工艺实现精确加工以满足设计指标。建立SWG分析模型,利用导模共振异常效应,将SWG设计成高性能反射谐振滤波器,将其集成到通信用谐振腔增强型光探测器(RCEPD)中。通过提升RCE PD性能,有助于推动光纤通信系统、网络的升级。
     主要研究工作和创新点如下:
     1.对具有一维、二维周期分布的SWG(简称:1D-SWG, 2D-SWG),以及具有分布布喇格反射镜(DBR)堆栈膜系的SWG的衍射特性进行研究,理论分析方法是严格耦合波分析法(RCWA),时域有限差分方法(FDTD)和平面波展开法(PWE)。其中RCWA是严格的解析分析法,精度高,计算速度快。FDTD作为数值方法,用计算时间和计算空间的代价弥补RCWA的不足,便于对有限周期分布的SWG结构分析,RCWA与FDTD综合使用保证仿真结果可靠性又可提高计算效率。PWE方法可从能带的角度分析SWG的滤波本质。
     2.编写程序实现上述理论分析,可对SWG的衍射效率以及集成了SWG的RCE PD性能的分析,与已有文献的结果进行对比,验证了可靠性。可以分析SWG衍射效率、光探测器中光场分布、量子效率、串扰衰减、冲击响应、脉冲响应、阶跃响应和频率响应。
     3.提出将SWG与InP系DBR集成,使SWG具有宽带滤波效果,以便适应工作在光通信C波段的InP材料系。RCWA与FDTD互补使用,用PWE进行能带分析,研究一维、二维周期分布的SWG,以及具有分布布喇格反射镜(DBR)堆栈膜系的SWG的衍射特性与其周期、厚度、占空比等参数的关系。对于2D-SWG综合RCWA、FDTD方法设计出反射率高于99%、波长区间在1.47μm~1.59μm、峰值反射率大于99.9%的反射式滤波器。
     4.提出将SWG以反射式谐振滤波器的形式应用于InP系材料构成的RCE PD中。该种光探测器工作在C波段,用于WDM光通信系统解复用光接收机。理论分析探测器中光场分布、量子效率、串扰衰减、冲击响应、脉冲响应、阶跃响应和频率响应。设计的RCE PD类型如下:
     1)具有一个一维周期分布的SWG;
     2)具有一个二维周期分布的SWG;
     3)具有两个一维周期分布的SWG。
     5.重点针对便于工艺实现的具有一个2D-SWG的RCE PD,通过研究其内部呈现驻波效应的光场,指导吸收层位置的设置。理论分析表明SWG的引入使InP系材料反射镜所需的介质层数小于10对,有望解决InGaAsP/InP系DBR反射率低、反射带宽窄的问题,器件量子效率超过90%。台面尺寸为30μm×30μm的具有一个1D-SWG的RCE PD 3dB带宽仿真结果为15GHz。
     6.在实验上,与外单位合作,采用外延技术、EBL技术以及感应耦合等离子体(ICP)刻蚀技术,制备出InP基SWG结构,可以满足具有优化性能所需要的SWG的尺寸:SWG厚度265nm,周期为1.4μm,占空比为33%,粗糙起伏的平均高度从150nm减小到40nm左右。
     7.设计并制备了针对具有SWG结构的半导体光探测器光刻掩膜版图,为配合SWG的结构,引入方形台面,加入了小尺寸倒”T”型对准标记和光栅掩膜层。
     8.与他人合作,进行纳米线制备测试工作,完成了关于制备纳米线所需的Au-Ga合金纳米颗粒的原子力显微镜(Atomic Force Microscopy:AFM)测试,测试表明在不同的Au薄膜溅射厚度条件下,纳米颗粒密度分别为1.64×1010cm-2,1.26×1010cm-2,2.2×109cm-2,扫描电子显微镜(Scanning Electron Microscopy:SEM)测试表明GaAs纳米线的平均长度分别为5.2μm,5.3μm,6.3μm,密度大于109cm-2。
     9.根据微栅尺寸和SEM测试结果估算了透射电子显微镜(Transmission Electron Microscopy:TEM)测试所用GaAs纳米线样品面积只需1cm2。用TEM测得了直径分别为24nm,68nm和168nm的GaAs纳米线样品的形貌。分析纳米线样品属于面心立方体结构,为闪锌矿结构的单晶,生长方向为[111]方向。
The work focuses on subwavelength grating (SWG) which is a kind of important diffractive optical elements.SWG takes an important role in the family of gratings and gives rise to propagation of only the zero-reflected and zero-transmitted diffraction orders as its period is smaller than the incident wavelength.SWG can be considered as a special film whose refractivity is equal to the average refractivity of the grating layer where the refractivity is periodically modulated in space.By modifying SWGs'structure,the refractivity can be tuned continuously. Besides,SWGs'diffraction field may have sharp change when the incidence light wavelength or the structure has small change.This is due to guide mode resonance (GMR) phenomena.
     In this dissertation, InP based SWGs that work in the C band of optical communication are designed.SWG period is smaller than 1.55μm. Electron beam lithography is adopted to fabricate surface pattern in nano scale.Reliable analyzing models are set up for different SWGs.Utilize GMR to realize reflection resonance filters in C band. SWGs are integrated into resonant cavity enhanced photodetectors (RCE PD) for optical communication system. The reasons of chosing RCE PDs as an application of SWGs are as following.RCE PDs can realize the full absorption of multi-reflected lightwave in the resonance cavity with thin (several hundreds of nanometer) absorption layer which guarantees the ability of high speed signal processing and high quantum efficiency. Make it a good candidate for wavelength-demultiplex receiving application in optical fiber communication systems and networks.
     The research work and innovations mainly include the followings.
     1.Analyze SWGs by rigorous coupled-wave analysis (RCWA), plane wave-expansion(PWE) method and finite difference time domain (FDTD) method. SWG types are including SWG with 1D period distribution(1D-SWG),SWG with 2D period distribution (2D-SWG) and SWG (1D-SWQ 2D-SWG) with DBR stacks. RCWA is an analytical method which is accurate and has high calculation speed. FDTD is a numerical method which can analyze SWG with finite period numbers at the cost of calculation time and memory space.RCWA and FDTD are compensated with each other for analyzing.And PWE can reveal the essence of performance of SWGs by energy band graph.
     2. Program to analyze SWGs by RCWA, FDTD and PWE respectively and to analyze the performances of RCE PDs with SWG filters.Results are verified by published conclusions.Programs can analyze SWGs'diffraction efficiency and RCE PDs'light field distribution,quantum efficiency, cross-talk attenuation,step response, Gauss pulse response, impulse response and frequency response.
     3.Design InP based SWGs that work in the C band of WDM system. DBR is integrated with SWGs to realize broadband reflection. The influences of SWGs'period length, thickness,duty cycle on its diffraction feature are studied in detail.With DBR,2D-SWGs'reflectivity is higher than 99% from 1.47μm to 1.59μm. Its peak reflectivity is higher than 99.9% in C band.
     4.Design InP based RCE PD with SWG filters that works in C band of WDM system. Propose three kinds of RCE PD for WDM system demultiplex receiver with single 1D-SWG, single 2D-SWG and double 1D-SWGs respectively.
     5.Simulation for RCE PD with single 2D-SWG reveals that 1)light field distribution in the RCE PD shows stand wave effects that can be used to decide where to set the absorption layer; 2) with high cross-talk attenuation coefficient,devices'quantum efficiency is higher than 90%;3) compared with pure DBR in RCE PD,the total numbers of reflector's layers are no more than 10 pairs of InGaAsP/InP DBR; And 3dB bandwidth is 15Gb for 1D-SWG RCE PD whose square top mesa area is 30μm×30μm.
     6.Fabricate InP based SWGs by Electron Beam Lithography (EBL) and Inductively Coupled Plasma (ICP) etching. SWGs are designed according to the following optimization guidelines.SWG's thickness is 265nm. Period is 1.4μ. Duty cycle is 33%.The average bottom roughness of SWG is reduced to 40nm after optimizing ICP conditions.
     7.Design and fabricate the lithography pattern mask of RCE PD with SWG. "T" style small location mark and square grating protection mask is designed for SWGs.RCE PD's top mesa is square.
     8.Take part in the work of GaAs nanowire growth.Test nano morphology of Au-Ga alloy nano-particles and nanowires by Atomic Force Microscopy (AFM) and Scan Electron Microscopy (SEM) respectively.The densities of Au-Ga nano particles are 1.64×1010cm-2, 1.26×1010cm-2,2.2×109cm-2 for different thicknesses of Au film.SEM tests reveal that the length of nanowires are 5.2μm,5.3μm,6.3μm with densities larger than 109cm-2 for different nano-particles.
     9.GaAs nanowires are tested by Transmission Electron Microscopy (TEM).In the part of TEM sample preparation, the paper calculates the size of nanowire sample as lcm2 by SEM testing results and micro-grid holder parameters.TEM tests reveal that nanowires'diameter are 24nm, 68nm and 168nm. Nanowires grow in the[111]direction and pure zinc blend FCC lattice is discovered.
引文
[1]金国藩,严瑛白,乌敏贤,二元光学,国防工业出版社,1998:1-18
    [2]高春林,辛企明,衍射光学元件的应用,光学技术,vol.6,1995:40-43
    [3]周进,高文琦,二元光学及其应用,自然杂志,vol.18(6),1996:349-352
    [4]K.Knop, Diffraction gratings for color filtering in the zero diffraction order, Appl.Opt.,vol.17 (22),1978:3598-3603
    [5]K.Yokomori, Dielectric surface-relief gratings with high diffraction efficiency, Appl.Opt vol.23(14),1984:2303-2310
    [6]M.Tang, Y Lin and D.Zhao, Reflection filter with high reflectivity and narrow bandwidth, Appl.Opt, vol.36 (4),1997:827-830
    [7]A.Sharon, S.Glasberg, D.Rosenblat, etc al.,Metal-based resonant grating waveguide structures, J.Opt. Soc. Am. A, vol.14(3),1997:588-595
    [8]S.Tibuleac,and R.Magnusson,Narrow-linewidth bandpass filters with diffractive thin-film layers,OPTICS LETTERS, vol.26 (9),2001:584-586
    [9]A.Mizutani, H.Kikuta and K.Iwata, Guided-mode resonant grating filter with an antireflection structured surface, J.Opt.Soc.Am.A, vol.19 (7),2002:1346-1351
    [10]J.W.Goodman, Inroduction to Fourier optics,2nd Ed., McGraw Hill, New York,1996:23-84
    [11]D.Shin and R.Magnusson, Diffraction by surface-relief gratings with conic cross-sectional grating shapes, J.Opt.Soc.Am.A,1989, vol.6,1989:1249-1253
    [12]H.Kogelnik, Coupled-wave theory for thick hologram gratings, Bell Syst. Tech. J., vol.48, 1969:2909-2947
    [13]D.H.Raguin and G.M.Morris.Antireflection structured surfaces for the infrared spectral region, Appl. Opt., vol.32 (7),1993:1154-1167
    [14]D.L.Brundrett, E.N.Glytsis and T.K.Gaylord, Homogeneous layer models for high-spatial-frequency dielectirc surface relief gratings:conical diffraction and antireflection designs, Appl. Opt., vol.33 (13),1994:2695-2706
    [15]R.W.Wood, Remarkable spectrum from a diffraction grating, Philos. Mag.,1902,4,396-402
    [16]Lord Rayleigh, Note on the remarkable case of diffraction spectrum described by Prof.Wood, Philos. Mag., vol.14,1907:60-65
    [17]W.LBarnes, T.W.Presit, S.C.Kitson etc al. Physical origin of photonic energy gaps in the porpagation of surface plasmons on gratings, Phys.Rev.B, vol.54,1996:6227-6244
    [18]A.Hessel, and A.A.Oliner, A new theory of Wood's anomalies on optical gratings, Appl. Opt., vol.10,1965:1275-1297
    [19]R.Magnusson, S.S.Wang, New principle for optical filters, Appl. Phy. Lett., vol.61,1992: 1022-1024
    [20]S.S.Wang, R.Magnusson, Theory and applications of guided-mode resonance filters, Appl. Opt., vol.32(14),1993:2606-2613
    [21]Y,Nie, L.Wang, Z.Wang, and C.Lai, Beam-selector dependent on incident angle by guided-mode resonant subwavelength grating, Opt. Eng., vol.41(11),2001:2966-2969
    [22]S.S. Wang and R.Magnusson,Design of waveguide-grating filters with symmetrical line shapes and low sidebands.OPTICS LETTERS, vol.19(12),1994:919-921
    [23]S.S. Wang and R.Magnusson,Multilayer waveguide-grating filters, Appl. Opt., vol.34(14), 1995:2414-2420
    [24]S.Tibuleac and R.Magnusson, Reflection and transmission guided mode resonance filters, J.Opt. Soc.Am.A, vol.14 (7),1997:1617-1626
    [25]D.Shin,S.Tibuleac,T.A.Maldonado etc al., Thin-film optical filters with diffractive elements and waveguides, Opt. Eng.,vol.37 (9),1998:2634-2646
    [26]S.Peng and G.M.Moris, Experimental demonstration of resonant anomalies in diffraction from two-dimensional gratings, OPTICS LETTERS, vol.21 (8),1996:549-551
    [27]A.Sharon, D.Rosenblatt, A.A.Friesem,et.al.,Light modulation with resonant grating-waveguide structures, OPTICS LETERS,vol.21 (19),1996:1564-1566
    [28]A.L.Fehermbach, D.Maystre, and A. Sentenac, Phenomenological theory of filtering by resonant dielectric gratings, J.Opt.Soc.Am.A, vol.19 (6),2002:1136-1144
    [29]A.L.Fehermbach, D.Maystre, A. Sentenac, Study of waveguide grating eigenmodes for unpolarized filtering applications, J. Opt. Soc. Am. A, vol.20 (3),2003:481-488
    [30]R.Magnusson and S.S.Wang, Transmission bandpass guided-mode resonance filters, Appl. Opt., vol.34 (35),1995:8106-8109
    [31]D.K.Jacob, S.C.Dunn, and M.G Moharam, Design considerations for narrow-band dielectric resonant grating reflection filters of finite length, J. Opt.Soc.Am.A, vol.17,2000:1241-1249
    [32]M. G.Moharam, T. K. Gaylord. Rigorous coupled-wave analysis of planar-grating diffraction [J],J. Opt. Soc. Amer., vol.71 (7),1981:811-818
    [33]Zhang Fan, Wang Chuncan, Tong Zhi et al. Design of a Dielectric-Metal-Dielectric Sandwich Structure for Efficient Side-Coupling of High Power Double-Clad Fiber Lasers[J].Chinese Journal of Lasers,vol.34(4),2007:470-474
    [34]Chen,Erl, Chou,Stephen,Novel device for detecting the polarization direction of linear polarized light using integrated subwavelength gratings and photodetectors,IEEE Photonics Technology Letters,Vol.9,No.9,1997:1259-1261
    [35]Frederik Van Laere,Tiziana Stomeo,Cyril Cambournac etc.al. Nanophotonic Polarization Diversity Demultiplexer Chip, JOURNAL OF LIGHTWAVE TECHNOLOGY, Vol.27,No.4, 2009:417-425
    [36]Hetterich,Jurana,Bastian,G etc.al,Optimized design of plasmonic MSM photodetector,IEEE Journal of Quantum Electronics,Vol.43,No.10,2007:855-859
    [37]Gaetano Bellanca,Stefano Trillo,Luca Stabellini etc al.,Accurate modelling of Quantum Well Infrared Photodetectors by FDTD,In IEEE editor, International Conference on Numerical Simulation of Optoelectronic Devices(NUSOD),2008:75-76
    [38]Michael C., Y. Huang, Y. Zhou etc al. A surface-emitting laser incorporating a high-index-contrast subwavelength grating [J],Nature Photonics, vol.1 (2),2007:119-122
    [39]Unlu M.S, Strite S., Resonant Cavity Enhance Photonic Device, J. Appl. Phys., vol.78,1995: 607-639.
    [40]Huang Yongqing, Huang Hui, Ren Xiaomin. Characteristic Analysis of the High Frequency Response for High Speed Long Wavelength Resonant Cavity Enhanced Photodetectors [J], CHINESE JOURNAL OF LASERS,31(11),2004:1385-1390
    [41]杨一粟,黄辉,任晓敏等,一种具有亚波长光栅结构的光探测器的设计,中国激光,36卷,第9期,2009:2352-2357
    [42]辛企明,近代光学制造技术,国防工业出版社,1997:160-169
    [43]张军,亚波长结构二元光学器件的设计[学位论文],长沙,国防科学技术大学,2007
    [1]M.G.Moharam, T. K. Gaylord. Rigorous coupled-wave analysis of planar-grating diffraction, J. Opt. Soc. Amer., vol.71(7),1981:811-818
    [2]葛德彪,严玉波,电磁波时域有限差分方法,第二版,西安电子科技大学而出版社,2005-11-148
    [3]K.S.Yee,"Numerical solution of initial boundary value problems involving Maxwell equations in isopic media,"IEEE Trans.Antennas Propagat., vol.AP-14(3)1966:302-307
    [4]K.M.Leung, Y.F.Liu, Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media, Phys.Rev.Lett. vol.65 (21),1990:2646-2649.
    [5]Zhang Yuan, researches on layered structures composed of the materials with positive/negative permittivity, [Dissertation], Beijing, Beijing Institute of Technology,2008
    [6]杨一粟,黄永清,任晓敏,等,一种具有亚波长光栅结构的光探测器的设计,中国激光,36卷,第9期,2009:2352-2357
    [7]Carlos F. R, Connie J.,Chang-Hasnain, etc al., IEEE PHOTONICS TECHNOLOGY LETTERS,Vol.16, No.2,2004:518-520
    [8]M.Levinshtein, S.Rumyantsev, M.Shur, Handbook series on semiconductor parameters (volume 2 ternary and quaternary III-V Compoiunds), World Scientific,1993:153-179
    [9]黄辉,WDM光接收机核心器件前沿技术研究,[学位论文],北京,北京邮电大学,2001
    [10]Kazuaki.Sakoda, Optical Properties of Photonic Crystals, Springer,2001:1-183
    [11]J.P.Berenger, Three-dimensional perfectly matched layer for the absorption of electromagnetic waves, J.Comput.Phys. vol.127 (2),1996:363-379
    [12]J.P.Berenger, Perfectly matched layer for the FDTD solution of wave-structure interaction problem, IEEE Trans. Antennas Propagat., vol.Ap-44(1)1996:110-117
    [13]Optiwave, OptiFDTD Technical Background and Tutorials and other help documents, 2009:1-145
    [14]Song Peng and G Michael Morris,Resonant scattering from two-dimensional gratings, J. Opt. Soc. Am. A, Vol.13 (No.5),1996:993-1005
    [15]Yisu Yang, Yongqing Huang, Xiaomin Ren,etc al., Design Net-grid Subwavelength Gratings for High Quantum Efficiency Photodetectors, Advanced Materials Research Vols.93-94,2010: 43-48
    [16]Yang Yisu, Huang Yongqing, Ren Xiaomin, Net-grid Subwavelength Gratings as Reflectors for Designing Resonant Cavity Enhanced Photodetectors, In OSA/ACP2009 editor,2009 Asia Communications and Photonics Conference and Exhibition(OSA/ACP2009)Technical Digest,2009:FH4
    [17]Charles. Kittel, Introduction to Solid State Physics, Wiley,1996:32-46
    [18]John.D.Joan, Robert D.Meade, Joshua N. Winn, Photonic Crystals:Molding the Flow of Light, Princeton Univ. Press,1995:5-20,55-56
    [19]张瑞文,二维光子品体本征模及态密度之分布,[学位论文],中国台湾省,台中市,逢甲人学,中华民国九十五年
    [1]韦乐平,40/100 Gbit/s超高速光纤系统的关键技术与发展策略,电信科学,2009年01期:1-7
    [2]Cisco Visual Networking Index,2009:12
    [3]Cisco IP Traffic Forecast,2009:10
    [4]Ovum-RHK Optical Components Forecast,2009:14
    [5]T.Schmidt, Jin Hong, "40G DWDM:A Case Study in Market Fragmentation", In OSA/ACP2009 editors,2009 Asia Communications and Photonics Conference and Exhibition (OSA/ACP2009)Technical Digest, Shanghai, China,2009,11:ThLl
    [6]J.L, Zysking, C.R.Giles, J.R.Simpson, and D.J.Digiovanni, "Erbium-Doped Fiber Amplifier and the Next Generation of Lightwave Systems", AT&T Technical Journal, Jan./Feb,1992:53-62.
    [7]Grace Murphy, "High Growth for DWDM Market, January 1998", "Dense Wavelength Division Multiplexing (DWDM) System Markets", market engineering consulting report.Frost& Sullivan, Mountain View, CA.
    [8]于光全,王海军,程保等,40Gbit/s长途WDM系统及其应用前景,电信科学,2003年第6期:48-50
    [9]T.Y.Li, "The Impact of Optical Amplifier on Long-Distance Lightwave Telecommunications", Proc. of the IEEE,vol.81,No.11,1993:1568-1579.
    [10]S.Kawanishi, H. Takara, K. Uchiyama etc al. Tbit/s(160Gb/s 19ch) OTDM/WDM transmission experiment, in OFC'99, paper PD1-1.
    [11]胡辽林,刘增基,光纤通信的发展现状和若干关键技术,电子科技,2004年第2期:3-10.
    [12]江道国,顾玲娟,郭汉明,"DWDM系统中解复用器的原理与发展趋势探讨”,光学仪器,2004,26(1):57-63
    [13]黄成,用于DWDM系统的集成解复用接收器件的理论和实验研究,[学位论文],北京,北京邮电大学,2005
    [14]中华人民共和国科技部著.《国际科学技术发展报告2005》.科学出版社.2005:241
    [15]Ronald Kaiser. Photonic Integration on InP for telecom and datacom applications.In.EDITOR.OFC Technical Digest.USA.2005:TuMl.
    [16]Nagarajan Radhakrishnan,Joyner Charles H,Schneider Richard etc al., Large-Scale Photonic Integrated Circuits, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS. Vol.11 (No.1),2005:50-65
    [17]Frauhofer通信研究所.德国科学家刷新单路光传输容量记录.光波通信.2006年4/5月刊:8.
    [18]http://www.alcatel-lucent.com/wps/portal/!ut/p/kcxml/04_Sj9SPykssy0xPLMnMz0vM0Y_Qj zKLd4x3tXDUL8h2VAQAURh_Yw!!?LMSG_CABINET=Docs_and_Resource_Ctr&LMSG_C ONTENT_FILE=News_Releases_2007/News_Article_000519.xml
    [19]http://www.alcatel-lucent.com/wps/portal/!ut/p/kcxml/04_Sj9SPykssy0xPLMnMz0vM0Y_Qj zKLd4x3tXDUL8h2VAQAURh_Yw!!?LMSG_CABINET=Docs_and_Resource_Ctr&LMSG_C ONTENT_FILE=News_Releases_2007/News_Article_000520.xml
    [20]http://www.alcatel-lucent.com/wps/portal/!ut/p/kcxml/04_Sj9SPykssy0xPLMnMz0vM0Y_Qj zKLd4x3tXDUL8h2VAQAURh_Yw!!?LMSG_CABINET=Docs_and_Resource_Ctr&LMSG_C ONTENT_FILE=News_Releases_2007/News_Article_000653.xml
    [21]中华人民共和国信息产业部,YD/T,1274-2003,中华人民共和国通信行业标准:光波分复用系统(WDM)技术要求——160×10Gb/s、80×10Gb/s,中国,中华人民共和国信息产业部,2003
    [22]Unlu M.S, Strite S.,Resonant Cavity Enhance Photonic Device, J.Appl. Phys.,vol.78,1995: 607-639.
    [23]Xiaomin Ren, J.C. Campbell, Theory and simulations of tunable two-mirror and three-mirror resonant-cavity photodetectors with a built-in liquid-crystal layer, IEEE Journal of Quantum Electronics,vol.32(11),1996:1903-1915.
    [24]X. Ren and J. C. Campbell, "A novel structure:one-mirror inclined three-mirror-cavity high performance photodetectors," in Technical Proceedings:International Topic Meeting on Photoelectronics (Beijing Institute of Technology),1997:81-84
    [25]Liu Kai, Huang Yongqing, Ren Xiaomin, Theory and experiments of a three-cavity wavelength-selective photodetector. Applied Optics, vol.39 (24),2000:4263-4269
    [26]HUANG Hui, HUANG Yongqing, REN Xiaomin, Ultra-narrow spectral linewidth photodetector based on taper cavity, Electronics Letters,vol.39 (1),2003:113-114
    [27]黄永清,黄辉,任晓敏等,用于光波分复用系统的高性能解复用接收器件,中国有色金属学报,Vol.14,S1,2004:409-414
    [28]徐玉峰,基于若干新型功能微结构的解复用接收器件的理论与实验研究[学位论文],北京,北京邮电大学,2008
    [29]Yisu Yang, Yongqing Huang, Xiaomin Ren,et.al.,Design Net-grid Subwavelength Gratings for High Quantum Efficiency Photodetectors, Advanced Materials Research Vols.93-94 (2010) page 43-48
    [30]杨一粟,黄永清,任晓敏,等,一种具有亚波长光栅结构的光探测器的设计,中国激光,36卷,第9期,2009:2352-2357,
    [1]C.C.Cheng, A.Scherer, R.C Tyan, New fabrication techniques for high quality photonic crystals, J.Vac.Sci.Technol.B,vol.15 (6),1997:2764-2767
    [2]S.Kawakami, Fabrication of submicrometre 3D periodic structures composed of Si/SiO2, Electron.Lett. vol.33(14),1997:1260-1261
    [3]S.Noda, K.Tomoda, N.Yamanoto, etc al.,Full three-dimensional photonic bandgap crystals at near-infrared wavelengths, Science, vol.289,2000:604-606
    [4]S.Z.Han,J.Tian,X.S Xu etc al.,A Y-Branch Photonic Crystal Slab Waveguide with an Ultrashort Interport Interval,Chin.Phys.Lett.,vol.22 (8),2005:1934-1936
    [5]任刚,InP/InGaAsP二维光子晶体薄板激光器的研制及波导设计研究,[学位论文],北京,中国科学院半导体研究所,2008
    [6]韩伟华,半导体纳米加工技术研究生课程 电子版讲义,中国科学院半导体研究所,半导体集成技术工程研究中心2009:24
    [7]T.Nishida, M.Notomi, R.Iga, etc al., Quantum Wire Fabrication by E-Beam Elithography Using High-Resolution and High-Sensitivity E-Beam Resist ZEP-520, Jpn.J.Appl.Phys.,vol.31, 1992:4508-4514
    [8]D.F.Kyser, N.S.Viswanathan, Monte Carlo simulation of spatially distributed beams in electron-beam lithography, J.Vac.Sci.Technol.vol.12(6),1975:1305-1308
    [9]G.Brown,The Physics and Technology of Ion Sources,Wiley-Vch,Weinheim,2004:7-23
    [10]R.J.Shurl, S.J.Pearson, Handbook of Advanced Plasma Processing Techniques, Springer, 2000:459-503,549-573
    [11]Byung-Teak Lee, Jong-Sahm Park, Dong-Keun Kim etc al.,Characterization of heavy depositson InP mesa sidewalls reactive ion etched using CH4/H2 plasma, Semicond. Sci. Technol. vol.14,1999:345-349.
    [12]G.Franz, Reactive ion etching of Ⅲ/Ⅴ semiconductors using carbon-containing gases, J.Electrochem.Soc. vol.137(9),1990:2896-2903
    [13]K.I.Ohtsuka, H.Sugimoto, T.Isu etc al. Tole of carbon and hydrogen in reactive etching of InP by gas mixture of ethane and hydrogen,Jpn.J.Appl.Phys.,vol.32,1993:4439-4435
    [14]Seoijin Park, Seong-Soo Kim, Liweri Wang etc al., InGaAsP-InP Nanoscale Waveguide-Coupled Microring Lasers With Submilliampere Threshold Current Using Cl2-N2-Based High-Density Plasma Etching,IEEE J. Quantum Electron.,vol.41 (3),2005: 351-356
    [15]S.Thomas and S.W.Pang, Dry etching of horizontal distributed Bragg reflector mirrors for waveguide lasers, J.Vac.Sci.Technol.B vol.14 (6),1996:4119-4123
    [16]J.W.Lee,J Hong, C.R. Abernathy etc al.,Cl2/Ar plasma etching of binary, ternary, and quaternary In-based compound semiconductors, J.Vac.Sci.Technol.B,vol.14 (4),1996:2567-2573
    [17]A.Matsutani, H.Ohtsuki, F.Koyama etc al.,Vertical and smooth etching of InP by Cl/2Xe inductively coupled plasma, Jpn.J.Apl.Phys. vol.38,1999:4260-4261
    [18]R.J.Shul, A.J.Howard, C.B.Vartuli et.al. Temperature dependent electron cyclotron resonance ething on InP, GaP and GasAs,J.Vac.Sci.Technol.A, vol.14 (3),1996:1102-1106
    [19]C.S.Whelan,T.E.Lazior,and K.Y.Hur, High rate CH4:H2 plasma etch processes for InP, J.Vac.Sci.Technol.B vol.15(5),1997:1728-1732
    [20]T.D.Happ,A.Markard,M.Kamp,et.al, Nanofabrication of two-dimensional photonic crystal mirrors for 1.5μm short cavity lasers,J.Vac. Sci.Techonl.B, vol.19 (6),2001:2775-2778
    [1]M.Levinshtein,S.Rumyantsev,M.Shur,Handbook series on semiconductor parameters (volume 2 ternary and quaternary Ⅲ-Ⅴ Compoiunds),World Scientific,1993:5-179
    [2]黄永清,王琦,黄辉,任晓敏,高速长波长谐振腔增强型光探测器的瞬态性能研究,SEMICONDUCTOR OPTOELECTRONICS,Vol.27 No.2,2006:148-152
    [3]韩伟华,半导体纳米加工技术研究生课程电子版讲义,中国科学院半导体研究所,半导体集成技术工程研究中心2009:9
    [4]李轶群,单片集成光接收机前端关键技术及相关新型光电子器件的研究,[学位论文],北京,北京邮电大学,2008
    [5]Hui Huang,Xiaomin Ren,Xian Ye, Yisu Yang,et.al,Growth of Stacking-Faults-Free Zinc Blende GaAs Nanowires on Si Substrate by Using AlGaAs/GaAs Buffer Layers, Nano Letters,2009.(网络上刊登,将发表在纸板期刊)
    [6]J. Hu, T.W. Odom, C.M. Lieber, "Chemistry and physics in one dimension:synthesis and properties of nanowires and nanotubes," Acc. Chem. Res.,32,1999:435-445
    [7]L. Samuelson, "Self-forming nanoscale devices," Mater. Today.10,2003:22-31
    [8]杨一粟,黄永清,任晓敏,等,纳米波导结构半导体光探测器制备方法,中国,发明专利,申请号:200910160633.8,2009申请
    [9]H. Sakaki, Scattering Suppression and High-Mobility Effect of Size-Quantized Electrons in Ultrafine Semiconductor Wire Structures, Jpn. J. Appl. Phys.19,1980:L735-738.
    [10]M. Asada, Y. Miyamoto, and Y. Suematsu, Gain and the threshold of three-dimensional quantum-box lasers,IEEE J. Quantum Electron.QE-22, No.9,1986:1915-1921
    [11]Davidson, F. M.; Lee, D. C.; Fanfair, D.D.; et.al.,Lamellar twinning in semiconductor nanowires,J. Phys. Chem. C,111 (7),2007:2929-2935
    [12]Bauer, J.;Gottschalch, V.; Paetzelt, H.,et.al.,MOVPE growth and real structure of vertical-aligned GaAs nanowires, Journal of Crystal Growth,Vol.298,2007:625-630
    [13]Glas, F.;Harmand, J.;Patriarche, G.;Why DoesWurtzite Form in Nanowires of Ⅲ-Ⅴ Zinc Blende Semiconductors? Phys. Rev. Lett.99,2007:No.146101_1-4.
    [14]Xiaomin Ren,Hui Huang,Yisu Yang,et.al,Effect of diameter and density of the catalyst on GaAs nanowires growth by Au-assisted Metal-Organic Chemical Vapor Deposition, in Zh.Alferov,L.Esaki,17th International Symposium "Nanostructures:Physics and Technology", Minsk,Belarus,2009:121-122
    [15]Xian Ye, Hui Huang, Xiaomin Ren, Yisu Yang,et.al, Growth of GaAs Nanowires with Various Thickness of Au Film,in SPIE/OSA,ACP 2009 technical program committee:WL23
    [16]Dubrovskii, V. G.;Sibirev, N. V.;Cirlin, G. E.Gibbs-Thomson and diffusion-induced contributions to the growth rate of Si, InP, and GaAs nanowires.Phys. Rev. B,79,2009: 205316_1-7
    [17]Dubrovskii, V. G.;Sibirev, N. V.;Cirlin, G. E.;Shape modification of Ⅲ-Ⅴ nanowires:The role of nucleation on sidewalls,Phys. Rev. E,77,2008:No.031606_1-7
    [18]Plante M. C.,LaPierre, R. R., Au-assisted growth of GaAs nanowires by gas source molecular beam epitaxy:Tapering, sidewall faceting and crystal structure, J. Cryst. Growth,310, 2008:356-363

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700