方形平面微透镜阵列的实验研究及理论初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,平面微透镜阵列的制作技术日益成熟,特别是光刻离子交换工艺.由这种方法制作的微透镜掩埋在平面的玻璃基片表面以下,不仅光学性能均匀性好,而且阵列排列整齐具有较好的聚光、成像、准直、分路、变折等功能;同时由于单元透镜直径小,密度高,可实现信息的大容量、多通道并行处理。本文着重对平面微透镜阵列的设计、制作工艺、性能测试进行研究,采用光刻离子交换在特制的玻璃基片上制备出新型的平面微透镜阵列——方形孔径平面微透镜阵列。通过对离子交换制作技术进行完善,对设计模型及工艺参数进一步优化,使微透镜阵列的光学性能进一步增强,填充因子和聚光效率提高到较为理想的值;这种平面微透镜阵列在提高探测器的灵敏度以及其它微光学成像系统、光学处理器等方面将得到广阔的应用。
     在理论上,本文以点源扩散作为理论基础,分析了离子热扩散的规律,得出以点源扩散为模型的掩埋式平面微透镜的折射率是以离子交换窗口为中心的对称分布。基于此模型,实验室提出了新型的方形孔径平面微透镜阵列,设计了其理论的模板,同时探讨了方形孔径平面微透镜阵列的光学特性和成像特性。
     在实验上,通过多次实验测量选择了合适的离子交换温度、熔盐比例、祛钛工艺并进行了模板参数的优化,并成功制备了窗口宽为0.2mm,中心距为0.8mm的微透镜阵列;并通过微小光学测试系统,较准确的测量了样品的光学性能(如折射率分布、截距、数值孔径等),其填充系数可达95%以上。测量结果显示该透镜阵列的抗压抗高温能力强,像差较小,成像质量均匀。
     对微透镜阵列结构进行深入研究的过程中,本文还发现了微透镜阵列对微图形的放大效应——莫尔条纹。对微透镜阵列结构参数、微图形结构参数与微图形阵列移动速度、移动方向以及放大倍率几者之间进行分析,并利用微透镜阵列实现了对微图形放大、动态、立体的显示。
Recently, as the fabrication of planar microlens with the techniques of lithographic ion-exchange array become more mature, the optical properties of microlens array which buried in the glass substrate is uniformity and unit lens are arranged very well. This type of planar microlens array has many functions such as focusing, imaging, collimation, shunting, index changing and so on. Meanwhile, the capacity of large information storage and the multi channel parallel may be come true with the unit lens which is small enough in diameter and high density. In this paper, we placed emphasis upon to the designing of planar microlens array and the fabrication technology at first. Therefore, we focused on the investigation of the planar microlens array design, production process and performance testing in this paper. From this work, a new type of square aperture planar microlens array was designed and fabricated successfully to achieve the fill factor optimization., and the optical properties of microlens array are further enhanced with improvement of ion-exchange technology and optimization of model design and experimental parameters. So, the fill factor and the photospot efficiency will be improved to an ideal value and this planar microlens array realize a broad application in improving detection the sensitivity, other micro-optical imaging systems and optical processors, etc.
     In theory, we analyzed the law of ion thermal diffusion of square aperture planar microlens array with method of point source and obtained the index distribution curves which was centrosymmetry from the center of microlens unit to the brink. With this work, we discussed the optical performance of the imaging quality with square-aperture planar microlens arrays.
     With several experimental steps, we put the substrate into the mixed molten salt with a certain proportion to exchange ion on the glass substrate at different temperature and corroded the 1.0 micron layer of titanium film on the substrate with an appropriate process. Based on the windows width of the sample is 0.2mm and the center distance between adjacency list was 0.8mm, the optical performance parameters (such as refractive index distribution, intercept, number aperture and so on) of sample have been carried on with a more accurate survey by the CCD imaging system and Jas Ming interferometer. However, we got a more satisfactory result that the fill-factor of square aperture planar microlens array is more than 98% and the imaging distortion is very small.
     With further research on the microlens array, square aperture planar microlens array had the amplification effect on micrograph whose unit size is approximate to the parameters of microlens array. Based on the principle of Moire fringe, we investigated the parameters of micro-structure, velocity and direction of movement, magnification with the micro-graphic array. Therefore, amplification of micrograph,3-dimension dynamic display would be available.
引文
[1]K. Nisbizawa, etal. Micro-Optics Research Activities in Japan. Proc. SPIE.,1992, 1751-1754.
    [2]伊贺健一.微小光学应用物理,1986,55(7):661-668.
    [3]田中傻一.激光学技术的现状和将来,光学,1987,16(2):42-47.
    [4]Abitbol. M, Eisenberg. N. New process for manufacturing arrays of microlenses on various substrates. Proc. SPIE.,1990,1334:110-121.
    [5]Popovic Z.D, Sprague R A. Connell GAN Technique for monolithic fabrication of microlens array Appl. Opt.,1988,27:1281-284.
    [6]K.Merserean, et al. Fabrication and measurement of fused silica microlens arrays. Proc. SPIE.,1992,1751:229-233.
    [7]Oikawa.M, Imanishi, H.Kishimoto. High N.A planar microlens for LD array. Proc. SPIE.,1993,1751:246-254.
    [8]M.Olkawa, K.Iga. Distributed index planar microlens. Appl. Opt.,1982,21: 1052-1053.
    [9]J.Jahns, S.J.Walker. Two-dimensional array of diffractive microlenses fabricated by thin film deposition. Appl. Opt.,1994,29 (7):931-937.
    [10]Nogues, Jean-Luc R., Howell, R.L. Fabrication of pure silica micro-optics by sol-gel. Proc. SPIE.,1993,1751:214-224.
    [11]T.Cbia, L.L.Hench. Micro-optical arrays by laser densification of Gel-silica matrices. Proc. SPIE.,1992,1758:215-226.
    [12]刘德森,第五届全国纤维光学与集成光学学术研讨会,第四届光计算技术讨论会论文集,厦门,1992,16.
    [13]朱传贵,第五届全国纤维光学与集成光学学术研讨会,第四届光计算技术讨论会论文集,厦门,1992,391.
    [14]刘德森编著,变折射率介质理论及其技术实践,西南大学出版社,2005:232.
    [15]Raymond, J. Beach, Mark. A. Emanuel. Applications of Microlens Conditioned Laser Diode Arrays. Proc. SPIE.,1995,2383:283-297.
    [16]Tadeusz, Kryszczynski. Precise algebraic method to solve the noncemented two-lens objective free from the aperture aberrations. Proc. SPIE.,1999,3779: 178-189.
    [17]J.Jahns. Intergrated optical imaging system. Appl. Opt.,1990,29(14):1990-1998.
    [18]Neil Davies. Three-dimensional imaging system:A new development. Appl. Opt., 1988,27(21):4520-4528.
    [19]Iga K, Oikawa M., and Sanada.T. A planar micro-lens array made by deep electro migration. Third international conference on integrated optics and optical fiber communication systems.1981, post deadline paper:4-1
    [20]M.Oikawa, H.Nemoto, K.Hamanaka, and E.Okuda. High numerical aperture planar microlens with swelled structure. Appl. Opt.,1990,28:4077-4080.
    [21]J. Bahr, K.-H. Brenner, S.Sinzinger, W. Singer, T. Spick, M. Testorf. Index-distributed planar microlensesfor three-dimentional micro-optics fabricated by silver-sodium ion exchange in BGG35 substrates. Appl. Opt.,1994,33:5919-5924.
    [22]K. Hamanaka, H. Nemoto, M. Oikawa, E. Okuda, and T.Kishimoto. Multiple imaging and multiple Fourier transformation using planar microlens arrays. Appl. Opt.,1990,29:4064-4070.
    [1]K. Iga, Ykokubun and M. Oikawa, FUNDAMENTALS OF MICR(X)PTICS, Academic Press, INC, New York 1984,145.
    [2]Oikawa M, Iga K. Distributed index planar microlens and its application. Appl. Opt.,1982,81:1052-1056.
    [3]朱传贵,平面微透镜阵列及其光学特性研究,[学位论文],西安:中国科学院西安光学精密器械研究所,1992,14.
    [4]刘德森编著,变折射率介质理论及其技术实践,西南大学出版社,2005:232.
    [5]K.Hamanaka, H.Nemoto, M.Oikawa. Multiple imaging and multiple Fourier transformation using planar microlens arrays. Appl. Opt.,1990,29:4064-4070.
    [6]Zhang Fengjun, Zhou Sumei, Jiang Xiaoping, Liu Desen. Fabrication of planar square aperture microlens arrays. ACTA PHOTONIC A SINICA,2008,37,2.
    [7]J. Bahr, K. H. Brenner. Realization and optimization of planar refracting microlenses by Ag-Na ion-exchange techniques. Appl. Opt.,1996,25:5102-5107.
    [8]J. Moisel, C. Passon, J. Bahr, K. H. Brenner. Homogeneous concept for the coupling of active and passive single-mode devices utilinzing planar gradient-index lenses and silicon grooves. Appl. Opt.,1997,36:4736-4743.
    [9]R.Klug, K.H. Implementation of multilens micro-optical systems with large numerical aperture by stacking of microlenses. Appl. Opt.,1985,38:7002-7008.
    [10].Katayama, Y.Munetaka and K.Iga. Improvement of Electric-Field-Asistd Ion Exchange Method for Planar Microlens Array Fabrication. Jpn.J. Appl. Phys.,1999,38:226-229.
    [11]Jose,R.Flores,Jacek Sochacki. Design of gradient-index microlenses for stacked planar optics. Appl. Opt.,1994,33:3409-3414.
    [12]Mashiro Oikawa,Hideki Imanishi and Takashi Kishimoto. High NA planar microlens for LD array. Proc. SPIE.,1992:1751-1754.
    [13]Arnold J.Cantor, Mahmoud M.A,and Robert H.. Theory of 2-D ion exchange in lass:Optimization of microlens arrays. Appl. Opt.,1991,30:2704-2713.
    [14]K.Iga,S.Misawa. Distributed-index planar microlens and stacked planar optics:a review of progress. Appl. Opt.,1986,125:3388-3396.
    [1]刘德森编著,变折射率介质理论及其技术实践,西南大学出版社,2005,232.
    [2]Sumei Zhou, Desen Liu, Xiaoping Jiang. Fabrication of Hexagonal Microlens Arrays. Proc. SPIE.,2007,6838-6840.
    [3]高应俊,覃亚丽,两种离子交换型变折射率微透镜,光学学报,1990,10:60
    [4]J. Bahr, K.-H. Brenner, S. Sinzinger. Index-distributed planar microlensesfor three-dimentional micro-optics fabricated by silver-sodium ion exchange in BGG35 substrates. Appl. Opt.,1994,33:5919-5924.
    [5]Oikawa M, Iga K. Distributed index planar microlens and its application. Appl. Opt.,1982,81:1052-1056.
    [6]田中傻一.激光学技术的现状和将来,光学,1987,16(2):42-47
    [7]K.Iga, Ykokubun and M.oikawa, FUNDAMENTALS OF MICR(X)PTICS, Academic Press, INC. New York,1984,145.
    [8]Jose,R.Flores,Jacek Sochacki. Design of gradient-index microlenses for stacked planar optics. Appl. Opt.,1994,33:3409-3414.
    [9]Mykola Kulishov. Tunable electro-optic microlens array,1. Planar geometry. Appl. Opt.,1985,39:2332-2339.
    [10]J. Bahr, K.H. Brenner. Realization of refractive continuous phase elements with high design freedom by mask structured ion exchange. Proc. SPIE.,2001,4437.
    [11]Bernhard Messerschmidt, Ulf. Possner, and S.N.Houde-Walter. Fabrication tolerances and metrology requirements for ion exchanged micro-optics lenses: What's good enough. Appl. Opt.,1997,36:8145-8152.
    [12]Arnold J. Cantor, Mahmoud M. Abouelleil, and Robert H. Hobbs. Theory of 2-D ion exchange in glass:optimization of microlens arrays. Appl. Opt.,1991,30.
    [13]Zhang Fengjun, Zhou Sumei, Jiang Xiaoping, Liu Desen. Fabrication of planar square aperture microlens arrays. ACTA PHOTONICA SINICA,2008,37,2.
    [14]Mashiro Oikawa. The Role of mirolenses in High Capacity Optical Networks. Optics & Photonics News.2003.
    [1]田中傻一.激光学技术的现状和将来.光学,1987,16(2):42-47.
    [2]Bahr, K.H.Brenner, S.Sinzinger, W.Singer, T.Spick, M.Testor. Index distributed planar microlensesfor three-dimentional micro-optics fabricated by silver-sodium ion exchange in BGG35 substrates. Appl. Opt.,1994,33:5919-5924.
    [3]刘德森编著,变折射率介质理论及其技术实践,西南大学出版社,2005:232.
    [4]Oikawa M, Iga K. Distributed index planar microlens and its application. Appl. Opt.,1982,81:1052-1056.
    [5]Zhang Fengjun, Zhou Sumei, Jiang Xiaoping, Liu Desen. Fabrication of planar square aperture microlens arrays. ACTA PHOTONICA SINICA,2008,37,2.
    [6]J.Bahr,K.-H.Brenner. Realization and optimization of planar refracting microlenses bu Ag-Na ion-exchange techniques. Appl. Opt.,1996,35:5102-5107.
    [7]Fengjun Zhang,Xiaomei Chen,Zhifang Zhao,Jie Chen,Sumei Zhou,Xiaoping jng,Desen Liu. Dynamic Display of Square-Aperture Planar Microlens Arrays. IEEE.,2010,10.1109.
    [8]杨国光编著,微光学与系统,浙江大学出版社,2008,08091.
    [9]Jose, R. Flores, Jacek. Sochacki. Design of gradient-index microlenses for stacked planar optics. Appl. Opt.,1994,33:3409-3414.
    [10]Arnold J.Cantor, Mahmoud M.A,and Robert H.. Theory of 2-D ion exchange in glass:Optimization of microlens arrays. Appl. Opt.,1991,30:2704-2713.
    [11]刘德森.微小光学的研究现状.物理.1994,6:321-328.
    [12]Sumei Zhou, Desen Liu, Xiaoping Jiang. Fabrication of Hexagonal Microlens. Arrays. Proc. SPIE.,2007,6838:1-12.
    [1]Wang Qionghua, Tao Yuhong, Li Dahai, et al.3D autostereoscopic liquid crystal display based on lenticular lens EJ-I Chinese Journal of Electron Devices,2008, 31(1):296-298.
    [2]王爱红,王琼华,李大海等.三维立体显示技术.电子器件,2008,31(1):299-301.
    [3]闵森林,王元庆.基于菲涅尔透镜的新型立体显示系统I-J1.液晶与显示,2007,22(3):306-309.
    [4]蒋峰TFT—LCD的高亮度自动立体显屏背光模块设计.液晶与显示,2008,23(5):599-602.
    [5]郝敦博,李大海,王琼华等.柱面透镜自由立体显示器的分辨率损失研究.液晶与显示,2008,23(4):494-497.
    [6]李小方,王琼华,李大海等.自由立体显示器观看视疲劳.液晶与显示,2008,23(4):464-467.
    [7]Nishimura H, Abe. T, Yamamoto H. gestereoscopic display with a parallactic barrier by use of an aperturegrille It roceedings of IDW06, Tokyo, Japan:IDW,2006: 1389-1392.
    [8]四川大学.无莫尔干扰条纹的裸眼立体显示装置及方法.中国,CN101000406AEP.2007,7-18.
    [9]北京超多维科技有限公司.无莫尔条纹的立体显示装置及方法:中国,CN101122684AEP.2008,2-13.
    [10]三洋电机株式会社,图像显示装置:中国,CN 1595226A EP.2005,3-16.
    [11]Fengjun Zhang,Xiaomei Chen,Zhifang Zhao,Jie Chen,Sumei Zhou,Xiaoping Jiang,Desen Liu. Dynamic Display of Square-Aperture Planar Microlens Arrays. IEEE.2010,10:109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700