用户名: 密码: 验证码:
云南澜沧老厂铅锌矿影像线—环结构矿床定位模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
云南澜沧老厂银铅锌多金属矿床是昌宁-孟连成矿带的南段唯一大型铅锌矿床,是滇西南重要的矿冶基地,从明朝永乐二年(公元1404年)起,澜沧老厂矿床已有采冶记载,至今已有600余年的开采历史。但矿山企业目前面临资源枯竭的严峻形势。按照企业现在的生产进度,矿山现在保有地质储量在今后不到十年的时间内将开采殆尽。资源问题已成为制约矿山企业的发展,甚至威胁到企业的能否生存的根本问题。
     根据矿区成矿规律及地质、物探、化探等信息显示,专家预测在老厂矿区南部、西部及北部有良好的找矿前景。矿山虽然已经过数十年的发展,积累了较为丰富的实践经验,但研究程度不深,找矿效果欠佳,严重地影响了地质找矿和成矿规律的研究。矿产资源需求量的急剧增长与矿产资源寻找难度加大、成功率低、成本高的矛盾日益突出,仅仅依靠常规地质方法和手段难以解决当前矿山企业面临的严重的资源危机。因此,需要借鉴国内外新的矿床地质理论和技术方法来开展该区的找矿工作,进行多学科综合信息成矿预测,特别是发挥遥感技术效率高、速度快、精度高、多光谱、成本低等的优势,在较短的时间内进行快速扫面,厘定矿区构造,提取矿化蚀变信息,建立老厂类型矿床遥感地质找矿模型,圈定勘探靶区。
     矿床遥感地质学将矿床学与遥感地质学、矿床地质方法与遥感地质方法相融汇,从成矿地质环境、矿床展布规律及矿床特征出发,识别矿床特征与遥感信息之间的内在联系,厘定纷繁复杂的线性构造、环形构造以及它们之间的组合关系(线-环结构)和等级体制,提取构造、侵入体、构造剥蚀程度以及遥感数据中地质弱信息(蚀变信息、特殊岩性信息等)等找矿信息,为快速圈定勘探靶区提供依据。
     本文结合云南省省院省校合作项目“云南省澜沧银铅锌多金属矿床立体定位预测与增储研究”的研究,探索以矿床遥感地质基本理论和方法为指导,以矿床遥感地质信息提取为中心的找矿技术方案;本文综合运用遥感数字图像处理、人机交互式解译和GIS空间分析方法,辅以必要的野外地质调研,取得以下几方面的成果:
     1、探索了一条“成矿遥感地质背景→远景区→蚀变异常区→赋矿线-环结构”的遥感找矿工作方法。本文首先采用较低分辨率的影像,划分滇西南及周边地区的影像-地质单元,提取区域影像线-环结构,与地球物理、地球化学等资料综合分析,分析矿床的成矿遥感地质背景以及区域线-环结构与矿床的展布规律,进而根据区域性的蚀变色调异常等信息寻找成矿远景区。对远景区的中等分辨率TM影像进行数字图像处理,提取蚀变异常信息和矿田线-环结构。最后解译蚀变异常分布区的高分辨率影像,厘定赋矿线-环结构,圈定优先勘查靶区。这是一种既符合成矿地质理论,又能充分发挥遥感技术特长的找矿方法,适合于在地质工作程度较低,地理环境艰苦的高山地区作业。
     2、提取澜沧老厂矿床成矿遥感地质背景信息。本文研究认为近南北向临沧-缅甸景栋浅色调弧带内的次级单元分界线——北北西向的耿马-老厂-孟遮线性构造带是澜沧老厂矿床的成矿遥感地质背景。并提出澜沧老厂矿床的形成受其东侧临沧花岗岩基影响巨大,北西向的黑河断裂属主成矿期后的构造,而并非导矿构造。
     3、通过对老厂地区TM影像线性构造、环形构造和蚀变信息的解译分析,综合矿床地质、地球物理和地球化学特征,总结了老厂线-环结构矿床定位模式。本文提出老厂环-环横叠式结构是澜沧老厂矿田的控矿构造。该结构中的南北轴向南老环和东西轴向的透镜体系列分别与华力西期的火山岩和燕山-喜马拉雅期的隐伏中酸性岩体有良好的对应关系,二者叠加形成老厂环-环横叠式结构。与隐伏岩体同期或稍后的北西向、北东向共轭线性构造带与环形构造叠加交切,多组构造的交汇点是有利的成矿部位。遥感影像上大面积的色调异常斑块显示了近矿围岩蚀变的范围。多地学线、环结构同位性显著。该结构显示了澜沧老厂矿田隐伏构造、岩浆的信息,为澜沧老厂矿床多来源、多期次矿床成因提供佐证。
     4、探索适合老厂式矿床围岩蚀变信息提取的数字图像处理方案。目前的蚀变提取方法多以突出铁染和泥化现象为目的,在已知的文献中尚未见针对因含锰蚀变矿物光谱特征引起的影像异常的研究。但澜沧老厂矿床的围岩蚀变不仅具有铁染现象,还含有丰富的氧化锰和菱锰矿,特别是近年发现在原生银铅锌矿床外围发育有富含铁锰结核的红土风化壳型锰银矿床。本文分析了澜沧老厂矿床主要蚀变矿物的光谱特征,尝试一套旨在突出锰异常信息的数字图像处理方法。锰异常信息可以作为在澜沧地区寻找类似于澜沧老厂矿床的大型矿床的重要标志。
The Laochang silver-lead-zinc and polymetallic ore deposit of Lancang city Yunnan province is the single large-sized lead-zinc ore deposit in the Changning-Menglian mineralization belt.It has been mined since 1404 A.D., and became the paramount important mine and metallurgical base by now.But the resources will be exhausted in no more than 10 years according to the rate of production.The mine enterprise which has been restricted by the exhausted resources will have to be closed in few years later.
     Experts predict that metallogentic conditions are excellent around the Laochang ore deposit according to the metallogentic regularity and geology, geophysical and geochemical data of this ore field.Although plenty experience gotten after tens of years exploitation,there are no deep researches yet, which influenced the ore prospect and research on the metallogentic regularity. Conflicts become sharpen between the leaping demand for mineral resources and the increasing difficulty of ore finding.So,it is needed that metallogenic prediction using synthetic information in this region referenced new theories of deposit and advanced technology methods both here and abroad,especially scanning the whole region in a short time using the remote sensing technology characterized by efficiency,high precision,poly-spectrum and economic, which is helpful for collating and stipulating ore-tectonics,extracting alteration information,and making a remote sensing geology exploration model of Laochang deposit,based on which predicting the metallogenic areas.
     The ore deposit remote sensing geology is an interdisciplinary study of gitology and remote sensing geology,which syncretizes the methods of deposit geology and remote sensing geology to identify the inherent relationship between deposit characters and remote sensing information,distinguish the linear and ring structures and their grade system from numerous and complicated lineaments and rings,extract exploration information of tectonic,intrusive body,tectonic denude station and week geology information,such as alteration, special rock and so on.According to the information,the metallogenic areas and the targets for exploration work would be predicted in a short time.Combine with "the research for solid location prediction and reserves increasing of Lancang silver-lead-zinc-polymetallic ore deposit of Yunnan province",which is an institute and university cooperated item of Yunnan province,this paper searched after the exploration scheme which extracted the deposit remote sensing geology information centrally according to the basic theory and method of deposit remote sensing geology.The author got some results hereinafter by using multi-methods together,such as remote sensing digital image manipulation, Man-computer interactive interpretation,GIS space analysis, necessary geology field survey,and so on.
     1.Searchering after a remote sensing exploration method that is "remote sensing geology metallogenic background- metallogenic area- alteration abnormal area- linear-ring structure for ore deposit location".First,based on an interpretation of the low resolution image,the author divided the imagine-geology units of southwest Yunnan and around region,extracted region linear-ring structure and analyzed in combination with region geophysical and geochemical data to find the remote sensing geology metallogenic background of Laochang ore deposit and the relationship between the linear-ring structures and the distribution of ore deposits,then on the basis of tone anomaly information in Lancang region predicted the metallogenic areas;second, processed digital TM imagines of the metallogenic area,based on which extracted alteration information and ore field linear-ring structures;lastly, predicted the targets for exploration work in near future based on an interpretation of deposit location linear-ring structure using the high resolution images of the alteration area.This exploration method not only suits to the metallogenic geology theory but also adequately exerts the speciality of remote sensing technology,which is fit for the mountain places where the environment is hard and geology work have been done little.
     2.Defining the remote sensing geology metallogenic background of Laochang ore deposit.This paper Pointed out firstly that the metallogenic background of Laochang ore deposit is the NNW Gengma-Laochang-Mengzhe lineation,which is the boundary of secondarily units in the near NS Lincang-jingdong(of Burma) undertone arc strip.The Lincang granite batholith affected the formation of Laochang deposit.The NW Heihe fault was not a ore control tectonic but occurred after the main mineralization epoch.
     3.Based on an interpretation of linear and ring structures and the extraction of alteration information from TM imagines,in combination with ore deposit geology and geochemical data,the authors formulated a linear-ring structure model for ore deposit location in the Laochang ore district and defined for the first time that the ring-ring transverse overlapping style structure was the ore control tectonic of Laochang deposit.
     The NS axial Nanlao ring and the EW axial lenses series reflect the Variscan volcanic depressions and the Yanshanian-Himalayan concealed intermediate-acid intrusive bodies respectively,and their superimposition has formed Laochang ring-ring transverse overlapping style structure;the NW-trending and NE-trending conjugate structure belts formed contemporaneous with or a bit later than the concealed intrusive bodies have overlapped and dissected ring structures,and the intersections of various structures are places favorable for mineralization.The large tone anomaly patches indicate areas of near-ore wall rock alteration.The remarkable parity of poly-geoscience linear and ring structures provided evidence for the multiple sources and epochs genesis of Laochang ore deposit.
     4.Attempting some digital image processing versions that suit for extracting wall rock alteration information of Laochang ore deposit.The actual methods for extracting alteration information aim to stand out the iron staining and argillation mostly,but few references research the image abnormality resulted by spectral diagnostics of the manganiferous altered mineral.Whereas,in Laochang ore deposit there are not only the iron stained alteration,but abundant manganese-carbon and manganese dioxide in the wall rock.Based on the analysis of the spectral diagnostics of the primary altered mineral of Laochang ore deposit,this paper attempted some digital image processing versions that aim to stand out the manganese abnormal information, which could be a important clue for prospecting large size ore deposit like Laochang in Lancang region.
引文
1、 Abrams, M. J ., Ashley , R. P., Brown, L. C., Goetz, A. F. H., Kahle , A. B. 1977. Mapping of hydrothermal alteration in the Cuprite mining district, Nevada , using aircraft scanning images for the spectral region 0. 46 to 2. 36 mm[J ]. Geology , (5): 713-718
    
    2、 A.M.Flygare. 1997. A comparison of contextual classification methods using Landsat TM[J]. INT. J. Remote Sensing, 18(18): 3835-3842
    
    3 、 B.Mannan, J. Roy and A.K.Ray. 1998. Fussy Artmap supervised classification of multi-spectral Remotely-sensed images[J]. INT. J. Remote Sensing, 19(4): 767-774
    
    4、 Chavez P S, Sides S C, Anderson J A. 1991. Compatison of three different methods to merge multi-resolution and multi-spectral data:Landsat TM and SPOT Panchromatic[J]. Photogrammetric Engineering and Remote Sensing, 57(3):295-301
    
    5、 Crosta, A., Moore , J. McM. 1989. Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minais Gerais State , Brazil :a prospecting case history in Greenstone belt terrain[A]. In : Proceedings of the 7th ERIM Thematic Conference : Remote sensing for exploration geology[C]: 1173-1187.
    
    6、 Crosta A P., MeM Moore J. 1989 . Enhancement of landsat thematic mapper imagery for residual soil mapping in SW Minais Gerrain[A]. In: Proceedings of the 7th(ERIM)Thematic conference:Remote Sensing for Exploration Geology [c]. Calgary, 1 173-1187
    
    7、 CROWL EY, ames K. HUBBARD , Bernard E., MARS , John C. 2003. Hydrothermal Alteration on the cascade stratovolcanoes : A remote sensing survey[J ]. Geological Society of America Abstracts with Programs, ,35 (6): 552.
    
    8、 D. Goodernough. 1998. Thematic mapper and Spot integration with a geographic information system[J]. PE&RS, 54(2)
    9、 Fishier, Wolf. 1984. Machine perception of Linear structure, http://dli.iiit.ac.in/ijcai/IJCAI-83-VOL-2/PDF/
    10、 Friedrich Kuchn, 2000. Remote sensing for site characterization: Berlin, Springer
    
    11、 Floyd F. Sabins, 1997. Remote sensing: Principles and interpretation, New York: W. H. Freeman and Co., 1997
    
    12、 G. G. Wilkinson. 1996. A review of current issuesin the integration of GIS and remote sensing data[J]. Int. J. Geographical Information Systems, 10(1):85-101
    
    13、 Guo Huadong, V. Singhroy and T.G Fair., 1997, New technology for geosciences: proceeding of the 30th international geological congress. V.10, held in Beijing, China, August 4-14,1996
    
    14、 Hunt, G R., Salisbury, J . W., Lenhoff, G J . 1978. Visible and near2infrared spectra of minerals and rocks : III Oxides and hydroxides[J ]. Modern Geology, (2): 195-205.
    
    15、 John A. Richards. 1999. Remote sensing digital image analysis, Berlin: Spinger-Verlag
    
    16、 Jose Luis Casanova, 1999. Remote sensing in the 21st century .economic and environmental applications: proceeding of the 19th EARSel symposium, held in Valladolid, May 31-June 2,1999
    
    17、 Kendall M.. 1975 . Multivariate Analysis[M]. England: Charles Griffin and Company Limited
    
    18、 Lee.K. 1985. Integrative digital image analysis of landsat for mappering hy-drathermal limonite[J]. Proceedings of the fourth thematic conference on remote sensing for exploring geology, 1985:290-305
    
    19、 Loughlin, W. P. 1991. Principal Component Analysis for alteration mapping[J ]. Photogrammetric Engineering and Remote Sensing, (57): 1163-1169.
    
    20、 Ixmghlin W P. 1991. Principal component analysis for alteration mapping[A]. In: mProceedings of the 8th Thematic eonferenee on Geologic Remote Sensing[C] Denver, USA. 293-306.
    
    21、 MacDonald, I .R., Reilly, J. F., Jr., Best, S. E., venkataramaiah, R., Sassen, R., Amos, J., and Guinasso, N. L., Jr., 1996. A remote-sensing inventory of active oil seeps and chemosynthetic communities in the northern Gulf of Mexico, in Schumacher, D., and Abrams, M.A., eds., Hydrocarbon migration and its near-surface expression: American Association of Petroleum Geologists Mem-oir66, pp27-37
    
    22、 Mollr-Jensen L. 1990. Knowledge-based classification of an urban area using texture and context information in Landsat TM imagery[J]. Photogrammetric Engineering & Remote Sensing, 56(6): 899-904
    
    23、 Nitin Kumar Tripathi, Vishwa Nath Bajpai. 1998. Remote sensing in geoscience, New Delhi: Anmol Publications PVT. Ltd., 1998
    
    24、 Norwegian Space Centre. 1998. Information for sustainability: proceedings for the 27th international symposium on remote sensing of environment, held in Tromso, Norway, June 8-12,1998
    25、 R.A. Langel , W. J. Hinze. 1998. The Magnetic field of the earth's lithosphere: the satellite perspective, Cambridge: Cambridge Univ. Pr., 1998
    26、 Raymond F. Kokaly, Roger N. Clark, K. Eric Livo. 1998. Mapping The Biology and Mineralogy of Yellowstone National Park Using Imaging Spectroscopy [C]. Summarries of the 7th Annual JPL Airborne Earth Science Workshop, R. O. Green, Ed., JPL Publication 97-21 Vol. 1, AVIRIS Workshop, Conducted Jan 12-16,1998:245-254
    27、 Roger N. Clark, Gregg A. Swayze, and Andrea Gallagher. 1993. Mapping Minerals with Imaging Spectroscopy[C]. U.S. geological Survey, office of Mineral Resources Bulletin 2039:141-150
    28、 Roger N. Clark, J. Sam Vance, K. Eric Livo , Robert O. Green. 1998. Mapping Minerals with Imaging Spectroscopy, The Ray Mine , AZ[C]. Summarries of the 7th Annual JPL Airborne Earth Science Workshop, R. O. Green, Ed., JPL Publication, 97-21 Vol.1, AVIRIS Workshop, Conducted Jan 12-16, 1998
    29、 Rowan, L.C., Goetz, A.F. H. and Ashley ,R. P.1977. Discrimination of hydro- thermally altered and unaltered rocks in visible and near infrared multispectral images[J]. Geophysics ,1977 (42) :522-535.
    30、 Rutz-Armenta, J.R., Prol-Ledesma, R. M. 1998. Techniques for enhancing the spectral response of hydrothermal alteration minerals in Thematic Mapper images of Central Mexico [J]. International Journal of Remote Sensing, (19): 1981-2000
    
    31、 Tammy I. Stein, 1998. IEEE International geoscience and remote sensing symposium proceeding v.l: Proceedings of the International symposium, held in Seattle, July 6-10,1998, spon. By Institute of Electricaland Electronics Engineers Inc., Piscataway, NJ: IEEE, 1998
    
    32、 Wilson P A. 1997. Rule-Based classifiction of water in Langdsat MSS images using the Variance filter[J]. Photogrammetric Engineering & Remote Sensing, 63(5):485-491
    
    33、 Wang F. 1990. Fuzzy supervised classification of remote sensing images[J]. On Geoscience and Remote Sensing, 28:194-201
    
    34、 Minerals Management service, 1999, Releasable well log data, www.gomr.mms.gov/homepage/pubinfo/wellog/release.asp
    35、 Remote Sensing - Prototype surface characterization of contrasting Cu-porphyry systems http://crustal.usgs.gov/crustal/projects/remote/task4.html
    
    36、 Remote Sensing of Arid Lands http://pubs.usgs.gov/gip/deserts/remote/
    37、 Information Handout: Remote Sensing in the USGS Mineral Resource Surveys Program http://pubs.usgs.gov/info-handout/rowan/
    38、 Remote sensing-Connection between imaging spectroscopy and geology http://crustal.usgs.gov/crustal/projects/remote/task2.html
    39、 U. S. Geological Survey Eastern Mineral Resources: Mineral resources research http://minerals.usgs.gov/east/
    40、 Remote sensing- Defining reaction mechanisms in clay/organic mixtures http://crustal.usgs.gov/crustal/projects/remote/task7.html
    41、 Nicholas M. Short, Sr.. Ratio, PCA, and Maximum Likelihood Analysis of the Utah Site http://rst.gsfc.nasa.gov/
    42、常庆瑞,蒋平安,周勇,申光荣,李瑞雪,赵鹏祥.2004.遥感技术导论[M].北京:科学出版社
    43、陈炳蔚,李永森,曲景川,王铠元.1991.三江地区主要大地构造问题及其与成矿的关系[M].北京:地质出版社,87-99
    44、陈炳蔚,王铠元,刘万熹,蔡振京,张勤文.1987.怒江-澜沧江-金沙江地区大地构造[M].北京:地质出版社,116-119
    45、陈赶良,杨柏林.1996.黔桂微细浸染型金矿区环形构造的数值特征及其与金矿的关系[J].黄金地质,2(2),61-64
    46、陈建平.1990.遥感图像线性体自动判识提取方法的理论探讨[J].大自然探索,19(3):81-86
    47、陈松岭,彭省临,王增润.1997.澜沧老厂银铅矿矿田构造[J].中国有色金属学报,7(3)1-5
    48、陈广浩,王岳军,张湘炳.1998.应用遥感图像分析九江瑞昌地区构造与金铜成矿的关系[J].黄金科学技术,6(3):30-33
    49、陈华慧.1984.遥感地质学[M].北京:地质出版社,208-211
    50、池都顺,周顺平,吴新林.1997.GIS支持下的地质异常分析及金属矿产经验预测[J].地球科学,22(1):90-103
    51、迟国彬,李岩,丁喧.1997.基于GIS的矿产勘查综合预测方法研究[J].地球化学,26(5):91-99
    52、党安荣,王晓栋,陈晓峰,张建宝.2003.ERDAS遥感图像处理方法[M].北京:清华大学出版社,116-123
    53、李峰,段嘉瑞.1999.滇西地区板块—地体构造.昆明理工大学学报:理工版,24(1):29-35
    54、丁家瑞.1996.关于遥感技术在地质工作中应用的一些问题思考[J].国土资源遥感,(2):1-9
    55、段锦荪,侯增谦,张罡,柏坚,杨开辉,唐良栋.2000.滇西地区晚古生代裂谷作用与成矿[M].北京:地质出版社,1-26
    56、冯佐海,梁金城,李晓峰,张桂林,韩喜彬.2002.平桂地区遥感线性构造的分形特征及其地质意义[J].地球学报,23(6):563-566
    57、高景昌,王光杰.1994.遥感图像线性构造信息微机机助提取[J].环境遥感, 9(1):62-67.
    58、何国金,薛重生.1998.遥感地质学中若干问题的分形探讨[J].国土资源遥感,(3):46-54
    59、胡受奚.1980.交代蚀变岩岩相学[M].北京:地质出版社,88-90
    60、黄汲清,陈炳蔚.中国及邻区特提斯海的演化[M].北京:地质出版社,50-87
    61、黄洁,刘智,尹显科.2003.西南三江地区矿产资源遥感综合预测方法[J].国土资源遥感,(3):54-57
    62、况顺达,林卫华,姚智,刘沛,王雪华.2003.黔东南地区金矿遥感弱信息自动提取技术研究[J].贵州地质,20(4),242-246
    63、荆凤,陈建平.2005.矿化蚀变信息的遥感提取方法综述[J].遥感信息,(2),62-65
    64、Jean Francois,Parrot.1992.Spot图像上环形构造的提取和分类[J].黄金地质科技,1994(2):67-72
    65、李光斗,匡立人.1998.云南澜沧老厂银铅铜矿床成矿地质条件和找矿远景[J].有色金属矿产与勘查,7(1):1-6
    66、李宏坤,杨世坤,辛荣,田宗春.2006.澜沧老厂外围银铅锌铜多金属异常资源潜力评价[J].云南地质,25(1):90-95
    67、李虎杰,田煦.1995.云南澜沧铅锌银铜矿床矿物微量元素标型特征[J].西南工学院学报,10(4):71-75
    68、李虎杰,田煦,易发成.1995.云南澜沧铅锌银铜矿床稳定同位素地球化学研究[J].有色金属矿产与勘查,4(5):278-282
    69、李雷,段嘉瑞,李峰,马远,黄敦义.1996.澜沧老厂铜多金属矿床地质特征及多期同位成矿[J].云南地质,15(3):246-256
    70、李雷,赵斌,李元兴,马远.1989.云南澜沧老厂多金属矿区遥感影像特征及其找矿意义[J].矿产与勘查,8(1):50-56
    71、李延祺.1998.“岩浆期后矿床”的成矿原理与环形构造成矿[J].国土资源遥感,(4):54
    72、廖崇高,杨武年,徐凌,濮国梁.2002.成矿预测中遥感与地质异常的综合分析——以兰坪盆地为例[J].中国地质,29(4):416-420
    73、吕伯西,王增,张能德,段建中.1993.三江地区花岗岩及其成矿专属性[M].北 京:地质出版社,17-23
    74、刘成,王丹丽,李笑梅.2003.用混合像元线性模型提取中等植被覆盖区的粘土蚀变信息[J].地质找矿论,18(2):131-137.
    75、刘楠,舒宁.2005.多光谱影像纹理特征编码的算法研究[J].武汉大学学报(信息科学版),30(1):15-18
    76、刘聚海.2000.矿产勘查中的遥感技术应用:综述[J].国土资源科技进展,(3):54-61
    77、刘素红,马建文,蔺启忠.2000.通过Gram2Schmidt投影方法在高山区提取TM数据中含矿蚀变带信息[J].地质与勘探,36(5):62-65
    78、刘新华,舒宁.2006.纹理特征在多光谱遥感影像分类中的应用[J].测绘信息与工程,31(3):31-32
    79、刘燕君,金丽芳.1993.矿产信息的遥感地面模式[M].北京:地质出版社
    80、刘友梅,杨蔚华.2001.澜沧老厂银多金属矿床火山岩地球化学特征及环境识别[J].矿物学报,21(4):699-704
    81、刘治国,池顺都,周顺平.2002.成矿预测中应用GIS的主要步骤[J].地质找矿论丛,17(2):140-144
    82、吕凤军,邢立新,范继璋,潘军,孟涛,何全军.2006.基于蚀变信息场的遥感蚀变信息提取[J].地质与勘探,42(2):65-68
    83、吕古贤,曾绍金,郑大瑜,朱裕生等.2004.我国主要金属矿产矿山资源危机程度评价[M].北京:中国大地出版社,23-35
    84、楼性满,葛榜军.1994.遥感找矿预测方法[M].北京:地质出版社
    85、罗君烈,杨友华,赵准,陈吉琛,杨荆舟.1994.滇西特提斯的演化及主要金属矿床成矿作用[M].北京:地质出版社,66
    86、马芳,谭文兵.2003.国外矿产勘查技术及应用[J].中国地质矿产经济,(6):39-40
    87、马建文.1997.利用ETM数据快速提取含矿蚀变带方法研究[J].遥感学报,1(3):208-213.
    88、莫宣学,路凤香,沈上越,朱勤文,侯增谦,杨开辉.1993.三江特提斯火山作用与成矿[M].北京:地质出版社,146-148
    89、欧阳成甫.1994.云南澜沧老厂银铅矿床环形构造研究及其地质效果[J].国 土资源遥感,(1),23-28
    90、欧阳成甫,徐楚明.1991.云南澜沧老厂地洼型银铅矿床的地球化学特征及成因[J].大地构造与成矿学,15(4):317-326
    91、O'driscoll.1985.南澳洲罗比丹斯地区奥林匹克坝Cu-Au-U矿床发现时线性构造分析的作用[J]国外遥感地质通讯,1987,(3)
    92、濮静鹃.1992.遥感图像目视解译原理与方法[M].北京:中国科学出版社.
    93、浦瑞良,宫鹏,高光谱遥感及其应用[M],北京:高等教育出版社,2000
    94、秦其明.2000.遥感图像自动解译面临的问题与解决的途径[J].测绘科学,25(2):21-24
    95、全苏地质研究所.1955.蚀变围岩及其找矿意义[M].北京:地质出版社
    96、沈上越,冯庆来,刘本培,莫宣学.2002.三江地区南澜沧江带火山岩构造岩浆类型[J].矿物岩石,22(3):66-71
    97、施琳,陈吉琛,吴上龙,彭兴阶,唐沿鹑.1989.滇西锡矿带成矿规律[M].北京:地质出版社,42-55
    98、舒宁.1998.卫星遥感影像纹理分析与分形分维方法[J].武汉测绘科技大学学报,23(4):370-373
    99、舒宁.2004.关于多光谱、高光谱和高光谱影像的纹理问题[J].武汉大学学报(信息科学版),29(4):292-2295
    100、谭衢霖,翟建平,徐光平.1999.试论遥感地质找矿的进展[J].地质找矿论丛,14(4):55-64
    101、田淑芳,王小牛.2001.遥感技术在山西阳高地区金矿成矿预测中的应用[J].现代地质,15(1):64-68
    102、吴德文.2006.多元数据分析与遥感矿化蚀变信息提取模型[J].国土资源遥感.(1):22-30
    103、吴昀昭,田庆久,陈骏,季峻峰,张敏.2004.新疆哈密黄山地区多金属矿床遥感地质信息提取与找矿模式研究[J].高校地质学报,10(1)114-120
    104、王安建,马志红.1993.φ形构造——脉状金(银)矿床的一种新勘查模式[J].地质与勘探,29(10):5-11 ——以西昆仑塔什库尔干地区为例[J].地质与资源,11(2):119-122
    106、王瑞雪,高建国,杨世瑜.2007.云南澜沧老厂矿区影像线-环结构矿床定位及成矿预测[J].国土资源遥感,(3):51-55
    107、王瑞雪,史茂,苏杰.2007云南澜沧老厂矿区影像线-环结构矿床定位模式研究[J].矿床地质,(5):
    108、王瑞雪,叶燎原.2007.利用现代“3S”技术阐释丽江古城选址的科学性[J].国土资源遥感,(1):61-64
    109、王学佑,郝晓峰.1991.中朝热源环形构造系与铀成矿规律的探讨[J].中国区域地质,(3):275-281
    110、王新民.1990.耿马-澜沧-勐海地区线性构造基本格局及其与地震的关系[J].四川地震,(4):85-88
    111、王增润,黄震,彭省临,陈松岭.1997.澜沧“老厂型”银多金属块状硫化物矿床成因和成矿模式[J].中国有色金属学报,7(4):1-6
    112、王润生,丁谦,张幼莹,等.1999.遥感色调异常分析的协同优化策略[J].地球科学一中国地质大学学报,24(5):498-502.
    113、吴德文,袁继明,张远飞,朱谷昌.2005.遥感与化探数据融合处理技术方法及应用研究[J].国土资源遥感,(3):44-47
    114、武广,权恒,张炯飞,祝洪臣.2002.得尔布干成矿区黑山头以北地区重、磁、遥构造解译[J].地质与资源,11(1):53-59
    115、肖龙,王方正,Hayward Nick,Begg Graham.2003.新疆伊犁吐拉苏地区的线性构造及控矿特征[J].地球科学——中国地质大学学报,28(2):191-195
    116、徐水辉,姜瑞午.“遥感技矿信息提取技术”在骑田岭锡矿田的应用[J].湖南地质,20(2):131-134
    117、薛步高.1989.对澜沧老厂铅锌矿成因的讨论[J].云南地质,8(2):181-188
    118、薛步高.1998.论澜沧老厂银铅多金属矿床成矿特征[J].矿产与地质,12(1):26-32
    119、杨锋杰,王明镇,李增学,戴广凯,贾维花.2006.鄂尔多斯盆地南部环形影像特征及地质意义[J].地球科学与环境学报,28(3):37-41
    120、杨贵来,杨伟光,莫宣学,曾普胜,和中华,解通.2006.云南澜沧地 区南角河银多金属矿床的地质特征及成因[J].地质通报,25(9-10):1225-1232
    121、杨桄,张柏,王宗明,宋开山.2006.基于多源信息空间的遥感影像自动解译研究[J].东北师大学报(自然科学版).38(1),131-135
    122、杨金中.2003.西天山吐拉苏地区金矿遥感找矿模型研究[J].黄金科学技术,11(5):1-6
    123、杨金中,方洪宾,张玉君,陈薇.2003.中国西部重要成矿带遥感找矿异常提取的方法研究[J].国土资源遥感,(3):50-53
    124、杨日红,于学政.2005.藏东三江地区多金属矿产遥感信息综合找矿预测[J].地质与勘探,41(3):59-64
    125、杨胜天,朱启疆.2000.人机交互式解译在大尺度土壤侵蚀遥感调查中的作用[J].水土保持学报,14(3),88-91
    126、杨世瑜.1994.云南锡矿遥感地质模型[M].昆明:云南科技出版社
    127、杨世瑜.1995.矿床遥感地质基本问题[J].西南矿产地质,(1-2):66-77
    128、杨世瑜,王瑞雪.2002.矿床遥感地质问题[M].昆明:云南大学出版社,99-102
    129、杨永贺,关键.1999.九台上河湾环形构造之地、物、化、遥特征及找矿意义[J].吉林地质,18(3):19-27
    130、杨巍然,隋志龙.2004.欧亚大陆风云影像线性构造信息提取及其地质分析[J].地学前缘(中国地质大学,北京),11(4):551-558
    131、叶同庆.1992.三江地区区域地球化学背景和金银铅锌成矿作用[M].北京:地质出版社,191-217
    132、叶庆同,石桂华等.1991.怒江、澜沧江、金沙江地区铅锌矿床成矿特征和成矿系列[M].北京:科学技术出版社,40-79
    133、余勇,钱建平,袁爱平.2005.高龙金矿区高分辨率遥感线性构造分形特征及综合成矿预测[J].矿产与地质,19(2):209-213
    134、袁涛.2005.新疆阿巴宫—蒙库地区线性构造与铁矿产分布关系初探[J].地质找矿论丛,20(增刊):159-161
    135、赵福岳.2000.矿源场-成矿节-遥感信息异常找矿模式法[J].国土资源遥感,(4):28-33
    136、赵玉灵.2003.遥感找矿模型的研究进展与评述[J].国土资源遥感,(3):1-4
    137、赵玉灵,杨金中,和正民,李建存.2005.基于ERDAS地质信息提取功能的设计与实现[J].遥感信息,(2):36-38
    138、赵震海,况顺达,王成相.2006.黔东南地区遥感构造研究与金矿的关系[J].中国矿业,15(5):80-84
    139、张建国,杨自安,胡祥昭,邹林.2004.基于光谱特征的遥感信息提取及成矿预测[J].矿产与地质,18(4):346-349
    140、张满郎.1996.金矿蚀变信息提取中的主成分分析[J].遥感技术与应用,11(3):1-5.
    141、张玉君,曾朝铭,陈薇.2003.ETM+(TM)蚀变遥感异常提取方法研究与应用——方法选择和技术流程[J].国土资源遥感,2003,(2):44-49
    142、张义彬,曲家惠.1998.世界遥感技术发展现状及其地质应用[J].国土资源遥感,(4):67-75.
    143、张宗贵,王润生,郭小方,甘甫平,杨苏明.2003.基于地物光谱特征的成像光谱遥感矿物识别方法[J].地学前缘(中国地质大学,北京),10(2):437-443
    144、张准,李波,陈春华,杨吉忠.2006.澜沧老厂银铅矿床原生矿体地质特征及成因研究[J].西部探矿工程,(12):125-128
    145、张旺生,黄加贵,木合塔尔·扎日,高怀忠.2003.新疆东准噶尔内生金矿的遥感找矿信息[J].地质科技情报,22(2):77-81
    146、张远飞,吴健生.1999.基于遥感图像提取矿化蚀变信息[J].有色金属矿产与勘查,8(6):604-606.
    147、植起汉,朱谷昌,王严.1995.金属矿床分布规律与遥感地质构造的联系[J].矿产与地质,9(3):199-202
    148、周汝量.2000.卫星图像的解译误差与提高精度的方法[J].云南地理环境研究,12(2):21-24
    149、周东岱,叶水盛,王世称.2002.基于GIS遥感区域构造的空间信息集成研究[J].地球科学(中国地质大学学报),27(1):55-58
    150、周正武,张建树,王维东.1996.大型斑岩铜矿的遥感信息探讨[J].国土 资源遥感,(2):11-20
    151、周正武,周杰斌,杨自安.1996.铁帽的遥感影像信息提取及其在遥感找矿中的意义[J].遥感与地质,(2):3-9.
    152、庄培仁,赵不亿.1986.遥感技术及地质应用研究[M].北京:地质出版社,116-169
    153、邹林,杨自安,朱谷昌,吴德文,相爱芹.2006.多光谱遥感蚀变信息提取新方法研究[J].地质与勘探,42(6):71-76
    154、朱亮璞.1994.遥感地质学[M].北京:地质出版社,147-155
    155、地质矿产部“三江”专题组.1984.怒江、澜沧江、金沙江区域矿产志(R)
    156、西南有色地质勘查局.2000.滇西澜沧老厂银多金属矿及外围矿体快速定位预测的综合示范研究(R):135-136
    157、西南有色地质勘探公司物探队.1995.云南省澜沧县老厂铅矿区物化探工作报告(R)
    158、云南省地矿局滇西锡矿带科研组.1985.滇西锡矿带成矿规律及找矿方向.(R)
    159、云南省地质矿产局.1986.区域地质调查报告(沧源幅,上班老幅)(矿产部分)(R):1-118
    160、云南省地质矿产局.1982.区域地质调查报告(孟连幅)(矿产部分)(R):1-70
    161、云南省质矿产局.1990.云南省区域地质志[R]:372-609
    162、云南省有色地质地球物理化学勘查院.2005.云南省澜沧银铅锌多金属矿床立体定位预测与增储研究物探勘查报告书(R):25~35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700