辽西钼多金属矿床遥感影像模型及远景区预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对矿产资源的需求,是推动社会发展的动力。如何利用当前最新的技术理论为找矿服务,降低投资风险,满足社会需求是一个热点和难点问题。而借助于目前多元地学信息技术,充分挖掘和分析基础地质、遥感数据等资料与矿床存在的相关性,提出找矿新方法—矿床遥感影像模型,不仅可以弥补传统找矿方法的不足,还可以最大限度的利用已有的各种地学资料,降低找矿成本,提高找矿效率。
     本文基于此,以多元信息找矿理论为指导,采用RS.GIS.GPS技术,对辽西钼多金属矿床的区域主要类型矿床进行了成矿模式分析,构建了辽西钼多金属矿床遥感影像初级模型,利用Landsat7的ETM+影像定量提取了与矿床有关的蚀变、构造信息,运用证据权重法分析并建立了定量遥感影像模型,且对预测远景区进行了评价。本文获得如下研究成果:
     (1)对辽西典型矿床杨家杖子矽卡岩型钼矿和兰家沟斑岩型钼矿进行成矿模式分析,得出两类矿床的描述性矿床模型,结合地表构造、蚀变等地质要素在遥感影像上的显示,构建了以遥感影像信息提取为主的找矿模型;
     (2)在基于矿床模式的遥感影像模型下,定量提取了影像存在的蚀变和构造线性体信息,且线性体高密区与区域主构造吻合;
     (3)在地层、构造、岩浆岩、蚀变等各要素的基础上,运用证据权重法,建立了辽西钼多金属矿床遥感影像模型,数学表达式为:
     RSMMo=0.1882S1+0.2492S2+0.8988S3+1.4978V1+1.0467T1+0.8187A1+0.7873M1 +1.4183M2;
     (4)对模型进行卡方独立性检验,得出各要素满足条件独立性,证明其在数学上是可行的。通过它划分三大矿集区:杨家杖子—刚屯矿集区、八家子矿集区和温杖子—养马甸子矿集区。三大矿集区正好位于三处权重高值区内,证明其在地质上也是有效的;
     (5)结合已有地质资料及矿集区的外围模型高值区已见矿,利用模型圈出了两处远景区,分别是以高家岭、红崖子为中心的成矿远景区,有待进一步的地质工作。
The demand for mineral resources, is a motivation for social development. It is a difficult problem that how to utilize the latest technology for serving the prospection, reducing investment risk and meeting the social needs. With the multiple geological information technology, propose new prospecting method-deposits remote sensing image model, based on fully tapping and analysising the relationship between the basic geology, remote sensing data and the existing of deposit. This model not only can compensate for the shortcomings of traditional prospecting methods, can also maximize the use of all existing data to reduce exploration costs and improve the efficiency of exploration.
     Based on the theory of multiple information prospection, it analysised the regional forming model of the Mo polymetallic deposit in western Liaoning, use of RS, GIS, GPS technology, constructed the initial remote sensing images model on Mo polymetallic deposit in western Liaoning, quantitative extracted the alteration and construction relative to deposits by the ETM+images from Landsat7, established quantitative remote sensing images model using evidence weight method and evaluated prospective areas. This article got some results as follow.
     (1) after analysising the forming model of typical Mo deposits hosting in Yangjiazhangzi skarn ore and Lan Jiagou porphyry in western Liaoning, arrived at descriptive deposit models of these two types of deposit, constructed exploration model based on the principle of information extraction from remote sensing images;
     (2) quantitative extracted the information of alteration and the structure linear of images based on the model of remote sensing images. The high density areas of linear anastomosed the main region structure;
     (3) based on the formation of stratum, structure, magmatic rocks, alteration, and other elements, using evidence weight method, established the remote sensing image model of Mo multi-metal deposit in western Liaoning. The mathematical expression is:
     RSMMo=0.1882S1+0.2492S2+0.8988S3+1.4978V1+1.0467T1+0.8187A1+0.7873M1 +1.4183M2;
     (4)by X2 independence test, it was arrived at that every elements satisfied condition independence, which proved that it's feasible in math field. Divided the mining site into three major areas:Yangjiazhangzi-Gangtun ore concentration area, Bajiazi ore concentration area and Wen Zhang Zi-Yangmadianzi ore concentration area. These ore concentration areas are located in three weight high-value areas exactly, which prove it is also valid on geologyl;
     (5) combining geological data and the mineral occurrences in the external model of high-value area, irised out two prospective areas. The one is center on Gaojialing, the other one is center on hongyazi, which need further geological work.
引文
[1]地质部情报研究所.遥感专辑—矿物岩石可见光—中红外光谱及其应用[M].北京:地质出版社,1980.
    [2]Abrams M J, Ashley R P, Brown L C, Goetz A F, Kahle A B. Mapping of hydrothermal alteration in the Cuprite mining district, Nevada, using aircraft scanning images for the spectral region 0.46 to 2.36mm[J]. Geology,1977(5):713-718.
    [3]Rowan L C, Goetz A F, Ashley R P. Discrimination of hydrothermally altered and unaltered rocks in visible and near infrared multispectral images[J]. Geophysics, 1977(42):522-535.
    [4]Hunt G R, Salisbury J W, Lenhoff G J. Visible and near infrared spectra of minerals and rocks:III Oxides and hydroxides [J]. Modern Geology,1978(2):195-205.
    [5]王晓鹏,谢志清,伍跃中.ETM图像数据中矿化蚀变信息的提取—以西昆仑塔什尔干地区为例[J].地质与资源,2002,11(2):119-122.
    [6]Crosta A P, Mooze J M cM. Geological Mapping using landsat Thematic Imagery in Almeria Province, Southeast Spain. International Journal of Remote sensing[J],1989, 10(3):505-514.
    [7]Ambrams M J. Landsat thematic mapper and thermatic mapper simulator data for a porphyry copper deposit [J]. Journal of the American soricty for photogrammetry and Remote sensing.1984.
    [8]Crosta A, Moore J M cM. Enhancement of landsat Thematic Mapper imagery for residual soil mapping in SW Minais Gerais State, Brazil:a prospecting case history in Greenstone belt terrain[A]. In:Proceedings of the 7th ERIM Thematic Conference:Remote sensing for exploration geology[C].1989:1173-1187.
    [9]Loughlin W P. Principal Component Analysis for alteration mapping[J]. Photogrammetric Engineering and Remote sensing,1991(57):1163-1169.
    [10]Rutz-Armenta J R, Prol-Ledesma R M. Techniques for enhancing the spectral response of hydrothermal alteration minerals in Thematic Mapper images of Central Mexico[J]. International Journal of Remote sensing,1998(19):1981-2000.
    [11]D.Rokos etc. Structural Analysis for Gold mineralization Using Remote Sensing and Geochemical Techniques in a GIS Environment:Island of Lesvos, Helles. Natural Resources Research,2000,9(4).
    [12]Tangestani M H, Moore F. Comparison of three principal component analysis techniques to porphyry copper alteration mapping:A case study, Meiduk area, Kerman, Iran[J]. Canadian Journal of Remote Sensing,2001(27):176-181.
    [13]Timothy M K, Talaat M R. Structural Controls on Neoprotero Zoic Mineralization in the South Eastern Desert, Egypt. An Integrated Field, Landsat TM, and SIR2C/X SAR Approach[J]. Journal of African Earth Sciences,2002,35(1):107-121.
    [14]Crowley, James K Hubbard, Bernard E, Mars, John C. Hydrothermal alteration on the cascade stratovolcanoes:A Remote Sensing survey[J]. Geological Society of America Abstracts with Programs,2003,35(6):552.
    [15]刘燕君.遥感图像中矿产信息的再现及其意义[J].科学通报,1983,(,16).
    [16]赵元洪,张福祥等.波段比值的主成分复合在热液蚀变信息提取中的应用[J].国土资源遥感,1991,(3).
    [17]何国金,胡德永等.从TM图像中直接提取金矿化信息[J].遥感技术与应用,1995,10(3):51-54.
    [18]阎积惠,康慧,陈怀亮.TM图像地质应用原理与方法[M].北京:冶金工业出版社,1995.
    [19]陈赶良,杨伯林.黔桂微细脉浸染型金矿蚀变信息提取机理[J].遥感学报,1996,11(2):88-94.
    [20]马建文.利用ETM数据快速提取含矿蚀变带方法研究[J].遥感学报,1997,1(3):208-213.
    [21]党福星.多光谱定量化分析技术在矿化蚀变信息提取中的应用研究[J].国土资源遥感,1998,(4):86-92.
    [22]张远飞,吴健生.基于遥感图像提取矿化蚀变信息[J].有色金属矿产与勘查,1999,8(6):604-606.
    [23]刘庆生,刘素红,燕守勋,蔺启忠.利用对应分析法从MAIS数据提取内蒙古哈达门沟含金矿化带[J].地质科学,2000,35(1):91-95.
    [24]刘素红,马建文,蔺启忠.通过Gram-Schmidt投影方法在高山区提取TM数据中含矿蚀变带信息[J].地质与勘探,2000,36(5):62-65.
    [25]吴德文.青海茫崖地区岩石光谱特征分析及应用[J].国土资源遥感,2001,4.
    [26]刘成,王丹丽,李笑梅.用混合像元线性模型提取中等植被覆盖区的粘土蚀变信息[J].地质找矿论丛,2003,18(2):131-137.
    [27]杨建民,张玉君等.ETM++(TM)蚀变遥感异常技术方法在东天山戈壁地区的应用[J].矿床地质,2003,(3):278-286.
    [28]马洛果,王恩德,于明旭.辽宁排山楼金矿围岩的岩石学特征[J].地质与资源,2004,13(2):85-95.
    [29]杨波,吴德文,赖建清,李京,朱谷昌,陈云浩.矿化信息提取定量遥感模型的建立-以鹰嘴山硅化蚀变为例[J].遥感学报,2005,9(6):717-724.
    [30]Peters W C.Exploration And Mining Geology,John Wiley & Sons, Inc.,Second Edition.1987:529-530.
    [31]范永香,阳正熙.成矿规律与成矿预测[M].江苏徐州:中国矿业大学出版社,2003.
    [32]陈毓川,朱裕生等.中国矿床成矿模式[M].北京:地质出版社,1993.
    [33]熊光楚.地球物理调查预测金属矿床[M].北京:地质出版社,1986.
    [34]王世称等.内生矿产成矿系列中比例尺预测方法研究[M].北京:地质出版社,1993.
    [35]池顺都.矿产勘查模型建立的原则[J].地球科学,1991,(3).
    [36]张贻侠.矿床模型导论[M].北京:地震出版社,1993.
    [37]阳正熙.矿产勘查中的现代理论和技术.成都:成都科技大学出版社,1993.
    [38]熊鹏飞.中国若干主要典型铜矿床勘查模式.武汉:中国地质大学出版社,1994.
    [39]熊光楚.寻找隐伏金属矿床的方法系统[J].矿产与勘查,996,(5).
    [40]王钟,邵孟林.隐伏有色金属矿床综合找矿模型[M].北京:地质出版社,1996.
    [41]邹光华,欧阳宗折,李惠.中国主要类型金矿床找矿模型.北京:地质出版社,1996.
    [42]郑超.杨家杖子钼矿田控矿因素分析[J].辽宁地质学报,1981,(2):1-18.
    [43]李培铮.杨家杖子地洼型斑岩钼矿田成矿构造特征及其与成矿作用关系分析[J].中南矿冶学院学报,1982,(4):144-148.
    [44]殷子明。杨家杖子及邻区大地构造特征、岩浆活动与钼矿化的关系[J].中南矿冶学院学报,1982,(4):114-120.
    [45]彭省临.杨家杖子钼矿区燕山期侵入岩岩体含矿性的初步研究[J].中南矿冶学院学报,1982,(4):129-134.
    [46]刘成龙.辽西红螺山一带花岗岩地球化学和副矿物的某些特征[J].辽宁地质学 报,1985,(2):57-58.
    [47]林文蔚.辽西杨家杖子钼矿田的交代系列[J].矿床地质,1987,6(1):23-32.
    [48]黄典豪,董群英,甘志贤.中国钼矿床[A],见宋叔和主编的中国矿床(上册)[M].北京:地质出版社,1989.
    [49]吴利仁,张秀棋.论辽宁锦西杨家杖子杂岩体的岩浆成因演化及成矿作用[J].岩石学报,1990,(3):1-11.
    [50]柴社立,蔡晶,邹祖荣.华北地台含钼和含金花岗岩系的地质地球化学及其成矿作用对比研究[J].长春地质学院学报,1994,24(3):284-302.
    [51]陈昌勇。华北地块北缘金、多金属成矿地质背景[J].辽宁地质,1998,(4):241-250.
    [52]石准立,刘凤山.北太行山—燕山区中生代金属矿床成矿系统[J].地学前缘,1999,6(2):297-304.
    [53]田豫才.辽西兰家沟钼矿区成矿构造、岩浆演化及成矿作用[J].矿产与地质,1999,13(3):135-140.
    [54]马永昌.辽西南部金属矿床分布规律及产出特点[J].矿产与地质,1999,13(5):268-273.
    [55]姚富强.辽西八家子斑岩成矿分带系列的应用及其找矿效果[J].矿产与地质,2004,18(3):252-255.
    [56]代军治,毛景文,杨富全,叶会寿,赵财胜,谢桂青,张长青.华北地台北缘燕辽钼(铜)成矿带矿床地质特征及动力学背景[J].矿床地质,2006,25(5):598-612.
    [57]吴福元,杨进辉,张艳斌,柳小明.辽西东南部中生代花岗岩时代[J].岩石学报,2006,22(2):315-325.
    [58]吕斯骅.遥感物理基础[M].商务印书馆,1981.
    [59]陈述彭,赵英时.遥感地学分析[M].测绘出版社,1990.
    [60]马蔼乃.遥感概论[M].科学出版社,1984.
    [61]胡受奚.交代蚀变矿物学[M].地质出版社,1980.
    [62]张守林.基于ETM数据矿化蚀变信息定量提取方法研究[博士论文][D].北京:中国地质大学,2006.
    [63]马永昌,王长刚,冯国清,李友权,宋雨春,贾广宁.杨家杖子矿区再找矿[J].矿床地质(增刊),2002,21:434-438.
    [64]戴昌达等.遥感图像应用处理与分析[M].北京:清华大学出版社,2002.
    [65]赵荣椿,赵忠明等.数字图像处理导论[M].西安:西北工业大学出版社,1995.
    [66]Carr J R, Matanawi K. Correspondence analysis for principal components transformation of multispectral and hyperspectral digital images[J]. PE&RS,1999,65(8):909-914.
    [67]Ashbindu Singh & Andrew Harrison, Standardized principal components,INI[J]. REMOTE SENSING,1985,6(6):883-896.
    [68]S. J.Frazer & A. A. Green. A software defoliant for Geological Analysis of Band Ratios, INI[J]. REMOTE SENSING,1987,8:525-532.
    [69]张满郎.金矿蚀变信息提取中的主成分分析[J].遥感技术与应用,1996,(3):1-5.
    [70]Crosta A. P.& McM Moore J. Enhancement of landsat Thematic Mapper imagery for residual soil mapping in SW Minais Gerais State, Brazil:a prospecting case history in Greenstone belt terrain[A]. In:Proceedings of the 7th ERIM Thematic Conference:Remote sensing for exploration geology[C]. Calgary,Oct.2-6,1989:1173-1187.
    [71]W. P. Loughlin, Principal Component Analsis for alteration Mapping, presented at the Eighth Thematic conference on Geologic Remote Sensing, Denver, Colorado,USA, April 29-May 2,1991:293-306.
    [72]赵元洪,陈岚,张福祥,田良虎,黄智才.遥遥图像专题信息提取新方法—定向变换和逻辑取与法研究[J].环境遥感,1994,9(4):296-302.
    [73]CSES. Atmosphere REMoval Program(ATREM)User's Guide,Version3.1,Center for the study of Earth from space,Boulder,Colorado,1999,31P.
    [74]Kruse F A, Lefkoff A B and Dietz J B. Expert system-based mineral mapping in Northern Death Vally, Caliornia/Nevada, Using the Airborne Visible/Infrared Imaging Spectralmeter (AVIRIS)[J]. Remote Sening of Environment,1993,44:309-336.
    [75]王润生,杨文立.遥感线性体场的数量化分析[J].国土资源遥感,1992,(3):49-55.
    [76]庄培仁,赵不亿.遥感技术及地质应用研究[M].北京:地质出版社.1986.
    [77]Gornitz V. Detection of hydrothermal alteration with 24—channel multispectral scanner data and quantitative analysis of linear features, Mouroe geothermal area, Utah[J].Proceeding of the 13th international sysposium on Remote sensing of Environment,1979,1.
    [78]R Nevatia, K R Babu. Linear feature extraction and description [J]. Computer Graphics and Image Processing,1980,13:257-269.
    [79]J B Burns, A R Hanson, E M Riseman. Extracting straight lines[J]. IEEE Trans Pattern Analysis and Machine Intelligence,1986,18(4):425-455.
    [80]J Princen et al. A hierarchical approach to line extraction based on the Hough transform, computer Vision[J]. Graphics and Image Processing,1990,52:55-77.
    [81]M Boldt et al. Token-based extraction of straight lines[J]. IEEE Trans System, Man and Cybemetics,1989,19:1581-1594.
    [82]高景昌,王光杰。遥感图像线性体构造信息微机机助提取[J].环境遥感,1994,9(1):62-67.
    [83]王润生.图像理解[M].长沙:国防科技大学出版社,1995.
    [84]赵书河,贾红燕.应用遥感影像纹理特征提取线性体的马尔柯夫随机场模型[J].遥感技术与应用,1999,14(4):49-52.
    [85]席学强,黄先芝,王润生.一种基于多特征融合的直线提取算法[J].计算机工程与应用,2002,(4):51-54.
    [86]卜佳俊,王亮,陈纯.一种可参数化的快速直线提取算法[J].浙江大学学报(工学版),2003,37(4):410-414.
    [87]赵鹏大,池顺都.初论地质异常[J].地球科学,1991,16(3):241-268.
    [88]郭德方,谢青云,李小孟.线性体场分析[J].国土资源遥感,1993,(4):8-16.
    [89]Agterberg F P. Computer programs for mineral exploration[J].Science,1989, 245:76—81.
    [90]Bonham—Carter G F. Geographic information systems for Geo—scientists:Modelling with GIS[M]. Oxford:pergamon,1994.
    [91]S.LEE, J.CHOI. Landslide susceptibility mapping using GIS and the weight—of—evidence model [J]. International Journal of Geographical Information Science,18(8),2004,12:789—814.
    [92].Qiuming Cheng, Agterberg F P. Fuzzy weights of evidence method and its application in mineral potential mapping[J]. Natural Resources Research,1999,8(1):27-35.
    [93]Emmanuel John M. Carranza.Weights of evidence modeling of mineral potential: A case study using small number of prospects,Abra,Philippines[J].Natural Resources Research,2004,13(3):173—187.
    [94]Christien Thiart, Maarten de Wit. Linking spatial statistics to gis:Exploring potential gold and tin models of Africa[J]. South African Journal of Geology,2000,103:215-230.
    [95]陈建平,王功文,侯昌波,唐菊兴.基于GIS技术的西南三江北段矿产资源定量预测 与评价[J].矿床地质,2005,24(1):15—24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700