顺铂和阿霉素诱导U2骨肉瘤细胞周期阻滞及凋亡通路的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨化疗药顺铂和阿霉素损伤人U2骨肉瘤细胞(U2-OS)后p53、bcl-2、c-myc基因表达情况的变化及其诱导细胞周期阻滞及凋亡的情况,为骨肉瘤化疗耐药的解决提供理论依据。
     方法:分别使用0.3、3.0、30μg/ml顺铂、0.06、0.6、6.0μg/ml阿霉素作用于U2-OS细胞2h后继续培养0、6、12、24、48h,采用噻唑兰比色法(MTT法)检测U2-OS细胞生长抑制率。流式细胞术、逆转录-聚合酶链反应(RT-PCR)、蛋白免疫印迹(Western Blot)检测顺铂和阿霉素损伤后继续培养6、24h后细胞细胞周期变化、凋亡率及p53、bcl-2、c-myc基因表达情况。
     结果:不同浓度顺铂、阿霉素损伤U2-OS细胞后继续培养6h,流式细胞术检测各组G1期细胞分别为67.97%、79.64%、78.09%、80.21%、78.25℅、79.13℅、79.92℅,而p53基因mRNA和蛋白表达和空白对照组比较均增加,bcl-2、c-myc的表达和空白对照组比较无变化,细胞生长抑制率无明显统计学差异;继续培养24h,②、③、④、⑤、⑥、⑦组细胞生长抑制率分别为31.58%、44.12%、59.46%、23.40%、40.31%、57.56%,②、③、④组之间,⑤、⑥、⑦组之间有明显组间差异;流式细胞术检测④、⑦组细胞凋亡率分别为10.04%、14.55%,细胞周期以G2期细胞为主。②、③、④组p53、bcl-2和c-myc mRNA及蛋白表达有组间差异,⑤、⑥、⑦组p53、bcl-2和c-myc mRNA及蛋白表达有组间差异。继续培养48h,各组细胞生长抑制率增高。
     结论:不同浓度的顺铂和阿霉素短时间(2h)损伤U2-OS细胞仍有细胞增殖抑制作用,这种作用与细胞DNA损伤后p53、bcl-2、c-myc基因表达变化有关;U2-OS细胞DNA损伤后6h即表现出明显的p53基因的表达增强并诱导G1期细胞周期阻滞;继续培养24h,p53、bcl-2、c-myc基因表达变化与药物浓度有关联且诱导G2细胞周期阻滞及凋亡发生。
Objective: To investigate the expression of p53﹑bcl-2 and c-myc and its effects on cell cycle arrest and apoptosis induced by cisplatin and adriamycin, the chemotherapeutics inU2-OS cells.
     Methods:After the treatment of 0.3μg/ml, 3.0μg/ml, 30.0μg/ml cisplatin and 0.06μg/ml, 0.6μg/ml, 6.0μg/ml adriamycin for 2h, we keep on cultivate U2-OS cells with fresh medium in 0, 6, 12, 24, 48h. Then MTT were used to evaluate cell proliferation in vitro. The expression of wild-type p53, bcl-2,c-myc were detected by RT-PCR and Western blot, Flow Cytometry (FCM) was employed for examining the cell cycle after cultivate for 6h, 24h.
     Results: After damage by different dencity of cisplatin and adriamycin, U2-OS cell were cultivated for 6h, FCM show that cell in G1 phase were incresed obviously, the ratio were 67.97%, 79.64%, 78.09%, 80.21%, 78.25℅, 79.13℅ and 79.92℅.The expression of p53 were up-regulate, bcl-2 and c-myc expression were unchangeable, the inhibite of cell grow were not manifest in statistics. After cultivate for 24h, the inhibitory rate of cell growth of group②③④⑤⑥⑦were 31.58%, 44.12%, 59.46%, 23.40%, 40.31% and 57.56%. Group②③④were different in statistics, Group⑤⑥⑦were different in statistics by contrast with each other. The ratio of apoptosis by FCM were 10.04%, 14.55%, cell cycle arrest in G2 phase. The expression of p53, bcl-2, c-myc was different obviously in statistics of group②③④, the expression of p53, bcl-2, c-myc was different obviously in statistics of group⑤⑥⑦. After cultivate for 48h, the inhibitory rate of cell growth was increased..
     Conclusions:The U2-OS cells were damaged by different dencity of cisplatin and adriamycin in short time(2h), the inhibition of cell grow was also manifest. The effection were related with the diversify of the expression of p53, bcl-2, c-myc after DNA damage. The diversify of p53 induced G1 cell cycle arrest after 6h, and after 24h, the diversify of p53, bcl-2, c-myc induced G2 cell cycle arrest and apoptosis, the change was related with drug concentration.
引文
[1] Dionysios J, Papachristou,Athanasios G,et al. Osteosarcoma and chondrosarcoma: New signaling pathways as targets for novel therapeutic interventions. [J]Int J Biochem Cell Biol. 2007, 39(5):857-62.
    [2] Hayden JB,Hoang BH.Osteosarcoma: Basic Science and Clinical Implications. [J]Orthop Clin North Am. 2006, 37(1):1-7.
    [3] Carrle D,Bielack SS. Current strategies of chemotherapy in osteosarcoma. [J]Int Orthop. 2006, 30(6):445-51.
    [4] Kalifa C, Brugières L, Le Deley MC. Neoadjuvant treatment in osteosarcomas. [J]Bull Cancer.2006, 93(11):1115-20.
    [5] Wong RP,Tsang WP,Chau PY,et al. p53-R273H gains new function in induction of drug resistance through down-regulation of procaspase-3. [J]Mol Cancer Ther. 2007, 6(3):1054-61.
    [6] Kaufmann SH, Desnoyers S, Ottaviano Y,et al. Specific proteolytic cleavage of poly (ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. [J]Cancer Res. 1993, 53(17):3976-85.
    [7] Merk O,Speit G. Detection of crosslinks with the comet assay in relationship to genotoxicity and cytotoxicity. [J]Environ Mol Mutagen.1999,33(2):167-72.
    [8] Tarasov V, Jung P, Verdoodt B, et al. Differential Regulation of MicroRNAs by P53 Revealed by Massively Parallel Sequencing: miR-34a is a P53 Target that Induced Apoptosis and G1-arrest. [J]Cell cycle, 2007, 6(13):1586-93.
    [9] L Gatti,R Supino,P Perego,et al. Apoptosis and growth arrest induced by platinum compounds in U2-OS cells reflect a specific DNA damage recognition associated with a different p53-mediated response. [J]Cell Death Differ.2002,9(12):1352-9.
    [10] Napamatsu K, Tsuchiya F, Oquma K, et al.The Diffect of Small Interfering RNA (siRNA) against the Bcl-2 Gene on Apoptosis and Chemosensitivity in a Caninemammary Gland Tumor Cell Line. [J]Res Wet Sci, 2008, 84(1): 49-55.
    [11] Mo H, Vita M, Crespin M, et al.Myc Overexpression Enhances Apoptosis Induced by Small Molecules. [J]Cell Cycle, 2006, 5(19):2191-94.
    [12] Roth MJ, Tanese N, Goff SP. Purification and characterization of murine retroviral reverse transciptase expressed in Escherichia coli. [J]J Biol Chem, 1985;5(260): 9326-35.
    [13] Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989;1(8): 64-97.
    [14] Tang Y, Li GD. Chronic exposure to high glucose impairs bradykinin-stimulated nitric oxide production by interfering woth the phospholipase-C-implicated signaling pathway in endothelial cells: evidence for the involvement of protein kinase C. [J]Diabetologia,2004;7(47): 2093-104.
    [15] Li J, Luo R, Kowluru A, et al. Novel regulation by Racl of glucose and forskolin-induced insulin secretin in INS-1 beta-cell. [J]Am J Physiol Endocrinol Metab, 2004; 3(286): E818-27.
    [16] Wynne P, Newton C, Ledermann JA, et al. Enhanced Repair of DNA Interstrand Crosslinking in Ovarian Cancer Cells from Patients following Treatment with Platinum-based Chemotherapy. [J]Br J Cancer, 2007, 97(7):927-33.
    [17] Tewey KM, Rowe TC, Yang L, Halligan BD and Liu LF: Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. [J]Science 1984; 226(4673): 466-8.
    [18] Wendt J, Radetzki S, vov Haefen C, et al.Induction of P21CIP/WAF-1 and G2 Arrest by Ionizing Irradiaton Impedes Caspase-3 Mediated Apoptosis in Human Carcinoma Cells. [J]Oncogene, 2006, 25(7): 972-80.
    [19] Sharma V, Hupp CD, Tepe JJ. Enhancement of Chemotherapeutic Efficacy by Small Molecule Inhibition of NF-kappaB and Chechpiunt Kinases.[J]Curr Med Chem, 2007, 14(10): 1061-74.
    [20] Papai Z,Feja LN,Hanna EN et al.P53 Overexpression as an Indicator of Overall Survival and Response to Treatment in Osteosarcomas. [J]Pathol Oncol Res.1997; 3(1):15-19
    [21] Song SU, Boyce FM.Cobination treatment for osteosarcoma with baculoviral vector mediat- ed gene therapy (p53) and chemotherapy (adriamycin). [J]J Exp Mol Med.2001, 33: 46-53
    [22] Tsuchiya H, Mori Y, Ueda Y, et al. Sensitization and caffeine potentiation of cispliatin cytotoxity resulting from introduction of wild-type p53 gene in human osteosacoma. [J] J Aniticancer Res, 2000, 20(1A):235-42.
    [23] Brajuskovic G, Orolicki SV, Cerovic S, et al. Bcl-2 and Bax protein interaction in B-lympho- cytes of peripheral blood in patients with chronic lymphocytic leukemia. [J] Vojnosanit Preql. 2005; 62(5): 357-63.
    [24] Mo H, Vita M, Crespin M, et al.Myc Overexpression Enhances Apoptosis Induced by Small Molecules. [J] Cell Cycle, 2006, 5(19): 2191-94.
    [25] Isfort RJ, Cody DB, Lovell G, et al. Analysis of oncogene,tumor repressor genes, autocrine growth - factor production and differentiation state of human osteosarcoma cell lines. [J] Mol Carcinog. 1995; 14(3):170-78.
    [26] Gamberi G,Benassi MS,Bohling T,et al. C-myc and c-fos in human osteosarcoma: prognostic value of mRNA and protein expression. [J] Oncology.1998, 55(6):556-63.
    [27] Yang DS,Xie XK,Ye ZM,et al.Adenovirus mediated antisense c-myc gene on the chemothe- rapy sensitivity of osteosarcoma cells to cisplatin. [J] Zhonghua Wai Ke Za Zhi. 2005, 43 (12): 799-802.
    [28] Mangner KJ, Orr MS, Cleveland JL, et al. Suppression of c-myc expression and c-myc function in response to sustained DNA damage in MCF-7 breast tumor cells. [J] Biochem Pharmacol. 2001, 62(4): 593-602.
    [29] Ushmorov A, Debatin KM, Bwltinger C. Growth Inhibition of Murine Neuroblastoma Cellsby C-myc with Cell Cycle Arrest in G2/M. [J] Cancer Biol Ther, 2005, 4(2): 181-6.
    [30] Mukherjee S, Conrad SE. C-Myc Suppresses P21WAF1/CIP1 Expression during Estrogen Signaling and Antiestrogen Resistance in Human Breast Cancer Cells. [J] J Biol Chem, 2005, 280(18): 17617-25.
    1 Hayden JB, Hoang BH. Osteosarcoma: basic science and clinical implications. Orthop Clin North Am, 2006; 37(1):1-7
    2 Carrle D, Bielack SS. Current strategies of chemotherapy in osteosarcoma. Int Orthop, 2006; 30(6):445-451
    3 Wong RP, Tsang WP, Chau PY, et al. p53-R273H gains new function in induction of drug resistance through down-regμlation of procaspase-3. Mol Cancer Ther, 2007; 6(3):1054-1061
    4 Tarasov V, Jung P, Verdoodt B, et al. Differential regμlation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle, 2007; 6(13):1586-1593
    5 Papai Z, Feja CN, Hanna EN, et al. P53 overexpression as an indicator of overall survival and response to treatment in osteosarcomas. Pathol Oncol Res, 1997; 3(1):15-19
    6 Zuffa E, Mancini M, Brusa G, et al. P53 oncosuppressor influences selection of genomic imbalances in response to ionizing radiations in human osteosarcoma cell line SAOS-2. Int J Radiat Biol, 2008; 84(7):591-601
    7 Tsuchiya H, Mori Y, Ueda Y, et al. Sensitization and caffeine potentiation of cisplatin cytotoxicity resμlting from introduction of wild-type p53 gene in human osteosarcoma. Anticancer Res, 2000; 20(1A):235-242
    8 Buck M, Chojkier M. C/EBPbeta associates with caspase 8 complex proteins and modμlates apoptosis in hepatic stellate cells. J Clin Gastroenterol, 2007; 41(Suppl 3):S295-S299
    9 Kinoshita H, Yoshikawa H, Shiiki K, et al. Cisplatin (CDDP) sensitizes human osteosarcoma cell to Fas/CD95-mediated apoptosis by down-regμlating FLIP-L expression. Int J Cancer, 2000; 88(6):986-991
    10 Duan X, Zhou Z, Jia SF, et al. Interleukin-12 enhances the sensitivity of human osteosarcoma cells to 4-hydroperoxycyclophosphamide by a mechanism involving the Fas/Fas-ligand pathway. Clin Cancer Res, 2004; 10(2):777-783
    11 Reinhardt HC, Aslanian AS, Lees JA, et al. p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell, 2007; 11(2):175-189
    12 Al-Mohanna MA, Manogaran PS, Al-Mukhalafi Z, et al. The tumor suppressor p16(INK4a) gene is a regμlator of apoptosis induced byμltraviolet light and cisplatin. Oncogene, 2004; 23(1):201-212
    13 Benassi MS, Molendini L, Gamberi G, et al. Alteration of pRb/p16/cdk4 regμlation in human osteosarcoma. Int J Cancer, 1999; 84(5):489-493
    14 Naruse T, Nishida Y, Ishiguro N. Synergistic effects of meloxicam and conventional cytotoxic drugs in human MG-63 osteosarcoma cells. Biomed Pharmacother, 2007; 61(6):338-346
    15 Shangary S, Johnson DE. Recent advances in the development of anticancer agents targeting cell death inhibitors in the Bcl-2 protein family. Leukemia, 2003; 17(8):1470-1481
    16 Ghoneum M, Matsuura M, Braga M, et al. S. cerevisiae induces apoptosis in human metastatic breast cancer cells by altering intracellμlar Ca2+ and the ratio of Bax and Bcl-2. Int J Oncol, 2008; 33(3):533-539
    17 He A, Wang JA, Gui C, et al. Changes of mitochondrial pathway in hypoxia/reoxygenation induced cardiomyocytes apoptosis. Folia Histochem Cytobiol, 2007; 45(4):397-400
    18 Isfort RJ, Cody DB, Lovell G, et al. Analysis of oncogenes, tumor suppressor genes, autocrine growth-factor production, and differentiation state of human osteosarcoma cell lines. Mol Carcinog, 1995; 14(3):170-178
    19 Scionti I, Michelacci F, Pasello M, et al. Clinical impact of the methotrexate resistance-associated genes C-MYC and dihydrofolate reductase (DHFR) in high-grade osteosarcoma. Ann Oncol, 2008; 19(8):1500-1508
    20 Yang DS, Xie XK, Ye ZM, et al. Adenovirus mediated antisense c-myc gene on the chemotherapy sensitivity of osteosarcoma cells to cisplatin. Zhonghua Wai Ke Za Zhi, 2005; 43(12):799-802
    21 Xie XK, Yang DS, Ye ZM, et al. Recombinant antisense C-myc adenovirus increase in vitro sensitivity of osteosarcoma MG-63 cells to cisplatin. Cancer Invest, 2006; 24(1):1-8
    22 Cao X, Bennett RL, May WS. c-Myc and caspase-2 are involved in activating Bax during cytotoxic drug-induced apoptosis. J Biol Chem, 2008; 283(21):14490-14496
    23 Furuya K, Ozaki T, Hanamoto T, et al. Stabilization of p73 by nuclear IkappaB kinase-alpha mediates cisplatin-induced apoptosis. J Biol Chem, 2007; 282(25):18365-18378
    24 Campbell KJ, Witty JM, Rocha S, et al. Cisplatin mimics ARF tumor suppressor regμlation of RelA (p65) nuclear factor-kappaB transactivation. Cancer Res, 2006; 66(2):929-935
    25 Hafeez BB, Ahmed S, Wang N, et al. Green tea polyphenols-induced apoptosis in human osteosarcoma SAOS-2 cells involves a caspase-dependent mechanism with downregμlation of nuclear factor-kappaB. Toxicol Appl Pharmacol, 2006; 216(1):11-19
    26 Kim HS, Li H, Cevher M, et al. DNA damage-induced BARD1 phosphorylation is critical for the inhibition of messenger RNA processing by BRCA1/BARD1 complex. Cancer Res, 2006; 66(9):4561-4565
    27 Somasundaram K. Breast cancer gene 1 (BRCA1): role in cell cycle regμlation and DNA repair--perhaps through transcription. J Cell Biochem, 2003; 88(6):1084-1091

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700