动员外周血单个核细胞移植改善小鼠肢体缺血的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用G-CSF动员的外周血单个核细胞(PBMNCs)自体移植能够改进下肢闭塞性动脉硬化和糖尿病足的肢体缺血状况。然而动员的外周血单个核细胞治疗肢体缺血的机制却不清楚。我们对后肢缺血模型裸鼠移植CD34~+的动员的外周血单个核细胞和CD34去除的动员的外周血单个核细胞,然后进行疗效的比较,以便进一步探讨PBMNCs的治疗机制。CM-DiI荧光标记后的人的动员的外周血单个核细胞[1×10~6]局部肌肉注射移植到单侧后肢缺血的裸鼠体内。在细胞移植后的3天、7天、14天、21天、28天进行了血流灌注、毛细血管密度、及缺血后肢坏死情况的动态观察。与PBS对照组比较,CD34~+和CD34去除的PBMNCs组的血流恢复程度,毛细血管密度以及缺血后肢的恢复情况都有明显改善:当进行CD34~+和CD34去除的PBMNCs两组比较时,结果发现CD34去除的PBMNCs组的治疗效应减弱。荧光示踪发现移植细胞聚集在小动脉周围或者散在的分布于毛细血管网,在CD34~+的PBMNCs移植组可以观察到移植细胞整合到缺血部位的新生毛细血管内,但在CD34去除的PBMNCs移植组没有观察到这样的现象。用Western blotting和ELISA方法检查表明缺血肌肉有明显升高的VEGF表达,同时发现红色荧光标记的移植细胞与表达VEGF的绿色免疫荧光重叠现象,提示VEGF是由移植的PBMNCs局部分泌的。上述研究结果表明移植G-CSF动员的PBMNCs不但可以通过整合到血管壁的机制促进血管生长,还可以通过提供细胞因子特别是VEGF的机制促进血管生长。CD34去除削弱了动员的PBMNCs移植治疗肢体缺血的血管新生效应。
Objective Autolougous transplantation of granulocyte colony-stimulating factor (G-CSF)-mobilized human peripheral blood mononuclear cells (PBMNCs) improves limb ischemia in patients with arteriosclerosis obliterans of lower extremities and with diabetic foot. However, the mechanism of action of PBMNCs remains elusive. The present study was designed to investigate the role of CD34~+ stem/progeitor cells in neovascularization by comparing the therapeutic effects of G-CSF-mobilized PBMNCs and CD34-depleted G-CSF-mobilized PBMNCs transplantation in ischemic hindlimbs of nude mice. We also tried to reveal the mechanisms of action through which the transplanted cells effectively acted in vivo in improving critical limb ischemia Methods. Peripheral blood leukapheresis products were obtained from healthy volunteers who received subcutaneous administration of G-CSF. Mononuclear cells were separately isolated from the human products of leukapheresis by Ficoll-Paque density gradient centrifugation. The G-CSF-mobilized PBMNCs were divided into two parts. One part was the G-CSF-mobilized PBMNCs and the other part was CD34-depleted
引文
1. Schaper W, Ito WD. Molecular mechanisms of coronary collateral vessel growth. Circ Res 1996; 79 (5):911-919.
    2. Arras M, Ito WD. Monocyte activation in angiogenesis and collateral growth in the measured rabbit hindlimb. J Clin Invest 1998; 101(1):40-50.
    3. Ito WD, Arras M, Winkler B, et al. Angiogenesis but not collateral growth is associated with ischemia femoral artery occlusion. Am J Physiol, 1997:273:H1255-H1265.
    4. Kem MJ. Angiogenesis, arteriogenesis, and physiological perfusion: Review of natural history and concepts. J Interv Cardiol, 1999:12(4):313-318.
    5. Risau W. Mechanisms of angiogenesis. Nature, 1997: 386:671-674.
    6. Buschmann I, Schaper W. The pathophysiology of the collateral circulation (arteriogenesis). J Pathol. 2000; 190:338-42.
    7. Risau W, Flamme I. Vasculogenesis[J]. Annu Rev Cell Dev Bid, 1995; 11:73-91.
    8. Folkman, J.. Tumor angiogenesis: therapeutic implications. N. Engl. J, Med, 1971:285:1182-1186.
    9. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997; 275: 964-967.
    10. Risau, W., et al. Vasculogenesis and angiogenesis in embryonic stem cell-derived embryoid bodies. Development. 1988:102:471-478.
    11. Couffinhal T, Silver M, Kearney M, et al. Impaired collateral vessel development associated with reduced expression of vascular endothelial growth factor in ApoE-/- mice. Circulation. 1999; 99:3188-3198.
    12. Rivard A, Fabre JE, Silver M, et al. Age-dependent impairment of angiogenesis. Circulation. 1999; 99:111-120.
    13. Rivard A, Silver M, Chen D, Kearney M, Magner M, Annex B, Peters K, Isner JM. Rescue of diabetes-related impairment of angiogenesis byintramuscular gene therapy with adeno-VEGF. Am J Pathol. 1999; 154:355-363.
    
    14. Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res, 2001: 89:E1-7.
    
    15. Minamino T, Toko H, Tateno K. et al. Peripheral-blood or bone-marrow mononuclear cells for therapeutic angiogenesis ? Lancet 2002; 360: 2083-2084.
    
    16. Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 2002; 360: 427-435.
    
    17. Huang PP, Li SZ, Han MZ, et al. Autologous transplantation of peripheral blood stem cells as treatment for arteriosclerosis obliterans of lower extremities. Thromb Haemost2004; 91:606-609.
    
    18. Iba O, Matsubara H, Nozawa Y, et al. Angiogenesis by implantation of peripheral blood mononuclear cells and platelets into ischemic limb. Circulation 2002; 106: 2019-2025.
    
    19. Tibor Z, Borja F, Sawa K, et al. Bone marrow-derived cells do not Incorporate into the adult growing vasculature. Circ Res 2004; 94: 230-238.
    
    20. Heil M, Ziegelhoeffer T, Pipp F, et al. Blood monocyte concentration is critical for enhancement of collateral artery growth. Am J Physiol Heart Circ Physiol 2002; 283: H2411-H2419.
    
    21. Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 1999; 18: 3964-3972.
    
    22. Clauss M, Gerlach M, Gerlach H, et al. Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J Exp Med 1990;
    
    172: 1535-1545.
    
    23. Barleon B, Sozzani S, Zhou D, et al. Migration of human monocytes in response to vascular endothelial growth factor is mediated via the VEGF receptor flt-1 receptor. Blood 1996; 97: 3336-3343.
    
    24. Couffinhal T, Silver M, Zheng LP, Kearney M, Witzenbichler B, Isner JM. Mouse model of angiogenesis. Am J Pathol. 1998;152:1667-1679.
    
    25. Schatteman GC, Hanlon HD, Jiao C, et al. Blood-derived angioblasts accelerate blood flow restoration in diabetic mice. J Clin Invest 2000; 106: 571-8.
    
    26. Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 2001; 103:634-637.
    
    27. Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001; 7: 430-436.
    
    28. Shintani S, Murohara T, Ikeda H, et al. Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation 2001; 103: 897-903.
    
    29. Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 1999; 85: 221-228.
    
    30. Murohara T, Ikeda H, Duan J, et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization, J Clin Invest 2000; 105: 1527-36.
    
    31. Wagers AJ, Sherwood Rl, Christensen JL, et al. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 2002; 297: 2256-2259.
    
    
    32. Noishiki Y, Tomizawa Y, Yamane Y, et al. Autocrine angiogenic vascularprosthesis with bone marrow transplantation. Nature Med 1996; 2: 90-3.
    
    33. Nieda M, Nicol A, Denning-Kendall P, et a. Endothelial cell precursors are normal components of human umbilical cord blood. Br J Haematol 1997. 98:775-777.
    
    34. Huang P, Li S, Han M, et al. Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care 2005; 28: 2155-60.
    
    35. Caprioli A, Jaffredo T, Gautier R, et al. Blood-borne seeding by hematopoietic and endothelial precursors from the allantois[J]. Proc Natl Acad Sci USA, 1998, 95:1641-1646.
    
    36. Lin Y, Weisdorf DJ, Solovey A, et al. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest. 2000;105:71-7.
    
    37. Nissen NN, Polverini PJ, Koch AE, et al. Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing[J]. Am J Pathol, 1998,152:1445-1452
    
    38. Crosby JR, Kaminski WE, Schatteman G et al. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res 2000; 87:728-730.
    
    39. Murayama T, Tepper OM, Silver M et al. Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Exp Hematol 2002; 30:967.
    
    40. Beck H, Voswinckel R, Wagner S, Ziegelhoeffer T, Heil M, Helisch A, Schaper W, Acker T, Hatzopoulos A, Plate K. Participation of bone marrow-derived cells in long term repair processes following experimental stroke. J Cereb Blood Flow Metab. 2003; 23:709-717.
    
    
    41. Schmeisser A, Garlichs CD, Zhang H, Eskafi S, Graffy C, Ludwig J, Strasser RH, Daniel WG. Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigelunder angiogenic conditions. Cardiovasc Res. 2001; 49:671-680.
    
    42. Rehman J, Li J, Orschell CM, March KL. Peripheral blood "endothelial progenitor cells" are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 2003; 107:1164-1169.
    
    43. Fernandez Pujol B, Lucibello FC, Gehling UM, Lindemann K, Weidner N, Zuzarte ML, Adamkiewicz J, Elsasser HP, Muller R, Havemann K. Endothelial-like cells derived from human CD14 positive monocytes. Differentiation. 2000; 65:287-300.
    
    44. Chatteman GC, Hanlon HD, Jiao C, Dodds SG, Christy BA. Blood-derived angiobiasts accelerate blood-flow restoration in diabetic mice. J Clin Invest. 2000; 106:571-578.
    
    45. Schaper J, Koenig R, Franz D, Schaper W. The endothelial surface of growing coronary collateral arteries: intimal margination and diapedesisof monocytes. A combined SEM and TEM study. Virchows Arch A Pathol Anat Histol. 1976; 370:193-205.
    
    46. Deindl E, Ziegelhoffer T, Kanse SM, Fernandez B, Neubauer E, Carmeliet P, Preissner K, Schaper W. Receptor-independent role of the urokinase-type plasminogen activator during arteriogenesis. FASEB J. 2003; 17:1174-1176.
    
    47. Scholz D, Ito W, Fleming I, Deindl E, Sauer A, Wiesnet M, Busse R, Schaper J, Schaper W. Ultrastructure and molecular histology of rabbit hind-limb collateral artery growth (arteriogenesis). Virchows Arch. 2000; 436:257-270.
    
    48. Ito WD, Arras M, Winkler B, Scholz D, Schaper J, Schaper W. Monocyte chemotactic protein-1 increases collateral and peripheral conductance after femoral artery occlusion. Circ Res. 1997; 80:829-837
    
    49. Wolf C, Cai WJ, Vosschulte R, et al. Vascular remodeling and altered protein expression during growth of coronary collateral arteries. J Mol Cell Cardiol. 1998; 30:2291-305.
    
    50. Scholz D, Ziegelhoffer T, Helisch A, Wagner S, Friedrich C, Podzuweit T,
    
    Schaper W. Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion in mice. J Mol Cell Cardiol. 2002; 34: 775-787.
    
    
    51. Helisch A, Schaper W. Arteriogenesis: the development and growth of collateral arteries. Microcirculation. 2003; 10:83-97.
    
    52. Malik N, Greenfield BW, Wahl AF, Kiener PA. Activation of human monocytes through CD40 induces matrix metalloproteinases. J Immunol. 1996; 156:3952-3960.
    
    53. Pipp F, Heil M, Issbrucker K, Ziegelhoeffer T, Martin S, van den Heuvel J, Weich H, Fernandez B, Carmeliet P, Schaper W, Clauss M. The VEGFR-1 selective VEGF-homologue PIGF is arteriogenic: evidence for a monocyte-mediated mechanism. Circ Res. 2003; 92:378-385.
    
    54. Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, Epstein SE. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res. 2004; 94:678-685.
    
    55. Hershey JC, Baskin EP, Glass JD, et al. Revascularization in the rabbit hindlimb: dissociation between capillary sprouting and arteriogenesis. Cardiovasc Res 2000; 49: 618-25.
    
    56. Semenza GL Hypoxia-inducible factor 1: master regulator of O_2 homeostasis. Curr Opin Genet Dev. 1998; 8:588-94.
    
    57. Semenza GL. Regulation of hypoxia induced angiogenesis: A chaperone escorts VEGF to the dance. J. Clin. Invest. 2001: 108:39-40
    
    58. Namiki, A., et al. 1995. Hypoxia induces vascular endothelial growth factor in cultured human endothelial cells. J. Biol. Chem. 270:31189-31195.
    
    59. Shen, B-Q, et al. Homologous upregulation of KDR/Flk-1 receptor expression by vascular endothelial growth factor in vitro. J. Biol. Chem. 1998:273:29979-29985.
    
    
    60. Sunderkotter, C, Steinbrink, K., Goebeler, M., Bhardwaj, R. & Sorg, C. Macrophages and angiogenesis. J Leukoc Biol 1994: 55, 410-422.
    61. Polverini PJ. Role of the macrophage in angiogenesis-dependent diseases. EXS 1997; 79:11-28.
    
    62. Seljelid R, Jozefowski S, Sveinbjornsson B. Tumor stroma. Anticancer Res 1999; 19:4809-22.
    
    63. Coussens, L.M. et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev1999:13, 1382-1397.
    
    64. Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, et al. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 1999; 5: 1135-42.
    
    65. Carmeliet P, Collen D. Development and disease in proteinase-deficient mice: role of the plasminogen, matrix metalloproteinase and coagulation system. Thromb Res 1998; 91: 255-85.
    
    66. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell. 2002; 109:625-637.
    
    67. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M,Isner JM, Asahara T. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999;5:434-8.
    
    68. Gill M, Dias S, Hattori K, et al. Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circ Res. 2001; 88:167-74.
    
    69. Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A, Sasaki K, Shimada T, Oike Y, Imaizumi T. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation. 2001; 103: 2776-2779.
    
    70. Kalka C, Masuda H, Takahashi T, Gordon R, Tepper O, Gravereaux E,
    
    
    
    Pieczek A, Iwaguro H, Hayashi SI, Isner JM, Asahara T. Vascular endothelial growth factor165 gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res. 2000; 86:1198-1202.
    
    71. Kalka C, Tehrani H, Laudenberg B, Vale PR, Isner JM, Asahara T, Symes JF. VEGF gene transfer mobilizes endothelial progenitor cells in patients with inoperable coronary disease. Ann Thorac Surg. 2000; 70:829-834.
    
    72. Frid MG, Kale VA, Stenmark KR. Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation: in vitro analysis. Circ Res. 2002; 90:1189-1196.
    
    1. Risau W, Flamme I. Vasculogenesis[J]. Annu Rev Cell Dev Biol, 1995: 11:73-91.
    
    2. Risau W. Mechanisms of angiogenesis[J]. Nature, 1997: 386:671-674.
    
    3. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 1971:285:1182-1186.
    
    4. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997: 275:964-967.
    
    5. Risau, W., et al. Vasculogenesis and angiogenesis in embryonic stem cell-derived embryoid bodies. Development. 1988: 102:471-478.
    
    6. Semenza GL Hypoxia-inducible factor 1: master regulator of O_2 homeostasis. Curr Opin Genet Dev. 1998: 8:588-94.
    
    7. Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med 1995: 1:27-31
    
    8. Schaper, W. & Ito, W.D. Molecular mechanisms of coronary collateral vessel growth. Circ Res 1996: 79, 911-919.
    
    9. Coussens, L.M. et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 1999: 13, 1382-1397.
    
    10. Sunderkotter, C, Steinbrink, K., Goebeler, M., Bhardwaj, R. & Sorg, C. Macrophages and angiogenesis. J Leukoc Biol 1994: 410-422.
    
    
    11. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999: 5:434-8.
    
    
    
    12. Caprioli A, Jaffredo T, Gautier R, et al. Blood-borne seeding by hematopoietic and endothelial precursors from the allantois. Proc Natl Acad ci U SA, 1998: 95:1641-1646.
    13. Lin Y, Weisdorf DJ, Solovey A, et al. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest. 2000: 105:71-7.
    
    14. Gill M, Dias S, Hattori K, et al. Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circ Res. 2001:88:167-74.
    
    15. Zhang ZG, Zhang L, Jiang Q, et al. Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res. 2002: 90:284-8.
    
    16. Asahara T, Masuda H, Takahashi T, et al. marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999: 85:221-8.
    
    17. Buschmann I, SchaperW. The pathophysiology of the collateral circulation (arteriogenesis). J Pathol. 2000: 190:338-42.
    
    18. Isner JM.Tissue responses to ischemia: local and remote responses for preserving perfusion of ischemic muscle. J Clin Invest. 2000: 106:615-9.
    
    19. Matthias Heil, Wolfgang Schaper. Influence of Mechanical, Cellular, and Molecular Factors on Collateral Artery Growth (Arteriogenesis). Circ Res. 2004: 95:449-458.
    
    20. Rivard A, Fabre JE, Silver M, et al. Age-dependent impairment of angiogenesis. Circulation. 1999: 99:111-20.
    
    21. Rivard, A., et al. Rescue of diabetes related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. Am. J. Pathol. 1999: 154:355-364.
    
    22. Couffinhal, T., et al. Impaired collateral vessel development associated with reduced expression of vascular endothelial growth factor in ApoE-/- mice: Circulation. 1999: 99:3188-98.
    
    23. Stohlawetz, P., et al. The effect of age on the transendothelial migration of human T lymphocytes. Scand. J. Immunol. 1996: 44:530-534.
    
    
    24. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S. Number and migratory activity of circulating endothelialprogenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001: 89:e1-e7.
    
    25. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003; 348: 593-600.
    
    26. Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, Levine JP, Gurtner GC. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation. 2002; 106:2781-2786.
    
    27. Takeshita, S., et al. Therapeutic angiogenesis: a single intra-arterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hindlimb model. J. Clin. Invest 1994: 93:662-670.
    
    28. Isner JM, Asahara T: Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest 1999: 103 .1231-1236.
    
    29. Kalka C, Masuda H, Takahashi T et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA 2000: 97:3422-3427.
    
    30. Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation, 2001: 103:634-637.
    
    31. Shintani S, Murohara T, Ikeda H, et al. Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation, 2001: 103:897-903.
    
    32. Murohara T, Ikeda H, Duan J, et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest, 2000: 105:1527-1536.
    
    33. Ikenaga S, Hamano K, Nishida M, et al. Autologous bone marrow implantation induced angiogenesis and improved deteriorated exercise capacity in a rat ischemic hindlimb model. J Surg Res, 2001: 96:277-283.
    34. Ziegelhoeffer T, Fernandez B, Kostin S, Heil M, Voswinckel R, Helisch A, Schaper W. Bone marrow-derived cells do not incorporate into adult growing vasculature. Circ Res. 2004: 94:230-238.
    
    
    35. Iba O, Matsubara H, Nozawa Y, Fujiyama S, Amano K, Mori Y, Kojima H, Iwasaka T. Angiogenesis by implantation of peripheral blood mononuclear cells and platelets into ischemic limbs. Circulation. 2002: 106: 2019-2025.
    
    36. Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, Epstein SE. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res. 2004: 94:678-685.
    
    37. Arras M, Ito WD, Scholz D, Winkler B, Schaper J, Schaper W. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin Invest. 1998:101:40-50.
    
    38. Heil M, Ziegelhoeffer T, Pipp F, Kostin S, Martin S, Clauss M, Schaper W. Blood monocyte concentration is critical for enhancement of collateral artery growth. Am J Physiol Heart Circ Physiol. 2002: 283: H2411-H2419.
    
    39. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, Shimada K, Iwasaka T, Imaizumi T. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilotstudy and a randomised controlled trial. Lancet. 2002; 360:427-435.
    
    40. Huang PP, Li SZ, Han MZ, Xiao ZJ, Yang RC, Han ZC. Autologous transplantation of peripheral blood stem cells as treatment for arteriosclerosis obliterans of lower extremities. Thromb Haemost. 2004: 91:606-609.
    
    41. Shi Q, Rafii S, Wu MH et al. Evidence for circulating bone neovascularizamarrow- derived endothelial cells. Blood 1998: 92:362-367
    
    42. Nieda M, Nicol A, Denning-Kendall P, et al.: Endothelial cell precursors are normal components of human umbilical cord blood. Br J Haematol 1997: 98:775-777.
    
    
    43. Morayma Reyes, Arkadiusz Dudek, Balkrishna Jahagirdar: Origin of endothelial progenitors in human postnatal bone marrow J. Clin. Invest. 2002: 109:337-346.
    
    44. Schmeisser A, Strasser RH. Phenotypic overlap between hematopoietic cells with suggested angioblastic potential and vascular endothelial cells. J Hematother Stem Cell Res. 2002: 11:69-79.
    
    45. Schmeisser A, Garlichs CD, Zhang H, Eskafi S, Graffy C, Ludwig J, Strasser RH, Daniel WG. Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc Res. 2001; 49:671-680.
    
    46. Zhao Y, Glesne D, Huberman E. A human peripheral blood monocyte derived subset acts as pluripotent stem cells. Proc Natl Acad Sci U S A. 2003;100:2426-2431.
    47. Nishikawa SI. A complex linkage in the developmental pathway of endothelial and hematopoietic cells. Curr Opin Cell Biol. 2001; 13: 673-678.
    
    48. Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J, 1999: 18:3964-3972.
    
    49. Shalaby F, Rossant J, Yamaguchi TP, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature, 1995: 376:62-66.
    
    50. Choi K, Kennedy M, Kazarov A, et al. A common precursor for hematopoietic and endothelial cells. Development, 1998: 125:725-732.
    
    51. Ziegler BL, Valtieri M, Porada GA, et al. KDR receptor: a key marker defining hematopoietic stem cells. Science, 1999: 285:1553-1558.
    
    52. Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood, 2000: 95:952-958.
    
    
    
    53. Yamashita J, Itoh H, Hirashima M, et al. Flk1-positive cells derived fromembryonic stem cells serve as vascular progenitors. Nature, 2000: 408:92-96.
    
    54. Yin AH, Miraglia S, Zanjani ED, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood, 1997: 90:5002-5012.
    
    55. Nissen NN, Polverini PJ, Koch AE, et al. Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am J Pathol, 1998: 152:1445-1452.
    
    56. Crosby JR, Kaminski WE, Schatteman G et al. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res 2000: 87:728-730.
    
    57. Murayama T, Tepper OM, Silver M et al. Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Exp Hematol 2002: 30:967.
    
    58. Beck H, Voswinckel R, Wagner S, Ziegelhoeffer T, Heil M, Helisch A, Schaper W, Acker T, Hatzopoulos A, Plate K. Participation of bone marrow-derived cells in long term repair processes following experimental stroke. J Cereb Blood Flow Metab. 2003: 23:709-717.
    
    59. Rehman J, Li J, Orschell CM, March KL. Peripheral blood "endothelial progenitor cells" are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 2003; 107:1164-1169.
    
    60. Fernandez Pujol B, Lucibello FC, Gehling UM, Lindemann K, Weidner N, Zuzarte ML, Adamkiewicz J, Elsasser HP, Muller R, Havemann K. Endothelial-like cells derived from human CD14 positive monocytes. Differentiation. 2000; 65:287-300.
    
    61. chatteman GC, Hanlon HD, Jiao C, Dodds SG, Christy BA. Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J Clin Invest. 2000; 106:571-578.
    
    
    62. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S. Recruitment of stem andprogenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell. 2002; 109:625-637.
    
    63. Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A, Sasaki K, Shimada T, Oike Y, Imaizumi T. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation. 2001: 103: 2776-2779.
    
    64. Kalka C, Masuda H, Takahashi T, Gordon R, Tepper O, Gravereaux E, Pieczek A, Iwaguro H, Hayashi SI, Isner JM, Asahara T. Vascular endothelial growth factor165 gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res. 2000: 86:1198-1202.
    
    65. Kalka C, Tehrani H, Laudenberg B, Vale PR, Isner JM, Asahara T, Symes JF. VEGF gene transfer mobilizes endothelial progenitor cells in patients with inoperable coronary disease. Ann Thorac Surg. 2000; 70:829-834.
    
    66. Frid MG, Kale VA, Stenmark KR. Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation: in vitro analysis. Circ Res. 2002: 90:1189-1196.
    
    67. Faloon, P., et al. Basic fibroblast growth factor positively regulates hematopoietic development. Development. 2000:127:1931-1941.
    
    68. Larsson, J., et al. Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type I receptor-deficient mice. EMBO J. 2001: 20:1663-1673.
    
    69. Koolwijk P, Peters E, van der Vecht B, et al. Involvement of VEGFR-2 (kdr/flk-1) but not VEGFR-1 (flt-1) in VEGF-A and VEGF-C-induced tube formation by human microvascular endothelial cells in fibrin matrices in vitro. Angiogenesis. 2001: 4(1 ):53-60.
    
    70. Lee WS, Jain MK, Arkonac BM, Thy-1, et al. a novel marker for angiogenesis upregulated by inflammatory cytokines. Circ Res. 1998: 82(8):845-851.
    
    71. Kuwano T, Nakao S, Yamamoto H, et al. Cyclooxygenase 2 is a key
    enzyme for inflammatory cytokine-induced angiogenesis. FASEB J. 2004: 18(2):300-310.
    
    72. Palmer-Kazen U, Wariaro D, Luo F, et al. Vascular endothelial cell growth factor and fibroblast growth factor 2 expression in patients with critical limb ischemia. J Vasc Surg. 2004: 39(3):621-628.
    
    73. Arisato T, Hashiguchi T, Sarker KP, et al. Highly accumulated platelet vascular endothelial growth factor in coagulant thrombotic region. J Thromb Haemost. 2003: 1(12):2589-2593.
    
    74. Makin AJ, Chung NA, Silverman SH, et al.Vascular endothelial growth factor and tissue factor in patients with established peripheral artery disease: a link between angiogenesis and thrombogenesis? Clin Sci (Lond). 2003: 104(4):397-404.
    
    75. Kusumanto YH, Hospers GA, Mulder NH, et al. Therapeutic angiogenesis with vascular endothelial growth factor in peripheral and coronary artery disease: a review. Int J Cardiovasc Intervent. 2003: 5(1):27-34.
    
    76. Chung NA, Lydakis C, Belgore F, Angiogenesis, et al. thrombogenesis, endothelial dysfunction and angiographic severity of coronary artery disease. Heart. 2003: 89(12):1411-5.
    
    77. Wu G, Mannam AP, Wu J, et al. Hypoxia induces myocyte-dependent COX-2 regulation in endothelial cells: role of VEGF. Am J Physiol Heart Circ Physiol. 2003: 285(6):H2420-2429.
    
    78. Mohler ER 3rd, Rajagopalan S, Olin JW, et al. Adenoviral-mediated gene transfer of vascular endothelial growth factor in critical limb ischemia: safety results from a phase I trial. Vasc Med. 2003: 8(1):9-13.
    
    79. Rajagopalan S, Mohler ER 3rd, Lederman RJ, et al. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication.Circulation 2003: 108(16): 1933-8.
    
    80. Doggrell SA, Wanstall JC. Vascular chymase: pathophysiological role and
    
    therapeutic potential of inhibition. Cardiovasc Res. 2004: 61(4):653-662.
    
    81. Hernandez-Rodriguez J, Segarra M, Vilardell C, et al. Elevated production of interleukin-6 is associated with a lower incidence of disease-related ischemic events in patients with giant-cell arteritis: angiogenic activity of interleukin-6 as a potential protective mechanism. Circulation. 2003: 107(19):2428-2434.
    
    82. Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Tsutsumi Y, Ozono R, Masaki H, Mori Y, Iba O, Tateishi E, Kosaki A, Shintani S, Murohara T, Imaizumi T, Iwasaka T. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands and cytokines. Circulation. 2001: 104:1046-1052.
    
    83. Li TS, Hamano K, Suzuki K, Ito H, Zempo N, Matsuzaki M. Improved angiogenic potency by implantation of ex-vivo hypoxia pre-stimulated bone marrow cells in rats. Am J Physiol. 2002: 293:H468-H473.
    
    84. Fuchs S, Baffour R, Zhou YF, Shou M, Pierre A, Tio FO, Weissman NJ, Leon MB, Epstein SE, Kornowski R. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol. 2001: 37:1726-1732.
    
    85. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001: 7:430-436.
    
    86. Semenza GL. Regulation of hypoxiainduced angiogenesis: A chaperone escorts VEGF to the dance. J. Clin. Invest. 2001: 108:39-40
    
    87. Namiki, A., et al. Hypoxia induces vascular endothelial growth factor in cultured human endothelial cells. J. Biol. Chem 1995: 270:31189-31195.
    
    
    88. Shen, B-Q., et al.. Homologous upregulation of KDR/Flk-1 receptor expression by vascular endothelial growth factor in vitro. J. Biol. Chem. 1998:273:29979-29985.
    
    89. Polverini PJ. Role of the macrophage in angiogenesis-dependent diseases. EXS 1997: 79:11-28.
    
    90. Seljelid R, Jozefowski S, Sveinbjornsson B. Tumor stroma. Anticancer Res 1999:19:4809-22.
    
    91. Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, et al. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 1999: 5:1135-42.
    
    92. Carmeliet P, Collen D. Development and disease in proteinase-deficient mice: role of the plasminogen, matrix metalloproteinase and coagulation system. Thromb Res 1998: 91: 255-85.
    
    93. Dvorak HF. VPFNEGF and the angiogenic response. Semin Perinatol 2000: 24: 75-8.
    
    94. Lundberg LG, Lerner R, Sundelin P, Rogers R, Folkman J, Palmblad J. Bone marrow in polycythemia vera, chronic myelocytic leukemia, and myelofibrosis has an increased vascularity [published erratum appears in Am J Pathol 2000; 157: 690]. Am J Pathol 2000:157: 15-9.
    
    95. Naiyer A, Jo Dy, Ahn J, Mohle R, Peichev M, Lam G, et al. Stromal derived factor-1-induced chemokinesis of cord blood CD34(+) cells (longterm culture-initiating cells) through endothelial cells is mediated by E-selectin. Blood 1999: 94: 4011-9.
    
    96. Bautz F, Rafii S, Kanz L, Mohle R. Expression and secretion of vascular endothelial growth factor-A by cytokine-stimulated hematopoietic progenitor cells. Possible role in the hematopoietic microenvironment. Exp Hematol 2000: 28: 700-6.
    
    97. Asahara T, Bauters C, Zheng LP. Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation. 1995: 92:365-371.
    98. Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, Wu Y, Bono F, Devy L, Beck H, Scholz D, Acker T, DiPalma T, Dewerchin M, Noel A, Stalmans I, Barra A, Blacher S, Vandendriessche T, Ponten A, Eriksson U, Plate KH, Foidart JM, Schaper W, Charnock-Jones DS, Hicklin DJ, Herbert JM, Collen D, Persico MG. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med. 2001; 7:575-583.
    
    99. Cao R, Brakenhielm E, Pawliuk R, Wariaro D, Post MJ, Wahlberg E, Leboulch P, Cao Y. Angiogenic synergism, vascular stability and improvement of hindlimb ischemia by a combination of PDGF-BB and FGF-2. Nat Med. 2003; 5:603-613.
    
    100. Chae JK, Kim I, Lim ST, Chung MJ, Kim WH, Kim HG, Ko JK, Koh GY. Coadministration of angiopoietin-1 and vascular endothelial growth factor enhances collateral vascularization. Arterioscler Thromb Vasc Biol. 2000;20: 2573-2578.
    
    101. Scheel KW, Fitzgerald EM, Martin RO, Larsen RA. The possible role of mechanical stresses on coronary collateral development during gradual coronary occlusion. In: Schaper W, eds. The Pathophysiology of Myocardial Perfusion. Amsterdam: Elsevier/North-Holland; 1979:489-518.
    
    102. Pipp F, Cai WJ, Boehm S, Karanovic G, Ziegler B, Ritter R, Farzin A, Schmitz-Rixen T, Schaper W. Chronically increased fluid shear stress following arteriovenous-fistula enhances collateral artery growth in a chronic pig hind limb model. FASEB J. 2003; 17:338.7.
    
    103. Hoefer IE, van Royen N, Rectenwald JE, Bray EJ, Abouhamze Z, Moldawer LL, Voskuil M, Piek JJ, Buschmann IR, Ozaki CK. Direct evidence for tumor necrosis factor-_ signaling in arteriogenesis. Circulation. 2002; 105:1639-1641.
    
    104. Unger EF, Banai S, Shou M, Lazarous DF, Jaklitsch MT, Sheinowitz M,
    Correa R, Klingbeil C, Epstein SE. Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am J Physiol. 1994: 266:H1588-H1595.
    
    105. Fernandez B, Buehler A, Wolfram S, Kostin S, Espanion G, Franz WM, Niemann H, Doevendans PA, Schaper W, Zimmermann R. Transgenic myocardial overexpression of fibroblast growth factor-1 increases coronary artery density and branching. Circ Res. 2000; 87:207-213.
    
    106. Deindl E, Hoefer IE, Fernandez B, Barancik M, Heil M, Strniskova M, Schaper W. Involvement of the fibroblast growth factor system in adaptive and chemokine-induced arteriogenesis. Circ Res. 2003; 92: 561-568.
    
    107. Rissanen TT, Markkanen JE, Arve K, Rutanen J, Kettunen Ml, Vajanto I, Jauhiainen S, Cashion L, Gruchala M, Narvanen O, Taipale P, Kauppinen RA, Rubanyi GM, Yla-Herttuala S. Fibroblast growth factor 4 induces vascular permeability, angiogenesis and arteriogenesis in a rabbit hindlimb ischemia model. Faseb J. 2003; 17:100-102.
    
    108. Emanueli C, Salis MB, Pinna A, Graiani G, Manni L, Madeddu P. Nerve growth factor promotes angiogenesis and arteriogenesis in ischemic hindlimbs. Circulation. 2002; 106:2257-2262.
    
    109. Liu ZJ, Shirakawa T, Li Y, Soma A, Oka M, Dotto GP, Fairman RM, Velazquez OC, Herlyn M. Regulation of Notch 1 and DII4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol. 2003; 23: 14-25.
    
    110. Lee CW, Stabile E, Kinnaird T, Shou M, Devaney JM, Epstein SE, Burnett MS. Temporal patterns of gene expression after acute hindlimb ischemia in mice: insights into the genomic program for collateral vessel development. J Am Coll Cardiol. 2004: 43:474-482.
    
    111. Heil M, Clauss M, Suzuki K, Buschmann IR, Willuweit A, Fischer S, Schaper W. Vascular endothelial growth factor (VEGF) stimulates monocyte migration through endothelial monolayers via increased integrin
    
    
    expression. EurJ Cell Biol. 2000: 79:850-857.
    
    112. Takagi J, Springer TA. Integrin activation and structural rearrangement. Immunol Rev. 2002: 186:141-163.
    
    113. Hogg N, Henderson R, Leitinger B, McDowall A, Porter J, Stanley P. Mechanisms contributing to the activity of integrins on leukocytes. Immunol Rev. 2002: 186:164-171.
    
    114. Wolf C, Cai WJ, Vosschulte R, et al. Vascular remodeling and altered protein expression during growth of coronary collateral arteries. J Mol Cell Cardiol. 1998: 30:2291-305.
    
    115. Schaper J, Koenig R, Franz D, Schaper W. The endothelial surface of growing coronary collateral arteries: intimal margination and diapedesisof monocytes. A combined SEM and TEM study. Virchows Arch A Pathol Anat Histol. 1976: 370:193-205.
    
    116. Deindl E, Ziegelhoffer T, Kanse SM, Fernandez B, Neubauer E, Carmeliet P, Preissner K, Schaper W. Receptor-independent role of the urokinase-type plasminogen activator during arteriogenesis. FASEB J. 2003: 17:1174-1176.
    
    117. Scholz D, Ito W, Fleming I, Deindl E, Sauer A, Wiesnet M, Busse R, Schaper J, Schaper W. Ultrastructure and molecular histology of rabbit hind-limb collateral artery growth (arteriogenesis). Virchows Arch. 2000; 436:257-270.
    
    118. Ito WD, Arras M, Winkler B, Scholz D, Schaper J, Schaper W. Monocyte chemotactic protein-1 increases collateral and peripheral conductance after femoral artery occlusion. Circ Res. 1997: 80:829-837
    
    119. Scholz D, Ziegelhoffer T, Helisch A, Wagner S, Friedrich C, Podzuweit T, Schaper W. Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion in mice. J Mol Cell Cardiol. 2002: 34: 775-787.3
    
    121. Malik N, Greenfield BW, Wahl AF, Kiener PA. Activation of human monocytes through CD40 induces matrix metalloproteinases. J Immunol.1996: 156:3952-3960.
    
    122. Pipp F, Heil M, Issbrucker K, Ziegelhoeffer T, Martin S, van den Heuvel J, Weich H, Fernandez B, Carmeliet P, Schaper W, Clauss M. The VEGFR-1 selective VEGF-homologue PIGF is arteriogenic: evidence for a monocyte-mediated mechanism. Circ Res. 2003: 92:378-385.
    
    123. Kusch A, Tkachuk S, Lutter S, Haller H, Dietz R, Lipp M, Dumler I. Monocyte-expressed urokinase regulates human vascular smooth muscle cell migration in a coculture model. Biol Chem. 2002; 383:217-221.
    
    124. Menshikov M, Elizarova E, Plakida K, Timofeeva A, Khaspekov G, Beabealashvilli R, Bobik A, Tkachuk V. Urokinase upregulates matrix metalloproteinase-9 expression in THP-1 monocytes via gene transcription and protein synthesis. Biochem J. 2002; 367:833-839.
    
    125. Khan KM, Falcone DJ. Role of laminin in matrix induction of macrophage urokinase-type plasminogen activator and 92-kDa metalloproteinase expression. J Biol Chem. 1997: 272:8270-8275.
    
    126. Li Shu et al. Therapeutic neovascularization by transplantation of mobilized peripheral blood mononuclear cells for limb ischemia: a comparison between CD34~+ and CD34~- mononuclear cells. Thromb Haemost, 2006; 95:301-311.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700