小凹与小凹蛋白-1介导ox-LDL的摄取及跨内皮转运
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究氧化低密度脂蛋白跨内皮细胞转运的方式,试图揭示caveolae在胆固醇流出中的作用机制,并探讨caveolin-1与内皮细胞胆固醇摄取间存在的关系,寻找是否存在调节关系。
     方法:用40μg/ml氧化低密度脂蛋白处理人脐静脉内皮细胞不同时间,分别用荧光和HPLC观察细胞内胆固醇含量变化;随后将已用氧化低密度脂蛋白荷脂的人脐静脉内皮细胞,撤去氧化低密度脂蛋白后再观察细胞内胆固醇含量变化。分别用三种caveolae阻滞剂carrageenan、filipin、nocodazole预处理人脐静脉内皮细胞1h后与40μg/ml氧化低密度脂蛋白孵育24h,用荧光倒置显微镜观察内皮细胞荷脂情况。将人脐静脉内皮细胞种植于transwell培养系统套皿上层,分别用三种阻滞剂预处理细胞1h后加入40μg/mlDiI荧光标记的氧化低密度脂蛋白于套皿上层孵育24h,取套皿下层液体用荧光分光光度计测荧光值。用FITC标记LOX-1后,用nocodazole阻滞cavolae运动,用荧光倒置显微镜观察LOX-1的运动情况。利用caveolin-1 SiRNA干扰技术沉默内皮细胞caveolin-1表达,同时检测内皮细胞在氧化低密度脂蛋白作用下NF-κB和LOX-1的表达情况。
     结果:实验表明人脐静脉内皮细胞与氧化低密度脂蛋白孵育时,细胞荷脂呈时间依赖性增加,撤去氧化低密度脂蛋白后细胞内脂质逐渐减少。caveolae阻滞剂可明显阻滞内皮细胞对ox-LDL摄取,同时也可明显阻滞氧化低密度脂蛋白跨内皮细胞转运达49%, 72%和80%。免疫荧光结果表明LOX-1定位于caveolae中。SiRNA干扰实验表明沉默caveolin-1表达后,抑制了NF-κB核转位,同时LOX-1表达下调。
     结论:
     1.内皮细胞可摄取ox-LDL而荷脂,也可自发性流出所荷脂质。内皮细胞的ox-LDL受体-LOX-1-定位于caveolae中,caveolae在内皮细胞摄取ox-LDL的过程中起了一个运载体的作用,它同时也介导了ox-LDL的跨内皮细胞转运。
     2. caveolin-1促使NF-κB核转位而活化,进一步上调LOX-1表达。
Objective: To explore the mechanisms involved in cholesterol transcytosis across endothelial cells and the effects of caveolae in this process,and determine the relation between caveolin-1 expression and cholesterol efflux in human umbilical vein endothelial cells
     Method: Human umbilical vein Endothelial Cells(HUVEC) were incubated with ox-LDL(40μg/ml) for different times,and depleted ox-LDL from medium after lipid-loaded 24h for different times, we used fluorescence microscope and HPLC to determine the cholesterol content in HUVEC at varies times. We first incubated HUVEC with carrageenan, filipin, or nocodazole for 1h, and a 24h incubation was followed after addition of DiI-ox-LDL(40μg/ml), the DiI fluorescent was observed with fluorescent microscope after incubation. We grown HUVEC on a Transwell insert to obtain a tight monolayer and preincubated with carrageenan, filipin, or nocodazole in the apical reservoir for 1h, then incubated 24h after addition of DiI-ox-LDL(40μg/ml), at the end of incubation period, the fluorescence intensity of DiI-ox-LDL that transcytosised up to the bottom reservoir was determined by Fluorescence spectrophotometer. We preincubated HUVEC with or without nocodazole for 1h, and incubated for another 24h with ox-LDL, use Indirect Immunofluorescence to determine the location of LOX-1. We Knocked down cavoelin-1 by caveolin-1 siRNA in HUVEC, then determined the activation of NF-κB and expression of LOX-1.
     Result: We incubated HUVEC with ox-LDL(40μg/ml) for different times and depleted ox-LDL from medium after lipid-loaded 24h for different times, we found that HUVEC intra-cellular cholesterol contents increased in a time-dependented manner, and decreased gradually after depletion of ox-LDL from medium. We first incubated HUVEC with carrageenan, filipin, or nocodazole for 1h, and a second 24h incubation was performed after addition of DiI-ox-LDL(40μg/ml), we found that carrageenan, filipin, and nocodazole could inhibit ox-LDL uptake by HUVEC significantly. We also found that, after pretreated with those drugs, the Fluorescence intensity of DiI-ox-LDL that transcytosised up to the bottom reservoir was decreased dramatically to 49%, 72% and 80% respectively, comparing to control group. When used Immunofluorescence to locate LOX-1,we found that LOX-1 focus in endochylema, but when preincubated with nocodazole, then incubated with ox-LDL, LOCX-1 still focus at plasma membrane. After silenced the cavoelin-1 in HUVEC, we found that NF-κB was inactivated and the expression of LOX-1 was decreased.
     Conclusion
     1. HUVEC could uptake lipid, also could release lipid by some mechanism inherent exist, and this process is spontaneous. LOX-1 associated with caveolae in HUVEC, it located with or within cavoelae. Caveolae could be a carrier for ox-LDL involved in uptake of ox-LDL by HUVEC. HUVEC was a post-house in ox-LDL translocation from blood plasma to subendothelium, and cavoelae played a important role in this process.
     2. Ox-LDL up-regulated caveolin-1 expression, which triggered NF-κB activation and nuclear translocation, subsequent promoted LOX-1 gene transcription, at the end, LOX-1 expression up-regulated. In this pathway, caveolin-1 as a regulator play a important role in ox-LDL uptake by modulation of LOX-1’s expression in HUVEC.
引文
1. 卢耀增, 佘铭鹏, 夏人仪 家兔主动脉内皮细胞的培养及形态学观察1 中华病理学杂志, 1982, 11: 1761
    2. T Sawamura, N Kume, T Aoyama, H Moriwaki, H Hoshikawa, Y Aiba, T Tanaka, S Miwa, Y Katsura, T Kita, and T Masaki An endothelial receptor for oxidized low-density lipoprotein. Nature, Mar 1997; 386(6620): 73-7.
    3. WT Chao, SH Tsai, YC Lin, WW Lin, and VC Yang Cellular localization and interaction of ABCA1 and caveolin-1 in aortic endothelial cells after HDL incubation. Biochem Biophys Res Commun, Jul 2005; 332(3): 743-9.
    4. Daniel Steinberg Low Density Lipoprotein Oxidation and Its Pathobiological Significance J. Biol. Chem., Aug 1997; 272: 20963-20966.
    5. Zhu Y, Liao HL, Wang N, Yuan Y, Ma KS, Verna L, Stemerman MB. Lipoproteinpromotes caveolin-1 and Ras translocation to caveolae: role of cholesterol in endothelial signaling. Arterioscler Thromb Vasc Biol. 2000; 20: 2465–2470.
    6. Scherer PE, Lisanti MP, Baldini G, Sargiacomo M, Mastick CC, Lodish HF Induction of caveolin during adipogenesis and association of GLUT4 with caveolin-rich vesicles. J Cell Biol 127:1233–1243
    7. 223 Li S, Galbiati F, Volonte D, Sargiacomo M, Engelman JA, Das K, Scherer PE and Lisanti MP (1998) Mutational analysis of caveolin-induced vesicle formation. Expression of caveolin-1 recruits caveolin-2 to caveolae membranes. FEBS Lett 434: 127-134
    8. Liu J, Lee P, Galbiati F, Kitsis RN and Lisanti MP (2001) Caveolin-1 expression sensitizes fibroblastic and epithelial cells to apoptotic stimulation. Am J Physiol Cell Physiol 280: C823-C835
    9. B van Deurs, K Roepstorff, AM Hommelgaard, and K Sandvig Caveolae:anchored, multifunctional platforms in the lipid ocean. Trends Cell Biol, Feb 2003; 13(2): 92-100.
    10. 武明花 小凹2小凹蛋白的生物学特性 国外医学临床生物化学与检验学分册 2003 年第24 卷第6 期
    11. K Takei and V Haucke, Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends Cell Biol 11: 385-391
    12. Davy A ,Feuerstein C ,Robbins SM ,et al. Signaling with in a caveolae2like membrane microdomain in human neuroblastoma cells in response to fibroblast growth factor[J ] . J Neurochem ,2000 ,74(2) :6762683.
    13. Simionescu N, Simionescu M and Palade GE (1975) Permeability of muscle capillaries to small heme-peptides: Evidence for the existence of patent transendothelial channels. J Cell Biol 64: 586-607
    14 Razani B, L isantiMP. Caveolins and caveolae: molecular and functional relationship s. Exp Cell Res, 2001, 271: 36~44.
    15 avie Y, Fiucci G,Czarny M ,et al. Changes in membrane microdomains and caveolae constituents in multidrug resistant cancer cells[J ] . Lipids ,1999 ,34(1) :57263.
    16 B van Deurs, K Roepstorff, AM Hommelgaard, and K Sandvig Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends Cell Biol, Feb 2003; 13(2): 92-100.
    17 bak Razani, Scott E. Woodman, and Michael P. Lisanti Caveolae: From Cell Biology to Animal Physiology Pharmacol. Rev., Sep 2002; 54: 431.
    18 J Couet, MM Belanger, E Roussel, Cell biology of caveolae and caveolin. Adv Drug Deliv Rev, Jul 2001; 49(3): 223-35.
    19 Napolitano LM (1963) The differentiation of white adipose cells. An electron microscope study. J Cell Biol 18: 663-679
    20 Mobley BA and Eisenberg BR (1975) Sizes of components in frog skeletal muscle measured by methods of stereology. J Gen Physiol 66: 31-45
    21 Gil J (1983) Number and distribution of plasmalemmal vesicles in the lung. Fed Proc 42: 2414-2418
    22 J Couet, MM Belanger, E Roussel, and MC Drolet Cell biology of caveolae and caveolin. Adv Drug Deliv Rev, Jul 2001; 49(3): 223-35.
    23 Takei K and Haucke V (2001) Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends Cell Biol 11: 385-391
    24 Anderson RG, Kamen BA, Rothberg KG and Lacey SW (1992) Potocytosis: sequestration and transport of small molecules by caveolae. Science (Wash DC) 255: 410-411
    25 Jean Marx Caveolae: A Once-Elusive Structure Gets Some Respect Science, Nov 2001; 294: 1862.
    26 F Galbiati, B Razani, and MP Lisanti Emerging themes in lipid rafts and caveolae. Cell, Aug 2001; 106(4): 403-11.
    27 Anderson R. The caveolar system. Annu Rev Biochem 67:199–225, 1998
    28 Okamoto T, Schlegel A, Scherer PE, Lisanti MP. Caveolins, a family of scaffolding proteins for organizing ``preassembled signaling complexes'' at the plasma membrane. J Biol Chem 273:5419–5422, 1998.
    29 JR Glenney, Jr and D Soppet Sequence and Expression of Caveolin, a Protein Component of Caveolae Plasma Membrane Domains Phosphorylated on Tyrosine in Rous Sarcoma Virus- Transformed Fibroblasts PNAS, Nov 1992; 89: 10517
    30 Rajjayabun PH , Garg S ,Durkan GC , et al. Caveolin-1 expression is associated with highgrade bladder cancer [ J ] . Urology , 2001 , 58(5) : 8112814.
    31 Carver LA, Schnitzer JE. Caveolae: mining little caves for new cancer targets[ J ]. Nat Rev Cancer, 2003, 3 (8) : 571 - 81.
    32 Murata M, Peranen J, Schreiner R, Wieland F, Kurzchalia TV, Simons K.VIP21/caveolin is a cholesterol-binding protein. Proc Natl Acad Sci U S A. 1995; 92: 10339–10343.
    33 DA Brown Lipid droplets: proteins floating on a pool of fat. Curr Biol, Jun 2001; 11(11): R446-9.
    34 Annette Uittenbogaard, Yun-shu Ying, and Eric J. Smart Characterization of a Cytosolic Heat-shock Protein-Caveolin Chaperone Complex. INVOLVEMENT IN CHOLESTEROL TRAFFICKING J. Biol. Chem., Mar 1998; 273: 6525.
    35 Hailstones D, Sleer LS, Parton RG and Stanley KK (1998) Regulation of caveolin and caveolae by cholesterol in MDCK cells. J Lipid Res 39: 369-379
    36 Murata M, Peranen J, Schreiner R, Weiland F, Kurzchalia T and Simons K (1995) VIP21/caveolin is a cholesterol-binding protein. Proc Natl Acad Sci USA 92: 10339-10343
    37 Simons K,Toomre D.Lipid rafts and signal transduction. Nature Reviews :Molecular Cell Biology ,2000 ,1(1) :31 - 39.
    38 Das K,Lewis RY,Scherer PE ,et al . The membrane spanning domains ofcavelins 1 and 2 mediate the formation of caveolin hetero - oligomers.Implications for the assembly of caveolae membranes in vivo. J BiolChem,1999 ,274 :18721 - 18726.
    39 Drab, M., P. Verkade, M. Elger, M. Kasper, M. Lohn, B. Lauterbach, J. Menne, C. Lindschau, F. Mende, F.C. Luft, et al. 2001. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science. 293:2449–2452.
    40 Razani, B., J.A. Engelman, X.B. Wang, W. Schubert, X.L. Zhang, C.B. Marks, F. Macaluso, R.G. Russell, M. Li, R.G. Pestell, et al. 2001. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J. Biol. Chem. 276:38121–38138.
    41 Zhao, Y.-Y., Y. Liu, R.-V. Stan, L. Fan, Y. Gu, N. Dalton, P.-H. Chu, K. Peterson, J. Ross, Jr., and K.R. Chien. 2002. Defects in caveolin-1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice. Proc. Natl. Acad. Sci. USA. 99:11375–11380
    42 Schlegel A ,Lisanti MP. The caveolin triad :caveolae biogenesis ,choles2terol trafficking , and signal transduction. Cytokine Growth Factor Rev ,2001 ,12 (1) :41 - 51.
    43 Li S, Galbiati F, Volonte D, Sargiacomo M, Engelman JA, Das K, Scherer PE and Lisanti MP (1998) Mutational analysis of caveolin-induced vesicle formation. Expression of caveolin-1 recruits caveolin-2 to caveolae membranes. FEBS Lett 434: 127-134
    44 Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR and Anderson RG (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68: 673-682
    45 WG Wood, F Schroeder, NA Avdulov, Recent advances in brain cholesterol dynamics: transport, domains, and Alzheimer's disease. Lipids, Mar 1999; 34(3): 225-34.
    46 D Hoekstra and SC van IJzendoorn Lipid trafficking and sorting: how cholesterol is filling gaps. Curr Opin Cell Biol, Aug 2000; 12(4): 496-502.
    47 Andrey Frolov, Anca Petrescu, Barbara P. High Density Lipoprotein-mediated Cholesterol Uptake and Targeting to Lipid Droplets in Intact L-cell Fibroblasts. A SINGLE- AND MULTIPHOTON FLUORESCENCE APPROACH J. Biol. Chem., Apr 2000; 275: 12769-80.
    48 Barbara P. Atshaves, Olga Starodub, Sterol Carrier Protein-2 Alters High Density Lipoprotein-mediated Cholesterol Efflux J. Biol. Chem., Nov 2000; 275: 36852.
    49 Kathryn W. Underwood, Natalie L. Evidence for a Cholesterol Transport Pathway from Lysosomes to Endoplasmic Reticulum That Is Independentof the Plasma Membrane J. Biol. Chem., Feb 1998; 273: 4266.
    50 Dayuan Li and Jawahar L. Mehta Upregulation of Endothelial Receptor for Oxidized LDL (LOX-1) by Oxidized LDL and Implications in Apoptosis of Human Coronary Artery Endothelial Cells : Evidence From Use of Antisense LOX-1 mRNA and Chemical Inhibitors Arterioscler. Thromb. Vasc. Biol., Apr 2000; 20: 1116.
    51 Nadine Bruneau, Stéphane Richard , etc Lectin-like Ox-LDL Receptor Is Expressed in Human INT-407 Intestinal Cells: Involvement in the Transcytosis of Pancreatic Bile Salt–dependent Lipase Mol. Biol. Cell, Jul 2003; 14: 2861.
    52 Kanazawa T, O sanai T, Yin XZ, et al. Peroxidized low density lipoprotein with four kinds of hydroperoxidized cholesteryl linoleate estimated in p lasma of young heavy smokers [ J ]. Pathobiology, 1996, 64: 1152122.
    53 Wells KE , Miguel R , Alexander JJ . Sex hormones affect the calcium signaling response if human arterial cells to LDL [J ] . J Surg Res ,1996 ,63 :64 —72.
    54 Stephan, Z. F., Yurachek, E. C. 1993. Rapid fluorometric assay of LDL receptor activity by DiI-labeled LDL. J. Lipid Res. 34:325-330
    55 WX Chen, PY Li, S Wang,etc Serum cholesterol determined by liquid chromatography with 6- chlorostigmasterol as internal standard Clin. Chem., Aug 1993; 39: 1602 - 1607.
    56 董军,陈文祥,李健斋.高效液相色谱测定微量胆固醇氧化产物。生物化学与生物物理进展,1996;23:179-182。
    57 JL Mehta and DY Li Identification and autoregulation of receptor for ox-LDL in cultured human coronary artery endothelial cells Biochem Biophys Res Commun, Jul 1998; 248(3): 511-4
    58 Sanna Heino, Sari Lusa, Pentti Somerharju etc Dissecting the role of the Golgi complex and lipid rafts in biosynthetic transport of cholesterol to the cell surface PNAS, Jul 2000; 97: 8375.
    59 KG Rothberg, YS Ying, etc Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate J. Cell Biol., Dec 1990; 111: 2931.
    60 KG Rothberg, YS Ying, BA Kamen etc Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate J. Cell Biol., Dec 1990; 111: 2931.
    61 Rosel Kretschmer-Kazemi Far and Georg Sczakiel The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides Nucleic Acids Research, 2003, Vol. 31, No. 15 4417-4424
    62 Li, DY, Saldeen T, Mehta JL. Gamma-tocopherol decreases ox-LDL-mediated activation of nuclear factor- B and apoptosis in human coronary artery endothelial cells. Biochem Biophys Res Commun. 1999;259:157–161
    63 Zhu Y, Liao HL, Wang N, Yuan Y, Ma KS, Verna L, Stemerman MB. Lipoproteinpromotes caveolin-1 and Ras translocation to caveolae: role of cholesterol in endothelial signaling. Arterioscler Thromb Vasc Biol. 2000; 20: 2465–2470.
    64 L Ghitescu, A Fixman, etc Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis J. Cell Biol., Apr 1986; 102: 1304.
    65 M Bendayan and EA Rasio Transport of insulin and albumin by the microvascular endothelium of the rete mirabile J. Cell Sci., Jul 1996; 109: 1857
    66 Chinnaswamy Tiruppathi, Tabassum Naqvi, etc Albumin mediates the transcytosis of myeloperoxidase by means of caveolae in endothelial cells PNAS, May 2004; 101: 7699 - 7704.
    67 Vasile E, Simionescu M, Simionescu N. Visualization of the binding, endocytosis, and transcytosis of low density lipoprotein in the arterial endothelium in situ. J Cell Biol. 1983; 96: 1677–1689.
    68 EG Langeler, I Snelting-Havinga, and VW van Hinsbergh Passage of low density lipoproteins through monolayers of human arterial endothelial cells. Effects of vasoactive substances in an in vitro model Arterioscler. Thromb. Vasc. Biol., Jul 1989; 9: 550.
    69 Bo Van Deurs, Kirstine Roepstorff, Anette M. Hommelgaard. Caveolae: anchored,multifunctional platforms in the lipid ocean. TRENDS in Cell Biology Vol.13 No.2 92-100.
    70 Jiawei Chen, Yong Liu, Hongmei Liu, etc Molecular Dissection of Angiotensin II–Activated Human LOX-1 Promoter Arterioscler. Thromb. Vasc. Biol., May 2006; 26: 1163 - 1168.
    71 王彤宇. 氧化低密度脂蛋白与动脉粥样硬化关系研究进展. 国外医学老年医学分册,2004 ,25 (1) :342381
    72 DA Cox and ML Cohen Effects of oxidized low-density lipoprotein on vascular contraction and relaxation: clinical and pharmacological implications in atherosclerosis Pharmacol. Rev., Mar 1996; 48: 3
    73 周镜然 Caveolin 家族分子研究进展〔J〕细胞生物学杂志, 2002; 24(6) : 3382421
    74 冉胤威,杜俊蓉,白波 高胆固醇上调 Caveol in-1 的表达 生物医学工程学杂志 2004; 21 (2) ∶276~ 279
    75 Taylor AE, Granger DN (1984) Exchange of macromolecules across the microcirculation. Handbook of Physiology, sec 2, The Cardiovascular System, vol IV, Microdrculation. Washington, D.C., American Physiological Society, pp 467-520.
    76 Curry F-ZE. Determinants of capillary permeability: A review of mechanisms based on single capillary studies In the frog. Ore Res 1986;59:367-380
    77 Schneeberger EE, Lynch RD. Tight junctions. Their structure, composition, and function. Circ Res 1984;55:723-733
    78 Carter RD, Joyrier WL, RenMn EM. Effects of histamine and some other substances on molecular selectivity of the capillary wall to plasma proteins and dextran. Microvasc Res 1974;7:31-48
    1 Sawamura T , Kume N , AoyamaT et al . An endothelial receptorfor oxidized low2density lipoprotein. Nat ure , 1997 ;386 (6620) :73~7
    2 Murase T , Kume N , Korenaga R et al . Fluid shear stress tran2scriptionally induces lectin2like oxidized LDL receptor-1 in vascularendothelial cells. Ci rc Res , 1998 ;83 (3) :328~33
    3 Jiawei Chen, Yong Liu et al . Molecular Dissection of Angiotensin II–Activated Human LOX-1 Promoter. Arteriosclerosis, Thrombosis, and Vascular Biology. 2006;26:1163
    4 Mingyi Chen, Tomoh Masaki et al .LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. Pharmacology & Therapeutics 2002 ;95: 89– 100
    5 Li DY, Zhang YC , Philips MI et al . Upregulation of endothelialreceptor for oxidized low2density lipoprotein receptor (LOX-1) incultured human coronary artery endothelial cells by angiotensin Ⅱ type 1 receptor activation. Ci rc Res , 1999 ;84 (9) :1043~9
    6 M Chen, T Masaki, and T Sawamura LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. Pharmacol Ther, Jul 2002; 95(1): 89-100
    7 Jiawei Chen, Yong Liu et al . Molecular Dissection of Angiotensin II–Activated Human LOX-1 Promoter Arteriosclerosis, Thrombosis, and Vascular Biology. 2006;26:1163
    8 Murase T , Kume N , Kataoka H et al . Identification of solubleforms of lectin2like oxidized LDL receptor-1. A rterioscler ThrombV asc Biol , 2000 ;20 (3) :715~205
    9 Minami M , Kume N , Kataoka H et al . Transforming growth fac2tor2β1 increase the expression of lectin2like oxidized low2densitylipoprotein receptor-1. Biochem Biophys Res Commun , 2000 ;272
    10 Morawietz H , Duerrschmidt N , Niemann B et al . Induction of theoxLDL receptor LOX-1 by endothelin-1 in human endothelial cells.Biochem Biophys Res Commun , 2001 ;284 (4) :961~5
    11 Takatoshi Murase, Noriaki Kume et al . Identification of Soluble Forms of Lectin-Like Oxidized LDL Receptor-1. Arterioscler. Thromb. Vasc. Biol., Mar 2000; 20: 715.
    12 Li DY, Jawahar L. Antisense to LOX-1 inhibits oxidized LDL2me2diated upregulation of monocyte chemoattractant protein-1 andmonocyte adhesion to human coronary artery endothelial cells. Circulation , 2000 ;101 (25) :2889~95
    13 Naohiko Kobayashi, Kazuyoshi Hara et al . Eplerenone Shows Renoprotective Effect by Reducing LOX-1–Mediated Adhesion Molecule, PKC -MAPK-p90RSK, and Rho-Kinase Pathway. Hypertension, Apr 2005; 45: 538 – 544
    14 Cominacini L , Pasini AF , Garbin U et al . Oxidized low densitylipoprotein (ox2LDL) binding to ox2LDL receptor-1 in endothelialcells induces the activation of NF2κB through an increased production of intracellular reactive oxygen species. J Biol Chem , 2000 ;275 (17) :12633~8
    15 Cominacini L , Rigoni A , Pasini AF et al . The binding of . oxi2dized low density lipoprotein (ox2LDL) to ox2LDL receptor-1 re2duces the intracellular concentration of nitric oxide in endothelial cells through an increased production of superoxide. J Biol Chem ,2001 ;276 (17) :13750~5
    16 B Hu, D Li, T Sawamura, and JL Mehta Oxidized LDL through LOX-1 modulates LDL-receptor expression in human coronary artery endothelial cells. Biochem Biophys ResCommun, Aug 2003; 307(4): 1008-12.
    17 Jawahar L. Mehta, Bo Hu, Jiawei Chen, and Dayuan Li Pioglitazone Inhibits LOX-1 Expression in Human Coronary Artery Endothelial Cells by Reducing Intracellular Superoxide Radical Generation. Arterioscler. Thromb. Vasc. Biol., Dec 2003; 23: 2203
    18 Dayuan Li and Jawahar L. Mehta Upregulation of Endothelial Receptor for Oxidized LDL (LOX-1) by Oxidized LDL and Implications in Apoptosis of Human Coronary Artery Endothelial Cells : Evidence From Use of Antisense LOX-1 mRNA and Chemical Inhibitors. Arterioscler. Thromb. Vasc. Biol., Apr 2000; 20: 1116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700