丙泊酚对氯胺酮诱导大鼠抗抑郁样作用的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:氯胺酮是一种临床上广泛用于镇痛的静脉麻醉药,是非竞争性N-甲基-D-天(门)冬氨酸(NMDA)受体拮抗剂。近年来,临床及动物试验均发现氯胺酮可以产生强大,快速且相对持久的抗抑郁样作用,其抗抑郁样作用与拮抗中枢兴奋性氨基酸NMDA受体和增强海马脑源性神经营养因子(BDNF)表达相关。但氯胺酮可诱发拟精神症状和认知损害,部分与其诱发超氧化物持续表达有关,因此抗超氧化物可能是治疗氯胺酮副作用的靶点之一。全麻药物丙泊酚具有抗超氧化物作用和剂量依赖式抑制NMDA受体NR1亚基磷酸化作用,该受体磷酸化在NMDA受体功能的激活中发挥重要作用。故推测丙泊酚与氯胺酮配合使用,是否有可能在减少氯胺酮副作用的同时增强氯胺酮诱导的抗抑郁样作用。为证实此推测,本实验通过观察预先注射丙泊酚后氯胺酮对大鼠行为学习性及强迫游泳大鼠海马BDNF表达水平影响的变化,为临床丙泊酚配合氯胺酮治疗抑郁症以及缓解抑郁症患者术后抑郁提供理论依据。方法:将100只大鼠按照完全随机设计分为I,II两组,每组50只。I组行旷场试验, II组行强迫游泳试验,剔除预试验中不合格者,每组选取42只随机分为7个小组,每小组6只大鼠:生理盐水(A)组;氯胺酮20mg/kg(B)组;丙咪嗪30mg/kg(C)组;丙泊酚10 mg/kg(D)组;丙泊酚20 mg/kg(E)组;丙泊酚10 mg/kg+氯胺酮20mg/kg(F)组;丙泊酚20 mg/kg+氯胺酮20mg/kg(G)组。以上药物均在进行旷场试验或强迫游泳试验前1小时经腹腔注射给予,所有药物稀释成3ml,F组和G组丙泊酚与氯胺酮注射间隔时间为15min。旷场试验箱为一个66cm×50cm×40cm的箱体,箱底画有25个相等方格(13×10cm)。每组大鼠经腹腔注射给予相应药物1h后,将大鼠置于试验箱中央格内,观察并记录5min内大鼠的累计穿格数和直立次数。强迫游泳试验是将大鼠单个放入水深为20cm的玻璃圆筒(高50 cm,直径20 cm)中,水温23-25℃,水深可稍作调整,以大鼠后足刚可触及筒底又不足以支撑身体为宜。每换一只大鼠更换一次水。强迫游泳试验进行两次,第一次为预游泳,各组均不给药,将大鼠逐一放入玻璃圆筒中游泳15min。预游泳24h后,每组大鼠经腹腔注射给予相应药物。1h后,在与预游泳条件完全相同的情况下,将大鼠放入圆筒中,记录5min内大鼠强迫游泳的累计不动时间,以秒为单位。在第二次强迫游泳试验结束后,立即处死大鼠分离出海马组织,匀浆取上清液,在-20℃下冻存备测。利用双抗体夹心酶联免疫吸附(ELISA)实验检测强迫游泳大鼠海马BDNF水平。结果:①旷场试验:B、C、D、E、F、G组大鼠的累计穿格数和直立次数与A组相比差异无统计学意义( n=6, P>0.05)。②强迫游泳试验:A组的不动时间为(132.67±5.13)s, B组的不动时间为(68.17±6.05)s, C组的不动时间为(97.33±10.88)s, D组的不动时间为(126.50±4.09)s, E组的不动时间为(124.83±7.65)s, F组的不动时间为(54.67±8.29)s, G组的不动时间为(55.83±6.11)s。与A组相比,B、C、F和G组可以缩短大鼠不动时间,具有统计学差异( n=6, P<0.01);其中B、F、G组与C组相比,不动时间缩短,具有统计学差异( n=6, P<0.01);F、G组与B组相比,不动时间缩短,差异具有统计学意义( n=6, P<0.01);而D组、E组,与A组相比,差异则无统计学意义( n=6,P>0.05)。③大鼠海马BDNF水平:A组的BDNF水平为(84.50±4.85)pg/ml, B组的BDNF水平为(118.33±4.68)pg/ml, C组的BDNF水平为(89.67±4.68)pg/ml, D组的BDNF水平为( 80.17±4.49 ) pg/ml, E组的BDNF水平为(79.17±4.36)pg/ml, F组的BDNF水平为(115.00±6.20)pg/ml,G组的BDNF水平为(113.67±5.89)pg/ml,其中B、F、G组与A组比较,差异有统计学意义(n=6, P<0.05);C、D、E组与A组相比差异无统计学意义(n=6, P>0.05);F、G组与B组比较差异无统计学意义( n=6,P>0.05)。结论:丙泊酚可增强大鼠强迫游泳试验中急性注射氯胺酮诱导的抗抑郁样作用,但可能并非通过海马BDNF起作用。
Objective: Ketamine is a non-competitive antagonist to the phencyclidine site of N-methyl-D-aspartate (NMDA) receptor. Clinical findings and animal experiments point to a rapid onset of action for ketamine on the treatment of major depression and suggest that the NMDA receptor and acute increase of brain-derived-neurotrophic factor (BDNF) protein levels in hippocampus might be critical to the antidepressant-like effects induced by ketamine. Ketamine has been demonstrated to induce schizophrenia-like symptoms and cognitive impairment in humans, partly resulting from persistent increase in brain superoxide caused by ketamine. Anti-superoxide may represent a novel target for the treatment of ketamine-induced psychosis. Propofol ( 2,6-diisopropylphenol ) is a general anesthetic possessing actions inhibiting phosphorylation of NMDA Receptor NR1 Subunits and against oxidative stress in neurons, so the agent is presumed to interact with ketamine and hence to enhance the antidepressant-like effects involved in ketamine. Therefore, to test the possibility, this experiment has examined the behavioral effects and the BDNF protein levels in hippocampus of acute administration of ketamine and acute administration of ketamine after propofol pretreatment in rats. Methods: Rats were randomly divided into group I and group II (n=50/each), Rats in group I or II were again randomly divided into group A (sodiumChloride), group B (ketamine 20mg/kg), group C (imipramine 30mg/kg), group D (propofol 10mg/kg), group E (propofol 20mg/kg), group F (propofol 10mg/kg+ketamine 20mg/kg) and group G (propofol 20mg/kg+ketamine 20mg/kg ) (n=6/each). Rats in different groups were administered intraperitoneally (i.p.) with the corresponding drugs 60 minutes before the test sessions, i.e. open-field or forced swimming tests. All treatments were administered in 3ml volume. In group F and G, the interval time between propofol and ketamine administration was 15 min. In the open-field test, rats were treated with the corresponding drugs 60 min before the exposure to the open-field apparatus, in order to assess possible effects of drug treatment on spontaneous locomotor activity. Analysis of rat spontaneous activity was carried out in an open cardboard box, which is an arena 66×50 cm surrounded by 40 cm high walls. The floor of the open field was divided into 25 rectangles (13×10cm each) by black lines. Animals were gently placed on the center of floor, and left to explore the arena for 5 min. The number of horizontal (crossings) and vertical (rearings) activity performed by each rat during the 5 min observation period was counted. The forced swimming test involves two individual exposures to a cylindrical tank with water in which rats cannot touch the bottom of the tank or escape. The tank is made of transparent Plexiglas, 50 cm tall, 20 cm in diameter, and filled with water ( 23-25°C ) to a depth of 20 cm. Water in the tank was changed after each rat. For the first exposure, rats without drug treatment were placed in the water for 15 min ( pre-test session ). Twenty-four hours later, rats were placed in the water again for a 5 min session ( test session ), and the immobility time of rats were recorded in seconds. Rats were treated with ketamine, propofol + ketamine, imipramine or saline only 60 min before the second exposure to the cylindrical tank of water ( test session ). Immediately after the forced swimming test, acutely saline, ketamine, propofol + ketamine, imipramine -treated rats were sacrificed and the skulls were removed and hippocampus was dissected and stored at -20℃for biochemical analyses. The BDNF protein levels in hippocampus were measured by anti-BDNF sandwich-ELISA . Results:①Open-field test: In this test, the treatment with ketamine,propofol+ketamine and imiprimine did not modify the number of crossings and rearings compared with saline treated-rats ( n=6, P>0.05);②Forced swimming test:The immobility time in group A, B, C, D, E, F, G was (132.67±5.13), (68.17±6.05),(97.33±10.88),(126.50±4.09), (124.83±7.65), (54.67±8.29) and (55.83±6.11) s, respectively. The immobility time in group B, C, F, G was lower than that in group A ( n=6, P<0.01); Compared with group C,the immobility time in group B, F, G was decreased ( n=6, P<0.01); The immobility time in group F, G was also lower than that in group B ( n=6, P<0.01).③The BDNF protein levels in hippocampus measured by anti-BDNF sandwich-ELISA: the BDNF levels in hippocampus in group A, B, C, D, E, F, G was (84.50±4.85), (118.33±4.68), (89.67±4.68), (80.17±4.49), (79.17±4.36), (115.00±6.20) and (113.67±5.89) pg/ml, respectively. the BDNF levels in hippocampus in group B, F, G was higher than that in group A (n=6, P<0.05), but had no differences among group B, F, G (n=6, P>0.05). Conclusions: Propofol could increase the antidepressant-like effects induced by acute administration of ketamine in rats, but the mechanism might not be not related to the BDNF levels in hippocampus.
引文
1. Hirota K, Lambert DJ. Ketamine: its mechanism(s) of action and unusual clinical uses[J]. Br J Anaesth,1996;77(4):441-444.
    2. Zarate Jr CA, Singh JB, Carson PJ, et al. A randomized trial of an N- methyl-D-aspartate antagonist in treatment-resistant major depression [J]. Arch Gen Psychiatry,2006;63(8):856-864.
    3. Berman RB, Cappielo A, Anand A, et al. Antidepressant effects of ketamine in depressed patients[J]. Biol Psychiatry 2000;47(4):351-354.
    4. Chaturvedi HK, Bapna JS, Chandra D. Effect of fluvoxamine and N- methyl-Daspartate receptor antagonists on shock-induced depression in mice[J]. ndian J Physiol Pharmacol 2001;45(2):199-207.
    5. Yilmaz A, Schulz D, Aksoy A, et al. Prolonged effect of an anesthetic dose of ketamine on behavioral despair[J]. Pharmacol BiochemBehav, 2002;71(1):349-344.
    6. Kos T, Popik P, Pietraszek M, et al.Effect of 5-HT3 receptor antagonist MDL 72222 on behaviors induced by ketamine in rats and mice[J]. Eur Neuropsychopharmacol,2006;16(4):297-310.
    7. Silvestre JS, Nadal R, Pallares M, et al. Acute effects of ketamine in the Holeboard, the elevated-plus maze,and the social interaction test in Wistar rats[J]. Depress Anxiety,1997;5(1):29-33.
    8. Garcia LS, Comim CM, Valvassori SS, et al. Acute administration of ketamine induces antidepressant-like effects in the forcedswimming test and increases BDNF levels in the rat hippocampus[J]. Prog Neuropsychopharmacol Biol Psychiatry,2008;32(1):140-144.
    9. Karege F, Perret G, Bondolfi G, et al. Decreased serum brain-derived neurotrophic factor levels in major depressed patients[J]. Psychiatry Res, 2002;109(2):143-148.
    10. Siuciak JA, Lewis DR, Wiegand SJ, et al. Antidepressant-like effect of brain-derived neurotrophic factor (BDNF)[J]. Pharmacol Biochem Behav, 1997;56(1):131-137.
    11. Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorder[J]. Biol Psychiatry 2006;59(12):1116-1127.
    12. S Kingston, L Mao, L Yang, et al. Propofol inhibits phosphorylation of N-methyl-D-aspartate receptor NR1 subunits in neurons[J]. Anesthesiology,2006;104(4):763-769.
    13. Curzon C, Green AR. Rapid Method for the Determination of 5- Hydrox-ytryptanune and 5-Hydroxyindoleacetic Acid in Small Regions of Rat Brain[J].British Journal of Pharmacology, 1970; 39 (3):653.
    14.李作平,赵丁,任雷鸣,等.合欢花抗抑郁样作用的药理实验研究初探[J].河北医科大学学报,2003;24(4):214.
    15. Porsoh RD, Le Pichon M, Jalfre M. Depression:A new animal model sensitive to antidepressant treatments[J]. Nature,1977; 266 (5604): 730-732.
    16. Sapolsky RM. Why stress is bad for your brain[J]. Science,1996;273 (5276):749-750.
    17. Porsoh RD, Anton G, Blavet Na, et a1. Behavioral despair in rats:A new model sensitive to antidepressants treatments[J].Eur J Pharmacol, 1978;47(4):379-391.
    18. Willner P. Validation criteria for animal models of human mental disorders: learned helplessness as a paradigm case[J]. Prog Neuropsychopharmacol Biol Psychiatry,1986;10(6):677-90.
    19. Pacher P, Kohegyi E, Kecskemeti V, et a1. Current trends in the development of new antidepressants[J].Curr Med Chem,2001; 8(2): 89-100.
    20. Krystal JH, D'Souza DC, Petrakis IL, et al. NMDA agonists and antagonists as probes of glutamatergic dysfunction and pharmacotherapies in neuropsychiatric disorders[J]. Harv Rev Psychiatry, 1999;7(3):125-43.
    21. Javitt DC. Glutamate as a therapeutic target in psychiatric disorders[J]. Mol Psychiatry,2004;9(11):984-997.
    22. Kos T, Legutko B, Danysz W, et al. Enhancement of antidepressant- like effects but not brain-derived neurotrophic factor mRNA expression by the novel N-methyl-D-aspartate receptor antagonist neramexane in mice[J].Pharmacol Exp Ther,2006; 318(3):1112-1136.
    23. Molchanov ML, Guimar?es FS. Anxiolytic-like effects of AP7injected into the dorsolateral or ventrolateral columns of the periaqueductal gray of rats[J].Psychopharmacology,2002;160(1):30 -38.
    24. Menard J, Treit D. Intra-septal infusions of excitatory amino acid receptor antagonists have differential effects in two animal models of anxiety[J]. Behav Pharmacol,2000;11(2):99-108.
    25. Adamec RE, Burton P, Shallow T, et al. Unilateral block of lasting increases in anxiety-like behavior and unconditioned startle effective hemisphere depends on the behavior[J].Physiol Behav, 1999;65(4):739-751.
    26. Matheus MG, Guimar?es FS. Antagonism of non-NMDA receptors in the dorsal periaqueductal grey induces anxiolytic effect in the elevated plus maze[J]. Psychopharmacology,1997;132(1):14-18.
    27. Maj J, Rogoz Z, Skuza G, et al. The effect of CGP37849 and CGP39551, competitive NMDA receptor antagonists,in the forced swimming test[J]. Pol J Pharmacol Pharm,1992;44(4):337-346.
    28. Przegalinski E, Tatarczynska E, Deren-Wesolek A, etal. Antidepressant-like effects of a partial agonist at strychnine- insensitive glycine recetors and a competitive NMDA receptor antagonist [J]. Neuropharmacology, 1997;36(1):31-37.
    29. Skolnick P, Layer RT, Popik P, et al. Adaptation of N-methyl- D- aspartate (NMDA) receptors following antidepressant treatment:implications for the pharmacotherapy of depression[J]. Pharmacopsychiatry,1996;29(1):23-26.
    30. Trullas R, Skolnick P. Functional antagonists at the NMDA receptor complex exhibit antidepressant actions[J].Eur J Pharmacol, 1990; 185(1):1-10.
    31. Maeng S, Zarate CA Jr, Du J, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3- hydroxyl-5-methylisoxazole-4-propionic acid receptors[J].Biol Psychiatry, 2008;63(4): 349-352.
    32. Maeng S and Zarate CA Jr. The role of glutamate in mood disorders:results from the ketamine in major depression study and the presumed cellular mechanism underlying its Antidepressant effects[J].Curr Psychiatry Rep,2007;9(6):467-474.
    33. Lindefors N, Barati S, O'Connor WT. Differential effects of single and repeated ketamine administration on dopamine, serotonin and GABA transmission in rat medial prefrontal cortex[J].Brain Res, 1997; 759(2): 205-212.
    34. Elliott K, Kest B, Man A, et al. N-methyl-D-aspartate (NMDA) receptors, mu and kappa opioid tolerance, and perspectives on new analgesic drug development[J].Neuropsychopharmacology, 1995; 13 (4):347-356.
    35. Wong CS, Cherng CH, Luk HN, et al. Effects of NMDA receptorantagonists on inhibition of morphine tolerance in rats:Binding at mμ-opioid receptors[J].Eur J Pharmacol, 1996; 297 (1):27-33.
    36. Altar CA. Neurotrophins and depression[J]. Trends Pharmacol Sci, 1999; 20(2):59-61.
    37. Fossati P, Radtchenko A, Boyer P. Neuroplasticity: from MRI to depresssive symptoms [J].Eur Neuropsychopharmacol,2004; 14(5): 503-510.
    38. Hashimoto K, Shimizu E, Iyo M. Critical role of brain-derived neurotrophic factor in mood disorers[J].Brain Res Brain Res Rev,2004;45(2): 104-114.
    39. De Foubert G, Carney SL, Robinson CS, et al. Fluoxetine- induced change in rat brain expression of brain-derived neurotrophic factor varies depending on length of treatment[J]. Neuroscience, 2004;128(3):597-604.
    40. Jacobsen JP, Mork A. The effect of escitalopram, desipramine, electroconvulsive seizures and lithium on brain-derived neurotrophic factor mRNA and protein expression in the rat brain and the correlation to 5-HT and 5-HIAA levels[J].Brain Res,2004; 1024 (1): 183-192.
    41. Nagata A, Nakato S, Miyamoto E, et al. Propofol inhibits ketamine-induced c-fos expression in the rat posterior cingulated cortex [J].Ancsth Analg,1998;87(6):1416-1420.
    42. Nakao S, Nagata A, Miyamoto E, et al. Inhibitory effect of propofol on ketamine-induced c-Fos expression in the rat posterior cingulate and retrosplenial cortices is mediated by GABAA receptor activation [J].Acta Anaesthesiol Scand,2003;47(3):284-290.
    43.郭建荣,杜金满,谢道奋,等.异丙酚对氯胺酮所致大脑皮质神经元损害保护作用的机制[J].中华临床药理学与治疗学, 2005; 10 (5):522-526.
    44. Nakao SI, Adachi T, Murakawa M, et al. Halothane and diazepam inhibit ketamine-induced c-fos expression in the rat cingulated cortex[J].Anesthesiology,1996;85(4):874-882.
    45.郭建荣,崔健军,陈卫民,等.异丙酚对氯胺酮诱导的热休克蛋70基因在大鼠后扣带回皮质区表达的影响[J].中华麻醉学杂志, 2003;23(3):204-206.
    46. Lodge D, Anis NA. Effects of ketamine and three other anaesthetics on spinal reflexes and inhibitions in the cat[J]. Br J Anaesth,1984; 56(10):1143-1151.
    47. Orseaba, Bertlikm, Wang LY, et al. Inhibition by propofol (2,6di- isopropylphenol) of the N-methyl-D-aspartate subtype of glutamate receptor in cultured hippocampal neurons.[J].Br J Pharmacol, 1995; 116(2):1761-1768.
    48.焦志华,庄心良,张一,等.异丙酚混合氯胺酮对大鼠海马神经元钠电流的影响[J].中华麻醉学杂志,2006;26(7):605-608.
    1. Mechri A, Saoud M, Khiari G, et al. Glutaminergic hypothesis of schizophrenia: clinical research studies with ketamine[J].Encephale, 2001;27(1):53-59.
    2. Pinault D. N-Methyld-Aspartate Receptor Antagonists Ketamine and MK-801 Induce Wake-Related Aberrant gamma Oscillations in the Rat Neocortex[J]. Biol Psychiatry,2008;63(8):730-735.
    3. Hunt MJ, Raynaud B, Garcia R. Ketamine dose-dependently induces high-frequency oscillations in the nucleus accumbens in freely moving rats[J].Biol Psychiatry,2006;60(11):1206-1214.
    4. Ma J, Leung LS. The supramammillo-septal-hippocampal pathway mediates sensorimotor gating impairment and hyperlocomotion induced by MK-801 and ketaminein rats[J]. Psychopharmacology, 2007;191(4):961-974.
    5. Nishizawa N, Nakao S, Nagata A, et al. The effects of ketamine isomers on both mice behavioral responses and c-fos expression in the posterior cingulate and retroplenial cortices[J]. Brain Res,2000; 857(1):188-192.
    6. Liao R, Wang QY, Zhang L, et al. Expression of HSP70 induced by ketamine in the hippocampus of rat at different age[J]. Sichuan Da Xue Xue Bao Yi Xue Ban,2004; 35(4): 492-495.
    7. Deakin JF, Lees J, McKie S, et al. Glutamate and the neural basis of the subjective effects of ketamine: a pharmaco-magnetic resonance imaging study[J].Arch Gen Psychiatry,2008;65(2):154-164.
    8. Stone JM, Erlandsson K, Arstad E, et al. Relationship between ketamine- induced psychotic symptoms and NMDA receptor occupancy-a [123I]CNS-1261 SPET study[J].Psy chopharmacology, 2008;197(3):401-408.
    9. Holcomb HH, Lahti AC, Medoff DR, et al. Effects of noncompetitive NMDA receptor blockade on anterior cingulate cerebral blood flow in volunteers with schizophrenia[J]. Neuropsychopharmacology, 2005; 30(12):2275-2282.
    10. Rowland LM, Bustillo JR, Mullins PG, et al. Effects of ketamine on anterior cingulate glutamate metabolism in healthy humans: a 4-T proton MRS study[J]. Am J Psychiatry,2005;162(2):394-396.
    11. Nakao SI, Adachi T, Murakawa M, et al. Halothane and diazepam inhibit ketamine-induced c-fos expression in the rat cingulated cortex[J]. Anesthesiology,1996;85(4):874-882.
    12.Nagata A, Nakato S, Miyamoto E, et al. Propofol inhibits ketamine -induced c-fos expression in the rat posterior cingulated cortex[J]. Ancsth Analg,1998;87(6):1416-1420.
    13. Nakao S, Nagata A, Miyamoto E, et al. Inhibitory effect of propofol on ketamine-induced c-Fos expression in the rat posterior cingulate and retrosplenial cortices is mediated by GABAA receptor activation [J]. Acta Anaesthesiol Scand,2003;47(3):284-290.
    14.郭建荣,崔健军,陈卫民,等.丙泊酚对氯胺酮诱导的热休克蛋白70基因在大鼠后扣带回皮质区表达的影响[J].中华麻醉学杂志,2003;23(3):204-206.
    15. Maeng S, Zarate CA Jr, Du J, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3- hydroxyl- 5-methylisoxazole-4-propionic acid receptors[J]. Biol Psychiatry,2008; 63(4):349-352.
    16. Akira Kudoh, Yoko Takahira., Hiroshi Katagai,et al. Small-dose ketamine improves the Postoperative state of depressed patients[J].Anesth Analg,2002;95(1):114-118.
    17. Zarate CA Jr, Singh JB, Carlson PJ, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression[J]. Arch Gen Psychiatry, 2006;63(8):856-864.
    18. Berman RM, Cappiello A, Anand A, et al. Antidepressant effects of ketamine in depressed patients[J].Biol Psychiatry,2000;47(4):351- 354.
    19. Michael Liebrenz, Alain Borgeat, Ria Leisinger, et al. Intravenous ketamine therapy in a patient with a treatment-resistant major depression[J]. SWISS MED WKLY,2007;137(15):234-236.
    20. Garcia LS, Comim CM, Valvassori SS, et al. Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus[J]. Prog Neuropsychopharmacol Biol Psychiatry,2008;32(1):140-144.
    21. Maeng S and Zarate CA Jr. The role of glutamate in mood disorders: results from the ketamine in major depression study and the presumed cellular mechanism underlying its Antidepressant effects [J]. Curr Psychiatry Rep,2007;9(6):467-474.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700