SAR图像目标特征提取与分类方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,SAR已经成为一种不可或缺的军事侦察手段。面对不断增长的SAR图像数据收集能力,如何对这些图像进行自动或半自动快速、准确地解译已经越来越引起人们的关注和重视。SAR ATR是自动或半自动SAR图像解译研究的一个重要方面。利用特征基于模型的SAR ATR系统代表着SAR ATR的发展趋势。本文系统研究了利用特征基于模型SAR ATR系统中,SAR图像目标特征提取方法和分类方法。
     峰值特征是SAR图像目标识别的重要特征,为了由SAR图像快速、精确地提取目标峰值特征,论文首先研究了SAR图像目标峰值特征提取方法,提出了一种子像素级精度的SAR图像目标峰值特征自动提取方法,其对目标峰值位置的估计精度可以达到子像素级。为了在SAR成像参数确定的情况下,尽可能增强目标峰值特征,论文研究了峰值特征增强的SAR目标成像方法。在W.Clem Karl等工作的基础上,导出了求解峰值特征增强SAR成像优化问题的准牛顿迭代方法,建立了SAR成像稀疏投影矩阵T_S,通过用T_S代替原始SAR成像投影矩阵了,有效提高了峰值特征增强SAR成像方法的计算效率。为了提高基于特征匹配的SAR ATR系统的分类效率,论文进一步研究了SAR图像目标方位角估计方法,提出了一种利用峰值特征基于线性回归的SAR目标方位角估计方法,该方法除了具有计算速度快、估计精度较高的特点之外,还能在估计方位角的同时,给出该估计的置信区间,从而能更好地满足利用特征基于模型SAR ATR系统的需要。
     属性散射中心包含了更丰富的可用于目标分类识别的特征,但同时由于特征参数的维数更高,因此相应的特征提取方法更复杂。为了将属性散射中心特征用于SAR目标分类,第三章研究了SAR图像目标属性散射中心特征提取方法,提出了RD-AML-CLEAN SAR图像目标属性散射中心特征提取方法,该方法可由输入SAR图像快速、自动地提取目标的属性散射中心特征。
     在研究特征提取方法基础上,论文第四章研究了利用特征基于模型的SAR目标分类方法。利用特征基于模型的SAR目标分类方法,通过计算提取特征矢量和预测特征矢量之间的似然函数达到目标分类的目的。为了计算该似然函数,需要利用提取特征矢量和预测特征矢量之间的对应关系。本章以基于属性散射中心特征的分类为例,深入研究了多—多对应和1—1对应特征似然函数的计算,通过将求解二分图最佳匹配的算法用于寻找特征之间的最优1—1对应关系,有效提高了1—1对应特征似然函数的计算效率,分析了1—1对应和多—多对应特征似然函数之间的关系,给出了两种次优的1—1对应特征似然函数计算方法。
     最后,论文第五章在前面各章的基础上,设计了一个利用特征基于模型的SAR目标分类仿真实验系统。基于该系统,通过大量MSTAR SAR图像数据的分类实验,
    
     国防科学技术大学研究生院学位论文
    验证了本文特征提取方法以及分类方法的有效性,系统深入的分析了多个因素对SAR
    目标分类性能的影响。
Recently, SAR is evolving to become an indispensable reconnaissance tool for military purposes. The collection capacity for SAR images is growing rapidly, and along with that growth is the expanding need for automated or semi-automated exploitation of SAR images accurately and efficiently. SAR ATR is an important aspect of automatic or semi-automatic SAR image interpretation. Model-based SAR ATR system that uses feature is the trend for SAR ATR. Methods of feature extraction and classification of target in model-based SAR ATR using feature are studied systemically in this paper.
    Peak feature is very important for SAR ATR. In order to extract target's peak from SAR image rapidly and accurately, the method of target's peak feature extraction is firstly studied in this dissertation. And a method of target's peak automatic extraction in sub-pixel accuracy is proposed, it can estimate the position of peak in sub-pixel accuracy. For enhancing target's peak feature with SAR imaging parameters given, the peak-enhanced SAR imaging method is studied. Based on work of W. Clem Karl etc., the quasi-Newton iteration method for solving the optimization problem of SAR imaging is derived, the sparse projection matrix Tsof SAR imaging is constructed, by replacing the original SAR imaging projection matrix T with TS, the computation efficiency of peak-enhanced SAR imaging is improved greatly. In order to improve the efficiency of classification based on feature matching, the method of azimuth estimation from SAR image is studied. A method of target's azimuth estimation from SAR image using peak featur
    e based on linear regression is proposed, besides goodish estimation accuracy and high computation efficiency, it can also provide the confidence interval of the estimation, which can meet the need of model-based SAR ATR system that uses feature very well.
    Attributed scattering center comprises more features for SAR ATR, but because of its high dimensionality, the method of attributed scattering center extraction is more complicated. In order to put attributed scattering center 'into SAR ATR use, the method of attributed scattering center extraction is studied in chapter 3. And the RD(Region Decoupled)-AML(Approximate Maximum Likelihood)-CLEAN method is presented for extracting attributed scattering center from SAR image, it can extract scattering center from SAR image quickly and automatically.
    Based on the method of feature extraction, the method of model-based SAR target classification using feature is studied. The model-based SAR target classifier that uses feature accomplishes classification by computing the likelihood function between extracted
    
    
    
    and predicted features. Computation the likelihood function requires using the correspondences between extracted and predicted features. Taking attributed scattering center-based classification as example, the computation of feature likelihood function under many-many and 1-1 correspondence are studied, by using the algorithm of bipartite graph perfect matching to find the optimal 1-1 correspondence, the computation efficiency is improved greatly, the relations of likelihood function between 1-1 and many-many correspondence are analyzed, and two sub-optimal methods of calculating the likelihood function of 1-1 correspondence are presented.
    Finally, based on preceding chapters, an experiment system of model-based SAR target classification using feature is devised in chapter 5, based on this system, through large number of experiments using MSTAR SAR image, the validities of methods of feature extraction and classification are verified, effects of several factors on performance of SAR target classification are analyzed thoroughly and systemically.
引文
[1] 星载合成孔径雷达军事应用研究论文集,国家863计划信息获取与处理专家组,1996
    [2] 魏钟铨等,合成孔径雷达卫星,国家863计划308主题空间信息获取与处理系列专著,科学出版社,2001
    [3] 卫星应用现状与发展,总装备部卫星有效载荷及应用技术专业组应用技术分组,中国科学技术出版社,2000
    [4] 李春升等,空载合成孔径雷达技术及展望,电子学报,Vol.23,No.10,1995,156-159
    [5] L.M.Novak, G. J.Owirka. A.L.Weaver, Automatic target recognition using enhanced resolution SAR data, IEEE Transactions on Aerospace and Electronic Systems VOL.35,No. 1 Jan. 1999,157-175
    [6] D.E.Dudgeon, R.T. Lacoss, An overview of automatic target recognition, Lincoln Laboratory Journal, Vol.6, No.1, 1993, 3-10
    [7] B. Bhanu, D E. Dudgeon, E.G. Zelnio, A. Rodenfeld, D. Casasent, I.S. Reed. Introduction to the special issue on automatic target detection and recognition, IEEE Transactions on Image Processing, Vol.6 No, 1 1997, 1-6
    [8] G.A. Shaw, A.H. Anderson, J.C. Anderson, Project Report, RASSP-5, RASSP Benchrnark 4 Technical Description, Lincoln Laboratory, 9 January 1998
    [9] Timothy D. Ross, Jeffrey J. Bradley. Lanson J. Hudson. Michael P. O'connor, SAR ATR-So What's the problem? -An MSTAR Perspective. SHE Vol. 3721. 1999,662-672
    [10] T.D.Ross, S.W. Worrel, V. J.Velten. J.C.Mossing, M.L. Bryant. The MSTAR evaluation methodology. SPIE Vol. 3721, 1999, 705-715
    [11] Leslie M. Novak, Gregory J. Owirak and Christine M. Nestishen, Radar target identification using spatial matched filters, pattern recognition, Vol. 27. No. 4, 1994,607-617
    [12] John A. Richards, Target model generation from multiple synthetic aperture radar images, doctor's thesis. 2001, MIT
    [13] J.C.mossing, T. D. Ross. Evaluation of SAR ATR algorithm performance sensitivity to MSTAR extended operating conditions, SPIE, Vol.3370, 1998, 554-565
    [14] T.D.Ross, S.W. Worrel, V. J.Velten, J.C.Mossing, M.L.Bryant, Standard SAR ATR evaluation experiments using the MSTAR public release data set. SPIE. Vol.3370, 1998, 566-575
    
    
    [15] J.C.Henry, The Lincoln Laboratory 35 GHz airborne polarimetric SAR imaging system, IEEE National Telesystems Conference, March 1991, 353-358
    [16] Air Force Research Laboratory , Model Based Vision Laboratory, Sensor Data Management Syatem ADTS Web Page: Http ://www.mbvlab .wpafb.af.mil/public/sdms/datasets/adts
    [17] Novak, L. M., Burl, M. C., and Irving, W. W., Optimal polarimetric processing for enhanced target detection, IEEE Transactions on Aerospace and Electronic Systems VOL.29,No.1,Jan. 1991, 234-244
    [18] Principe, J. C., Radisovljevic, A., Fisher, J., Hiett, M., and Novak L. M., Target prescreening based on a quadratic gamma detector, SPIE, Algorithms for Synthetic Aperture radar image IV, Orlando, Fl\L, Apr. 1997
    [19] Munchurl Kim, focus of attention based on gamma kernels for automatic target recognition, doctor's thesis, university of florida,1996
    [20] Vic larson, Les Novak, Polarimetric subspace target detector for SAR data based on the Huynen dihedral model, SPIE Vol. 2487, 235-250
    [21] Kreithen, D. E., Halversen, S. D., and Oqirka, G. J., Discriminating targets from clutter, Lincoln Laboratory Journal, Vol.6, No.1, 1993, 25-52
    [22] William W.Irving, Leslie M.NOVAK, ALAN S.Wilisky, A Multiresolution approach to discrimination in SAR imagery, IEEE Transactions on Aerospace and Electronic Systems VOL.33, No.4, Oct. 1997, 1157-1169
    [23] Principe, Jose C., Radisavljevic, Alex; Fisher, John III; Hiett, Margarita,Novak, Leslie M., Target prescreening based on a quadratic gamma discriminator, IEEE Transactions on Aerospace and Electronic Systems v 34 n 3 Jul 1998. 706-715
    [24] G.J.Owirka, S.M. Verbout, L.M.Novak, Templated-based SAR ATR performance using different image enhancement techniques, SPIE Vol.3721, 1999, 302-319
    [25] L.M.Novak, S. D.Halversen, GJ.Owirka, M.Hiett, Effects of polarization and resolution on SAR ATR, IEEE Transactions on Aerospace and Electronic Systems VOL.33, No.l, Jan 1997,102-115
    [26] Gerald R.Benitz, High-definition vector imaging, Lincoln laboratory journal, Vol. 10, No.2, 1997, 147-169
    [27] Leslie M. Novak, Gregory J. Owirak, William W.Irving, Performance of 10-and 20-target MSE classifiers, IEEE Transactions on Aerospace and Electronic Systems VOL.36, No.4, Oct. 2000,1279-1289
    [28] Eric R. Keydel, Shung Wu Lee, John T. Moore, MSTAR Extended operating conditions: A Tutorial, SPIE Vol.2757, 228-242
    [29] Air Force Research Laboratory , Model Based Vision Laboratory, Sensor Data
    
    Management Syatem ADTS Web Page: Http://www.mbvlab.wpafb.af.mil/public/sdms/datasets/mstar
    [30] Joseph Diemunsch, John Wissinger, Moving and Stationary Target Acquisition and Recognition(MSTAR) Model-Based Automatic Target Recognition: Search Technology for a Robust ATR, SPIE, Vol.3370, 1998, 481-492
    [31] Thomas W. Ryan, Brian Egaas, SAR Target Indexing with Hierarchical Distance Transform, SPIE Vol.2757, 1996, 243-252
    [32] Cyganski, D., Kilian, J., Fraser, D., Performance of an ATR index module against MSTAR data, Proceedings of the 1999 11th IEEE/AESS Radar Conference-Radar Into the Next Millennium, 75-78
    [33] J.Wissing, R. Washburn, N. Friedland, A. Nowicki, D. Morgan, C. chong, R. Fung, Search algorithm for model-based SAR ATR, SPIE Vol.2757, 279-293
    [34] Eric R.Keydel, Shung Wu Lee, Signature Prediction for model-based automatic target recognition, SPIE Vol.2757, 306-317
    [35] John L. Volakis, XPATCHJ: A High-frequency Electromagnetic-Scattering prediction code and environment for complex three-dimensional objects, IEEE Antennas and Propagation magazine, Vol.36, No.1, February 1994, 65-69
    [36] R. Nolan, J. Hughes, Synthetic signature analysis using ray trace decomposition, SPIE, Vol.3721, 1999, 589-597
    [37] E. R. Keydel, W. D. Williams, R. Sieron, V. G. Rajlich, S. A. Stanhope, reasoning support and uncertainty prediction in model-based vision SAR ATR, SPIE, Vol.3721, 1999, 620-631
    [38] W. D. Williams, J. Wojdacki, E.R. Keydel, R. Freeling, A. Morgan, R. Sierson. S. A. Stanhope, V. G. Rajlich, Development of class models for model-based automatic target recognition, SPIE, Vol.3721, 1999, 650-661
    [39] Philip L.Douville, Measured and predicted synthetic aperture radar target comparison. IEEE Transactions on Aerospace and Electronic Systems VOL.38, No.l, January 2000,25-37
    [40] Gil J.ettinger, Gregory A. Klanderman, William M.Welis, W.Eric L.Grimson, A probabilistic optimization approach to SAR feature matching, SPIE, Vol. 2757,318-329
    [41] J. Wissinger, R. Ristroph, J. R. diemunsch, W.E. Severson, E. Fruedenthal, MSTAR's extensible search engine and model-based inferencing toolkit, SPIE, Vol.3721, 1999, 554-571
    [42] William Irving, Gil Ettinger, Classification of Target in Synthetic Aperture Radar Imagery via Quantized Grayscale Matching, SPIE Vol.3721, 1999, 320-331
    
    
    [43] DeVore, Michael D., Lanterman, Aaron D., O'Sullivan, Joseph A, ATR performance of a Rician model for SAR images,SPIE Vol.4050,2000,34-45
    [44] J.A.O'Sullivan, M.D.DeVore,V.Kedia, M.I.Miller, Automatic target recognition performance for SAR imagery using a conditionally Gaussian model, IEEE Transactions on Aerospace and Electronic Systems, Vol.37, No.1, Jan, 2001, 91-108
    [45] M. D. Devore, J. A. O'Sullivan, A performance-complexity study of several approaches to automatic target recognition from synthetic radar images, IEEE Transactions on Aerospace and Electronic Systems, Accepted for publication
    [46] J.A.O'sullivan, M.D.Devore, Performance-complexity tradeoffs for several approaches to ATR from SAR images, SPIE, Vol.4053, 2000
    [47] Michael D. Devore, Recognition performance from synthetic aperture radar subject to system resource constraints, doctor's thesis, Washington University, August, 2001
    [48] T. Chen., T. O. Binford, Context and Quasi-invariants in ATR with SAR imagery, Image Understanding Workshop, Vol. 2, 1998, 839-848
    [49] B. Wang, TO.Binford, Generic, model-based estimation and detection of peaks in image surfaces, Image Understanding Workshop, 1996, 913-922
    [50] Tsung-liang chen, Automatic target recognition with synthetic aperture radar imagery, doctor's thesis, Stanford University, 2000
    [51] By-Her Wang, An Automatic target recognition system for SAR imagery, doctor's thesis, Stanford University, 1997
    [52] J.C.Principle, D. Xu, J.W. Fisher III, Pose estimation in SAR using an information theoretic criterion, SPIE. Vol. 3370, 218-229
    [53] J. Principe, Q. Zhao and D. Xu.,A novel ATR classifier exploiting pose information. In Proceedings of Image Understanding Workshop, 833-836, Monterey, CA., (1998)
    [54] Zhao, Qun; Principe, Jose C.; Brennan, Victor L; Xu, Dongxin; Wang, Zheng, Synthetic aperture radar automatic target recognition with three strategies of learning and representation, Optical Engineering v 39 n 5 2000. 1230-1244
    [55] M.L. Bryant, F. D. Garber, SVM classifier applied to the MSTAR public data set, SPIE Vol.3721, 1999, 355-361
    [56] Nilubol, Chanin, Two-dimensional HMM classifier with density perturbation and data weighting techniques for pattern recognition problems, doctor's thesis, Georgia institute of technology,2000
    [57] Dane P. Kottke, Paul D. Fiore, Kathy L. Brown, Jong-Kae Fwu, A Design for HMM-based SAR ATR, SPIE, Vol.3370, 541-551
    [58] 付琨,高分辨率单视单极化SAR图像地物分类方法研究,国防科技大学研究生院博士学位论文,2002. 4
    
    
    [59] 张翠,郦苏丹,王正志,基于MRF场的SAR图像分割方法,遥感技术与应用,Vol.1,2001,66-68
    [60] 张翠,郦苏月,王正志,SAR图像目标分割与方位角估计,国防科技大学学报,Vol.5,2001,74-78
    [61] 万朋,王建国,黄顺吉,SAR图像目标综合检测方法,电子学报,Vol.3,2001,323-325
    [62] 王运锋,王建国,赵志钦,黄顺吉,数学形态学在SAR图像目标识别中的应用,系统工程与电子技术,Vol.3,2001,23-27
    [63] 万朋,王建国,赵志钦,黄顺吉,一种SAR图像目标识别方法,系统工程与电子技术,Vol.11,2000,22-24
    [64] 刘培国,刘克成,何建国,尹家贤,谭怀英,地表车体的电磁散射研究,电波科学学报,Vol.3,2001,306-309
    [65] 姜文利,唐白玉,徐可斌,柯有安,高频区雷达目标散射模型及其参数估计,电子学报,Vol.3,1998,70-74
    [66] 孙真真,陈曾平,庄钊文,郭桂蓉,一种高频区复杂雷达目标二维散射的参数模型,国防科技大学学报,Vol.4,2001,113-119
    [67] 王一丁,纪慧波,洪峻,吴一戎,带限条件下雷达信号的超分辨处理方法,系统工程与电子技术,Vol.7,2002,113-115
    [68] 姜卫东,陈曾平,庄钊文,学区雷达目标散射中心提取及识别方法研究,系统工程与电子技术,Vol.7,2000,72-74
    [69] 孙长印,保铮,雷达成像近似二维模型及其超分辨算法,电子学报,1999,27(12).
    [70] Jyh-Jong Liu,A Model-based object recognition system using geometric hashing with attributed features, doctor's thesis, New York university,1998
    [71] Martin Garcia Keller, Matching algorithm and feature match quality measures for model-based object recognition with application to automatic target recognition, Doctor's thesis, New York university, May 1999
    [72] William M.wells Ⅲ, Statistical approaches to feature-based object recognition, International Journal of computer vision, Vol.21, 1997, 63-98
    [73] M. Boshra, B. Bhanu, Performance modeling of feature-based classification in SAR imagery, SPIE, Vol.3370, 1998, 661-674
    [74] Meth R and Chellappa R, Automatic Classification of Targets in SAR Imagery Using Topographic Features, Proc. SPIE, 1996, 2757:186-193.
    [75] C. -P. Yeang, J.H.Shapiro, target identification of strimap- and spotlight-models SARs using physics-based signatures, SPIE Vol. 3721, 1999, 748-762
    [76] Emre Ertin, Lee C. Potter, Polarimetric Classification of scattering centers using M-ary Bayesian decision rules, IEEE Transactions on Aerospace and Electronic
    
    Systems VOL.36, No.3, July 2000,738-747
    [77] Firooz Sadjadi, Improved target classification using optimum polarimetric SAR Signatures, IEEE Transactions on Aerospace and Electronic Systems VOL.38, No.1, January 2000,38-49
    [78] B. Bhanu, G.Jones III, S. Ahn, recognizing articulated objects and objects articulation in SAR images, SPIE, Vol.3370, 1998, 493-507
    [79] R. K. Mehra, B. Racichandran, A. Srivastava, MSTAR target classification using Bayesian pattern theory, SPIE, Vol.3370, 1998, 675-684
    [80] W. E. Smith, T. Irons, J. Riordan, S. Sayre, peak stability derived from phase history in synthetic aperture radar, SPIE Vol.3721,1999, 450-461
    [81] B. Bhanu, G.Jones III, recognizing MSTAR target variants and articulations, SPIE, Vol.3721, 1999, 507-519
    [82] Jones, Grinnell III; Bhanu. Bir, Recognition of articulated and occluded objects, IEEE Transactions on Pattern Analysis and Machine Intelligence v 21 n 7 1999. 603-613
    [83] Hung-Chih Chiang and Randolph L.Moses ATR Performance Prediction Using Attributed Scattering Features, SPIE Vol.3721, April 1999, 785-796
    [84] Isidore Rigoutsos, Robert Hummel, A Bayesian Approach to model matching with Geometric hashing, Computer vision and image understanding, Vol.62, No.1, July, 1995,11-26
    [85] Hung-Chih Chiang, Randolph L. Moses, Lee C. Potter, Model-based Classification of radar images, IEEE Transactions on Information Theory, Vol. 46, No.5, August 2000,1842-1853
    [86] Hung-Chih Chiang, Randolph L. Moses, Lee C. Potter, Model-based Bayesian feature matching with application to synthetic aperture radar target recognition, Pattern recognition, 34(2001) , 1539-1553
    [87] S. A. Stanhope, E. R. Keydel, W. D. Willams, V. G. Rajlich, R. Sieron, Use of mean-square-error matching metric in a model-based automatic target recognition system, SPIE. Vol. 3370, 360-368
    [88] R. Bhalla, H.Ling, Three-dimension scattering center extraction using the shooting and bouncing ray technique, IEEE Transactions on Antennas and Propagation, vol.44, Nov. 1996
    [89] M.A.Stuff, Three-dimensional analysis of moving target radar signals:methods and implications for ATR and feature-aided tracking, SPIE Vol.3721, 1999, 485-496
    [90] S. M. Verbout, W. W. Irving, A.S. Hanes, Improving a templated-based classifier in a SAR automatic target recognition system by using 3-D target information, Lincoln
    
    Laboratory Journal, Vol.6, No.1, 1993, 53-76
    [91] D.Gregory Arnold, Rifka Claypool, Vince Velten, Krik Sturtz, Synthesizing invariant 3-D Rigid Scattering Centers, SPIE Vol.43 82(2001) ,395-403
    [92] Vincent J.Velten, Synthetic aperture radar(SAR) geometric invariants: Experimental results, SPIE Vol.3721,520-531
    [93] Vincent J.Velten, Geometric invariants for synthetic aperture radar(SAR) sensors, SPIE Vol.3370,176-187
    [94] J. A. Richards, J.W.Fisher, A. S. Willsky, Target model generation from multiple SAR images, SPIE, Vol.3721, 1999, 598-611
    [95] 计科峰,匡纲要,郁文贤,SAR图像目标峰值提取及稳定性分析,现代雷达,Vol.25(2) ,2003,15-18
    [96] Michael P. Hurst, Raj Mittra, Scattering center analysis Via Prony's Method, IEEE Transactions on Antennas and Propagation, Vol.35, No.8, August 1987, 986-988
    [97] Rob Carriere, Randolph L. Moses, High resolution radar target modeling using a modified prony estimator, IEEE Transactions on Antennas and Propagation, Vol.40, No.1, January 1992, 13-18
    [98] Sacchini J J, Steedly W M, Moses R L, Two-Dimensional Prony Modeling and Parameter Estimation, IEEE Trans Signal Processing, 1993, 41(11) :3127-3137.
    [99] 郭桂蓉等著.电磁特征抽取与目标识别[M].国防科技大学出版社,1996
    [100] Rihaczek A W and Heershkowitz S J, Man-made Target Backscattering Behavior : Applicability of Conventional Radar Resolution Theory, IEEE Trans. A.E.S., 1996. 32(4) :809-824.
    [101] Z.-S.Liu, J.Li, Feature extraction of SAR targets consisting of trihedral and dihedral corn reflectors , IEE Proc.-Radar, Sonar Navig., Vol.145,No.3, June 1998, 161-172
    [102] Rob Carriere, Lee C.Potter, Randolph L.Moses, and Chinghui J.Ying, Radar Target Modeling: A GTD-Based Approach, SPIE Vol.2234, 67-78
    [103] Lee C.Potter, Da-Ming Chiang ,Rob Carriere and Michael J.Gerry, A GTD-Based Parametric Model for Radar Scattering, IEEE Transactions on Antennas and Propagation, Vol.43,NO. 10, October 1995,1058-1066
    [104] Lee C.Potter, Randolph L.Moses, Attributed Scattering Centers for SAR ATR, IEEE Transactions on image processing, Vol.6, No.1. January 1997,79-91
    [105] Da-Ming Chiang, Parametric Signal Processing Techniques for Model Mismatch and Mixed Parameter Estimation, doctor's dissertation, The Ohio state University, 1996
    [106] Michael J.Gerry, Lee C.Potter, Inder J.Gupta Andria van der merwe, A Parametric Model for Synthetic Aperture Radar Measurement, IEEE Transactions on Antennas and Propagation, Vol.47, No.7, July 1999,1179-1188
    
    
    [107] Michael A. Koets, Randolph L.Moses, Feature extraction using Attributed Scattering Center Models on SAR Imagery, SPIE Vol.3721, April 1999,104-115
    [108] R. Meth, R. Chellappa, target matching in synthetic aperture radar imagery using a nonlinear optimization technique, SPIE, Vol.3721, 1999, 532-542
    [109] Reuven Meth, Target characterization and matching in synthetic aperture radar imagery, doctor's thesis, university of Maryland, 1998
    [110] Patroonvergelijking met behulp van gelijkenismaten, Pattern matching using similarity measure, doctor's thesis, 2000
    [111] M.Hagedoorn, R. C. Veltkamp, Reliable and efficient pattern matching using the invariant metric, International journal of computer vision, 21(3) , 1999, 103-115
    [112] D. M, Mount, N. S. Netanyahu, J. LeMoigne, Efficient algorithms for robust point pattern matching and application to image registration, pattern recognition,32, 1999, 17-38
    [113] Remco C. Veltkamp, Shape matching: Similarity measure and algorithms, UU-CS-2001-03, January 2001
    [114] Bin Luo, Statistical Methods for point pattern matching, doctor's thesis, New York University, 2001
    [115] Maximilian Riesenhuber, Tomaso poggio, Model of Object Recognition, Nature neuroscience supplement, Vol.3 2000, 1199-1204
    [116] D. Pastina, A. Farina, J. Gunning, P. Lombardo, Two-dimensional super-resolution spectral analysis applied to SAR Images, IEE Proc.-Radar, Sonar Navig., Vol. 145, No.5, October 1998, 281-290
    [117] DeGraaf, S.R., SAR imaging via modem 2-D spectral estimation methods, IEEE Transactiond on Image Processing, Vol.7,No.5,May 1998,729-761
    [118] Jian Li, Petre Stocia , An Adaptive Filter Approach to Spectral Estimation and SAR Imaging, IEEE Transactions on Signal Processing, Vol. 44,No. 6, June 1996,1469-1484
    [119] ZhaoQiang Bi, Jian Li, Zheng-She Liu , Super Resolution SAR Imaging via Parametric Spectral Estimation Methods, IEEE Transactions on Aerospace and Electronic Systems VOL.35, No.1 January 1999,267-281
    [120] Renbiao Wu, Jian Li, ZhaoQiang Bi, Petre Stocia, SAR Image Formation Via Semiparametric Spectral Estimation, IEEE Transactions on Aerospace and Electronic Systems VOL.35, No.4 October 1999, 1318-1332
    [121] J. W. Odendaal, E. Barnnard, C. W. I. Pistorius, Two-dimensional superresolution radar imaging using the MUSIC algorithm, IEEE Transactions on Antennas and Propagation, Vol.42, No.10, October 1994,1386-1391
    
    
    [122] Jenho Tsao, Bernard D. Steinberg, Reduction of sidelobe and speckle artifacts in microwave imaging: The clean technique, IEEE Transactions on Antennas and Propagation, Vol.36, No.4, April 1998, 543-556
    [123] J. Gupta, A. Gandhe, comparison of various enhanced radar imaging techniques, Proc. SPIE, vol. 3370, pp.250-260, Apr. 1998
    [124] Inder J. Gupta, Mark J. Beals, Ali Moghaddar, Data Extrapolation for high resolution radar imaging, IEEE Transactions on Antennas and Propagation, Vol.42, No.11, November 1994, 1540-1545
    [125] E. Brito, S. H. Chan, S. D. Cabrera, SAR image formation using 2D reweighted minimum norm extrapolation, SPIE, Vol.3721,1999, 78-91
    [126] Ausherman D A ,et al. Developments in Radar Imaging, IEEE Trans. AES,1984, : 20(4) , 363-398
    [127] David C. Munson, JR., James dennis o'Brien, W. Kenneth Jenkins, A Tomographic formulation of spotlight-mode synthetic aperture radar, Proceedings of the IEEE, Vol. 71. ,No.8, 1983, 917-925
    [128] Desai M and Jenkins W K, Convolution Back-Projection Image Reconstruction for Synthetic Aperture Radar, IEEE 1984 International Symp. on CAS, 1984, Vol. 1:261-263.
    [129] Dean L.Mensa, High resolution radar cross-section imaging, Artech House, 1991
    [130] 张直中,微波成像术,科学出版社,1990.
    [131] D. C. Munson Jr., R.L.Visentin, A signal processing view of strip-mapping synthetic aperture radar, IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No. 12, December,1989, 2131-2147
    [132] 张澄波,综合孔径雷达原理、系统分析与应用,科学出版社,1989
    [133] Mujdat certin, W. Clem Karl, Superesolution and edge-preserving reconstruction of complex-valued synthetic aperture radar images, proceedings of 2000 International conference on image processing , Vol. 1 701-704, Vancouver, Canada, September 2000
    [134] Mujdat certin, W. Clem Karl, Enhanced ,high resolution radar imaging based on robust regularization, proceedings of 2000 International conference on Acoustics, Speech, and signal processing, Istanbul ,Turkey, June 2000
    [135] Mujdat cetin, William Clem Karl, Feature-enhanced synthetic aperture radar image formation based on non-quadratic regularization, IEEE Trans. Image Processing, vol. 10, pp. 623-631, Apr 2001
    [136] Mujdat cetin, William Clem Karl, David A.Castanon, Evaluation of a regularized SAR imaging technique based on recognition-oriented features, SPIE Vol.4053,
    
    April 2000
    [137] 徐士良,C语言常用算法程序集,清华大学出版社,1994
    [138] 陈宏盛,刘雨编,计算方法,国防科技大学出版社,2001
    [139] 粟塔山等编著,最优化计算原理与算法程序设计,国防科技大学出版社,2001
    [140] 计科峰,匡纲要,郁文贤,利用SAR复图像数据重建频率域数据的方法研究,《国防科技大学第二届研究生学术活动节论文集》,2002
    [141] 吴翊,李永乐,胡庆军,应用数理统计,国防科技大学出版社,1995
    [142] L. I. Voicu, R. Patton, H. R. Myler, multicriterion vehicle pose estimation for SAR ATR, SPIE Vol.3721, 1999, 497-506
    [143] R. Meth, Target/shadow segmentation and aspect estimation in synthetic aperture radar imagery, SPIE Vol. 3370, 188-196
    [144] 计科峰,匡纲要,郁文贤,基于线性回归的SAR目标方位角估计方法,现代雷达,已录用
    [145] Ming-Wang Tu, Inder J.Gupta, Eric K. Walton, Application of Maximum Likelihood Estimation to radar imaging , IEEE Transactions on Antennas and Propagation, Vol.45, No. 1, January 1997, 20-27
    [146] 张毓晋,图象分割,科学出版社,2001
    [147] 张贤达,现代信号处理,清华大学出版社,1994
    [148] M.H. Hansen, B. Yu, Model Selection and the Principle of Minimum Description Length, Journal of the American Statistical Association 96, 2001, 746-774
    [149] 汪茂光,几何绕射理论,西北电讯工程学院出版社,1985
    [150] 刘福声,罗鹏飞,统计信号处理,国防科技大学出版社,1999
    [151] Thomas Coleman, Mary Ann Branch, Andrew Grace, Optimization toolbox for use with Matlab, The Math works Inc., 1999
    [152] Stoica P and Nehorai A, Music, Maximum Likelihood, and Cramer-Rao Bound, IEEE Trans. ASSP, 1989, 37(5):720-741.
    [153] 盛骤等,概率论与数理统计,高等教育出版社,1989年第二版
    [154] 孙积祥,现代模式识别,国防科技大学出版社,2002
    [155] 邓成梁,运筹学(OR)的原理和方法,华中理工大学出版社,1996
    [156] 卢开澄,单目标、多目标与整数规划,清华大学出版社,1999
    [157] 陈庆华等,组合最优化技术及其应用,国防科技大学出版社,1989
    [158] 徐俊明,图论及其应用,中国科技大学出版社,1998
    [159] 戴一奇,胡冠章,陈卫,图论与代数结构,清华大学出版社,1995
    [160] 孙积祥,数字图像处理,河北教育出版社,1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700