紫色土坡耕地的降雨产流机制及产流后土壤水分的变化特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要紫色土是世界上一种特殊的土类,集中分布于四川盆地,以其易成土性和富盐基性(自然肥力高)养育着500人以上/平方公里的人口而著称于世,但是它分布的区域存在严重的季节性干旱和时有发生的洪灾等水问题。综观国内外有关研究,我们认识到对紫色土土壤产流和水分变化特征的认识,是认识该区土壤侵蚀与保护、农田水量平衡、非点源污染等的机理和规律的基础,也是解决该区水患问题、实施径流调节而提高旱地的雨水利用程度,以及水肥管理等的基本科学依据。因此,以水文学原理为基础,采取水文学与土壤学、地理学、水土保持学等相结合的途径,研究紫色土坡耕地的降雨产流机制与产流后土壤水分的变化特征,是具有新的科学价值和现实意义的。经近几年的观测和理论分析,取得了以下结果和创新的认识:
     1)在降雨强度较大的情况下,保护性耕作制——聚土免耕的产沙强度明显较常规耕作制——顺坡耕作的小,说明聚土免耕耕作制防治土壤流失是有效的;但当土壤达到饱和后,聚土免耕的径流强度与常规耕作的差异较小,产沙强度也增大,因此,聚土免耕防治水土流失的能力是有限的。
     2)耕作制下紫色土的产流主要机制是:1)当雨前土壤含水量未达到饱和状态时,表面产流起始时间有明显滞后现象,这与紫色土的快吸水性和较多非毛管孔隙密切相关;当雨前土壤较干燥,降雨初期雨强较大时,易形成临时相对不透水表层,表面产流峰也有明显滞后现象。2)表面径流的产流方式主要是超渗产流,当土壤达到饱和状态后,有
    
     四川大学博士学位论文
     小部分回归流发生,但主要是饱和超渗产流发生,因为紫色土的相对
     不透水层和其它透水障碍层不明显。3)壤中流主要是饱和产流,与降
     雨过程有明显的滞后,而且雨停后的壤中流产流历时与降雨特征无
     关。4)耕作层(0—20cm)的壤中流是很明显的,如当雨强达120
     mlllirl时,其产流强度可达到3 5 mlllirl。当土壤达饱和后,壤中流强度
     与雨强有一定的联系,说明耕作层的大孔隙介质流和管流是存在的。
     因此,应特别注意防止施肥和灌水在此层的流失。
     3)同一块紫色土坡耕地内,土壤水分的时空变化有较明显的差异。地块
     上部,耕层土壤含水量递减较快,因此,表现出较易受旱的情况,应
     采取少量多次的灌溉原则。据观测,土壤接受一定降雨后,耕层在雨
     后一定时期内,能保持基本稳定的含水量,可称之为“紫色土耕层持
     水平台期”。这种平台期因土壤产流机制不同而异。若有降雨使土壤
     饱和(产流)发生,Zwt天后,在无外界水源条件下,土壤含水量大
     约有一周的稳定期,这一时期是施肥的有益时期。这与以往的一些研
     究结果不同。过去研究认为土壤接纳降水后,土壤水分含量要么一直
     递减,要么稳定一段时间再递减。我们提出的土壤接纳降水后的土壤
     水分的变化模式是“递减——稳定——再递减”,特别是紫色土坡耕
     地的耕作层土壤水分明显符合此模式变化。
     4)表面径流的数值模拟能揭示表面产流的一般趋势,而且有一定的有效
     性,通过调整模拟输入参数,能使模拟达较理想程度。土壤水分变化
     的数值模拟结果——坡耕地的上、中、下各部位的模拟土壤水分变化
     过程基本一致,这与实际观测结果差异较大,因此,还不能准确反映
     坡耕地不同部位的水分变化特征,但通过对模拟参数的调整,可获得
     一定可靠性的模拟结果,尽管未达到很理想的程度。同时也提示我
     们,在进行数值模拟时,如何把土壤水势和作物根水势融合起来(不
     是简单的迭加),以及其它参数的合理定量化,才能更好地模拟有作
     物生长条件下的土壤水的复杂运动。
     5)把产流机制与土壤水分变化过程紧密结合起来研究,认识到了紫色
     土不同机制的产流发生后,其土壤水分的变化过程不一致,尤其是
     土壤养分的流失差异明显;而且认识到“紫色土耕层持水平台期”
     — —2——
    
     四川大学博士学位论文
     长短与土壤产流机制密切相关,因而进一步完善和弥补了以往土壤
     学和农艺学的不足认识,为旱地农田的水利建设(径流调节设施)
     和水肥管理提供了可靠科学依据。比如:根据当地坡耕地的产流机
     制和土壤水分变化规律,可拦蓄和利用含土壤养分较多的壤中流来
     调节土壤的需水量,等等。
     6)认识到目前我们布设的水土流失观测小区设置的局限性:坡脚有渗漏
     阻碍面(墙),不能将表面径流和壤中流分开。当有饱和产流发生
     时,坡脚处的部分壤中流成为地面径流(包括表面径流和壤中流),
     使所测得的结果与实际的差异较明显。这一点,对指导水土
Purple soil classified as Regosols in FAO soil taxonomy and Pup-Cambols in china soil taxonomy, is one of well known soil types with the particularities such as weathering easily, high natural fertility, etc., and feeding population of 500/km2. However, it often meets the water disasters (sporadic flooding and serious seasonal drought). For this reason, our objective is the research of the mechanism of runoff generation and characteristics of moisture changing process of slope farming purple soil, accordding to the theory of hydrology and the intergrated-means of compined the hydrology with the peodology, because it is the basis of the studies: soil erosion and protection, farming-land water balance, Non-point pollute, etc., and the direction gist of runoff arrange implement, solving water hazard and management of irrigation and fertilizer. And the major results and some new viewpoints were presented as follow:
    1) Sediment content of CN tillage system in runoff process is substantially low compared to ST under rainfall with high intensity, showing CN bear the efficient capacity of control soil loss. Nevertheless, when soil is saturated, the runoff intensity of both tillage systems is near, implicating CN has the limited function of reducing runoff.
    2) Based on the case analysis of observed all rainfall-runoff generation processes, A) the initiation time hysteresis of surface runoff generation is
    
    
    
    notable when rainfall fall upon the unsaturated purple soils, which is attributed to the property of rapid water sorption and much non-capillary porosity. When soil antecedent condition is dry and the initial rainfall intensity is high, peak surface runoff also considerably lag behind that of rainfall, because of the formation of temporary relative impermeable top layer; B) Surface runoff is controlled primarily by infiltration-excess runoff mechanism under unsaturated condition; the major fraction of surface runoff are dominated by saturated infiltration-excess runoff response, only a small fraction by return flow mechanism when soil is saturated; C) Subsurface flow is dominated by saturated runoff mechanism, and the duration of subsurface post the rainfall end is dependent upon rather the soil properties than the rainfall characteristics; D) Subsurface flow intensity in cultivated soil layer (0~20cm) is high up to 35mm/h when rainfall intensity is up to 120mm/h, indicating the existing of macropores and pipe flow in cultivated layer. Therefore, throughflow rate is, in somewhat, rely upon the intensity of rainfall.
    3) The moisture changing processes at various location of a slope purple soil are obvious different: at up-location, soil moisture reduce more rapidly, therefore, drought will easily response to it at which the principle of often and little irrigation should be adopted. After a rainfall end, soil moisture content of cultivated layer is nearly stable within a certain period that is one week if rainfall leads to saturated runoff generation and is the optimal duration of fertilization. And we found the model of moisture changing is "reduction---stabilization---reduction" while the former researchers' result is linearly reduction or reduction after a steady period.
    4) Numerical simulation running of surface runoff shows simulation results presented the general features of surface runoff generation, and certain efficiency. After adjusting the input parameters, the simulation results show a good meet to the observed data. The numerical simulation of moisture varying processes have not shown a good fit to the measured, showing a
    
    
    
    moisture varying model of simple reduction, and not revealed the distinct courses at various slope locations. However, after simulating by the selected parameters shown the difference between various slope locations, the the coefficient of efficacy (CE) was increased obviusly and reached over 0.6, that is to say, the simualted results is reliable in a certain. These results prompt us the satisfied fit simulation can be reached only when we scientifically tre
引文
[1] 柴凤久 张玉清;1995:沼泽化草甸草场土壤水分状况与牧草生长关系的研究.黑龙江畜牧科技,(1),-4-8.
    [2] 蔡树英 张瑜芳;1991:温度影响下土壤水分蒸发的数值分析.水利学报,(11).-1-8.
    [3] 长江流域规划办公室水文局,1982:长江流域水资源调查评价初步报告。(内部资料)。
    [4] 陈奇伯;1997:花岗岩坡面降雨,产流,产沙相互关系的研究.水土保持科技情报,(4).-34-36。
    [5] 陈喜全 关继义:1994:三北防护林地区土壤水分动态研究.植物研究,14(2).-186-190。
    [6] 陈效民 Bouma,J;1994:应用一次出流法结合SFIT模型对土壤水力性质的研究.土壤学报,31(2).-214-219。
    [7] 仇化民 邓振镛;1996:甘肃省东部旱作区土壤水分变化规律的研究.高原气象,15(3).-334-341。
    [8] 裴铁藩,李金中;1998:壤中流模型研究的现状及存在问题.应用生态学报,9(5).-543-548。
    [9] 冯广龙 罗远培;1998:以土壤水分为参变量的根冠系统模拟调控模型.水科学进展,9(3).-224-230。
    [10] 冯国章;1992:通用土壤水分平衡模型及其应用.西北水资源与水工程,3(4).-46-48。
    [11] 龚元石;1995:冬小麦和夏玉米农田土壤分层水分平衡模型.北京农业大学学报,21(1).-61-67。
    [12] 何长高;1997:花岗岩侵蚀区坡面产流产沙规律的研究.南昌水专学报,16(1).-12-16。
    [13] 贺康宁 张建军 1997:晋西黄土残塬沟壑区水土保持林坡面径流规律研究.北京林业大学学报,19(4).-1-6。
    [14] 何毓蓉,张建辉,1996:四川丘陵区土壤湿度的空间变异分析。土壤通报,27(2):61—62。
    [15] 胡定宇 焦菊英;1990:黄土高原波状台原区土-水-植连续系统动态变化规律的研究.干旱地区农业研究,(3),-13-21。
    [16] 胡铁松,等,1995:人工神经网络在水文水资源中的应用。水科学进展,6(1):76-81。
    [17] 黄冠华 沈荣开;1997:大尺度非饱和土壤水分运动的随机模型及有效参数的结构分析.水利学报,(11).-39-48。
    [18] 黄强,等:黄河干流水库调度及智能决策支持系统。陕西科学技术出版社,西安,1996。
    [19] 黄兴法,1997。坡面降雨径流的一种数值模拟方法。中国农业大学学报,2(2):45-50。
    [20] 黄中雄;1996:南宁土壤水分变化规律及有效利用.广西农业科学,(2).-94-96。
    [21] 贾志清 宋桂萍;1997:宁南山区典型流域土壤动态变化规律研究.北京林业大学学报,19(3).-15-20。
    [22] 姜万勤,1990:川中丘陵区典型农业生态系统研究。(内部资料)。
    [23] 金菊良,1998:遗传算法及其在水文题中的应用。河海大学博士论文。(内部资料)。
    
    
    [24] 敬正书,1996:“治水兴蜀”的思考。中国水利,NO.5。
    [25] 李开元,1995:黄土高原农田水量平衡研究。水土保持学报,9(2):39-44。
    [26] 李洪文 高焕文;1996:保护性耕作土壤水分模型.中国农业大学学报,1(2).-25-30。
    [27] 李洪文,等,1997:旱地农业三种耕作措施的对比研究。干旱区农业研究,15(1):7-11。
    [28] 李纪彬,1997:我国节水灌溉技术的现状和发展趋势。河南农业科学,1(3):42-45。
    [29] 李建华,等,1995:川中丘陵区小麦耗水及其与产量的关系。西南农业学报,8(2):11-18。
    [30] 李健 陈海迟;1996:黄土丘陵区坡面水土流失规律研究.干旱区资源与环境,10(1).-71-76。
    [31] 李细元 陈国良;1996:人工草地土壤水系统动力学模型与过耗恢复预测.水土保持研究,3(1).-166-178。
    [32] 李英年;1998:高寒草甸区土壤水分动态的模拟研究.草地学报,6(2).-77-83。
    [33] 李有华,1997:山地果园集流节水保墒栽培技术。干旱区农业研究,15(4):41-46。
    [34] 李仲明,1991:中国紫色土。科学出版社。
    [35] 林耀明;1997:黄淮海地区土壤水分动态模拟模型.自然资源学报,12(1).-72-77。
    [36] 刘昌明,1997:节水农业运用基础研究进展。农业出版社。
    [37] 刘昌明,1997:土壤---植物---大气系统水分运动的界面过程研究。地理学报,5(2):367-374。
    [38] 刘刚才,等,1993:川中丘陵区水土流失规律及其P值确定。水土保持学报,7(3):43-48。
    [39] 刘刚才,等,1997:垄作土壤抗旱机理研究。土壤通报,28(6):148-150。
    [40] 刘忠民,1993:不同轮作制度下的农田水量平衡。水土保持学报,7(4):67-71。
    [41] 陆绵文,1992:土壤水量均衡预报模型的应用。土壤肥料,5:3-7。
    [42] 卢玉邦;1989:土壤水分预报模型的研究.土壤学报,26(1).-51-56。
    [43] 罗毅 雷志栋;1997:潜在腾发量的季节性变化趋势及概率分布特性研究.水科学进展,8(4).-308-312。
    [44] 吕军;1998:激光红壤区水分条件对冬小麦生长的动态耦合模拟.水利学报,(7).-68-72。
    [45] 马光文,忘黎:水资源大系统优化技术。陕西科学技术出版社,西安,1992。
    [46] 彭建萍 邵爱军;1995:田间非饱和土壤水分运动的数值模拟:Ⅱ数学模型及数值模拟.河北地质学院学报,18(6).-558-565。
    [47] 南京农业大学,1981:土壤农化分析。农业出版社,北京。
    [48] 南京土壤研究所,1980:土壤理化分析。江苏科学技术出版社,南京。
    [49] 薛军红,等,1994:地下微孔渗灌的节水机理及控制初探。中国农业气象。15(5):34—37。
    [50] 戚隆溪 黄兴法;1997:坡面降雨径流和土壤侵蚀的数值模拟.力学学报,29(3).-343-348。
    [51] 沈冰;1992:非饱和土壤水运动模型应用实例.西北水资源与水工程,3(2).-80-83。
    
    
    [52] 沈冰 沈晋;1992:坡地水文数学模型研究述评.西北水资源与水工程,3(4).-1-10。
    [53] 申双和 周英;1994:旱地农田土壤水分动态平衡的模拟.南京气象学院学报,17(4).-462-469。
    [54] 申双和 张山青;1995:牧草地土壤水分的动态平衡计算.气象科学,15(3).-254-261。
    [55] 四川省水电设计院,1985:四川水资源利用。(内部资料)。
    [56] 施嘉裼,1996:水资源综合利用。中国水利电力出版社。
    [57] 康绍忠 刘晓明;1992:土壤-植物-大气连续体水分传输的计算机模拟.水利学报,(3).-1-12。康绍忠 蔡焕杰;1995:农田“五水”相互转化的动力学模式及其应用西北农业大学学报,23(2).-1-9。
    [58] 唐绍忠,等,1996:控制性交替灌溉——一种农田节水新途径。灌溉与排水,12(3):25-31。
    [59] 太田猛彦 郭百平;1994:陡坡坡面雨水径流的机理.水土保持科技情报,(2).-42-46。
    [60] 王百田 王斌瑞;1994:黄土坡面地表处理与产流过程研究.水土保持学报,8(2).-18-24。
    [61] 王步同;1996:无有效水分补给条件下麦田旬失墒规律及其应用.山东气象,(4).-3-7。
    [62] 王桂玲 高亮之;1998:冬小麦田间土壤水分平衡动态模拟模型的研究江苏农业学报,14(1).-36-41。
    [63] 王会肖,刘昌明,1997:农田蒸散,土壤蒸发和水分有效利用。地理学报,52(5):447-454。
    [64] 王克勤,等,1996:国内外农林集水技术的研究进展。干旱区农业研究,14(4):110-114。
    [65] 王万忠 焦菊英;1996:黄土高原坡面降雨产流产沙过程变化的统计分析.水土保持通报,16(5).-21-28。
    [66] 王先明 丹曾鸟珠;1989:西藏河谷农区土壤水分变化规律与旱地农业.西藏科技,(4),-1-10。
    [67] 王先明 扎桑;1990:西藏河谷农区土壤水分变化规律与旱地农业.干旱地区农业研究,(2),-1-11。
    [68] 王玉宽 王占礼;1991:黄土高原坡面降雨产流过程的试验分析.水土保持学报,5(2).-25-31。
    [69] 魏朝富,等,1992:四川盆南紫色土水分特征及其抗旱性能研究。中国农业气象。3(4);40—43。
    [70] 魏朝富,等,1994:四川盆地红棕紫泥土壤水分移动特性与蒸发性能研究。干旱区农研究。12(2):43—48。
    [71] 吴长文 王礼先;1995:林地坡面的水动力学特性及其阻延地表径流的研究.水土保持学报,9(12-23)。
    [72] 吴普特 周佩华;1995:坡面径流泥沙计算中急需解决的认识问.水土保持学报,9(1).-37-40。
    [73] 谢森传;1998:农田水分循环中的蒸发蒸腾计算清华大学学报:自科版,38(1).-107-110。
    [74] 谢贤群,吴凯,1997:麦田蒸藤需水量的计算模式。地理学报,52(6):528-535。
    [75] 谢贤群,王立军,1998:水环境要素观测与分析。中国标准出版社,北京。
    [76] 许越先,等,1992:节水农业研究。科学出版社。
    [77] 许越先,等,1992:农业用水有效性研究。科学出版社。
    
    
    [78] 徐为群 倪晋仁;1995:黄土坡面侵蚀过程实验研究.水土保持学报.-1995,9(3).-9-18,77。
    [79] 徐士良,1997:FORTRAN常用算法程序集。清华大学出版社,北京。
    [80] 杨邦杰;1996:耕作的数值模型及其应用.生态学报,16(6).-591-601。
    [81] 杨京平;1998:土壤水分过多对春玉米生长发育影响的模拟模型研究浙江农业大学学报,24(3).-227-232。
    [82] 杨侃,1995:网络分析与动态规划在水利系统规划管理中的应用。河海大学博士论文。(内部资料)。
    [83] 姚建文:1989:作物生长条件下土壤含水量预测的数学模型.水利学报,(9).-32-38。
    [84] 姚其华 邓银霞:1992:土壤水分特征曲线模型及其预测方法的研究进展.土壤通报,23(3).-142-144。
    [85] 余新晓 陈丽华;1995:三峡花岗岩地区坡面暴雨产流过程的研究.北京林业大学学报,17(4).-67-73。
    [86] 余优森;1991:人工草地土壤水分垂直变化规律的实验研究.水科学进展,,2(4).-271-276。
    [87] 岳兵,1997:渗灌技术存在问题及建议。灌溉排水,16(2):40-44。
    [88] 张建辉,李仲明,1990:四川盆地遂宁组紫色土持水特性。土壤学报,27(3):345—347。
    [89] 张景林,1995:宁南半干旱区水量平衡研究。干旱区农业研究,13(4):58-66。
    [90] 张国胜;等:1999:青海省旱地土壤水分动态变化规律研究.干旱地区农业研究,17(1).-50-55。
    [91] 张先婉,等,1992:聚土免耕法的理论与实践。土壤农化通报,7(2—3):1-13。
    [92] 赵燮京,1997:川中丘陵区抗旱节水的主要途径。土壤农化通报,12(3):30-35和12(4):13-15。
    [93] 赵艺学 杨淑婷;1990:糜子生育期土壤水分变化规律的研究.水土保持通报,10(6).-34-38。
    [94] 郑粉莉 唐克丽;1994:标准小区和大型坡面径流场径流泥沙监测方法分析.人民黄河,17(7).-19-22。周乃健 郝久青:1997:回归等值线图在土壤水分时空变化动态分析中的应用
    [95] 农业工程学报,13(1).-112-115。
    [96] 钟继洪;骆伯;1998:南亚热带丘际赤红壤水发性能变化及其机理.土壤侵蚀与水土保持学报,4(2).-16-22,35。
    [97] 朱兴平;1997:定西黄土丘陵沟壑区降雨因子对坡面产流,产沙影响的灰色关联.农业系统科学与综合研究,13(2).-127-130。
    [98] Abbaspour, K.C.; Genuchten, M.T.van; Schulin, R.; Schlappi, E.; Van, Genuchten M.T.; 1997: A sequential uncertainty domain inverse procedure for estimating subsurface flow and transport parameters. Water-Resources-Research, 33: 8, 1879-1892.
    
    
    [99] Amador, J.A.; Glucksman, A.M.; Lyons, J.B.; Gorres, J.H.; 1997: Spatial distribution of soil phosphatase activity within a riparian forest. Soil-Science, 162: 11, 808-825. Anderson, M.G.; Burt, T.P.; 1990: Process Studies in Hillslope Hydrology. John Wiley & Sons Ltd, New York.
    [100] Andraski, B.J.; 1996: Soil-water movement under natural-site and waste-site conditions: a multiple-year field study in the Mojave Desert, Nevada. Water-Resources-Research, 33: 8, 1901-1916.
    [101] Aremu, J.A.; Dunham, R.J.; Ike, I.F.; 1992: Influence of soil cultivation practices on water infiltration into the soil. Nigerian-Journal-of-Agricultural-Extension, 7: 1-2, 6-10.
    [102] Boeye, D.; Verheyen, R. F.1991: Hydrological balance of a groundwater discharge. Journal of Hydrology. v. 137 n 1-4,p 149-163.
    [103] Boll, J.; Selker, J.S.; Shalit, G.; Steenhuis, T.S.; 1997: Frequency distribution of water and solute transport properties derived from pan sampler data, Water-Resources-Research, 33: 12, 2655-2664.
    [104] Bronstert, A.; Plate, E.J.; 1997: Modelling of runoff generation and soil moisture dynamics for hillslopes and micro-catchments. Journal-of-Hydrology-Amsterdam, 198: 1-4, 177-195.
    [105] Bronstert, Axel; 1999. Capabilities and limitations of detailed hillslope hydrological modelling. Hydraulical Processes, 13:21-48.
    [106] Brooks, Erin S.; Walter, M. Todd; Walter, Michael; Flerchinger, G.N.;et al; 1998: Uniform versus an aggregated water balance of a semi-arid watershed. Hydrological Processes, Volume 12, Issue 2:331-342.
    [107] Bouraoui, F.; Vachaud, G.; Haverkamp, R.; Normand, B.; 1997: A distributed physical approach for surface-subsurface water transport modeling in agricultural watersheds. Journal of Hydrology, 203: 1-4, 79-92.
    [108] Chang, YoonYoung; Corapcioglu, M.Y.; Chang, Y.Y.; 1997: Effect of roots on water flow in unsaturated soils. Journal-of-Irrigation-and-Drainage-Engineering, 123: 3, 202-209.
    [109] Chen, SuChin; Wu, ChungMing; Chen, S.C.; Wu, C.M.; 1997: Kinematic wave model of subsurface flow under hillslope. Proceedings-of-the-National-Science-Council,-Republic-of-China.-Part-A,-Physical-Science-and-Engineering, 21: 5, 437-444.
    [110] Chesness, Jerry L.; Cochran, David L.; Hook, James E., 1986: Prediction seasonal irrigation water requirement on coarse-textured soils. Transactions of the American Society of Agricultural Engineers (General Edition) v 29 n 4 Jul-Aug 1986 p 1054-1057.
    [111] Clothier, B.E.; Green, S.R.; 1997: Roots: the big movers of water and chemical in soil. Soil-Science, 162: 8, 534-543.
    
    
    [112] Coelho, F.E.; Or, D.; 1997: Applicability of analytical solutions for flow from point sources to drip irrigation management. Soil-Science-Society-of-America-Journal, 61: 5, 1331-1341.
    [113] Croke, J.; et al; 1999: Runoff generation and re-distribution in logged eucalyptus forests, South-eastern Australia. Journal of Hydrology, 216(1-4) : 56-77.
    [114] David G. Chandler and James J. BisogniJr, 1999. The use of alkalinity as a conservative tracer in a study of near-surface hydrologic change in tropical karst. Journal of Hydrology, 216(3-4) : 172-182.
    [115] Duan, J.; Miller, N.L.; 1997: A generalized power function for the subsurface transmissivity profile in TOPMODEL. Water-Resources-Research, 33: 11, 2559-2562.
    [116] Esteves, M.; Faucher, X.; Galle, S.; Vauclin, M; 2000: Overland flow and infiltration modeling for small plots during unsteady rain: numerical results vesusus observed values. Journal of Hydrology, 228: 265-282.
    [117] Evans, M. G., Burt, T. P., Holder), J. and Adamson, J. K.; 1999: Runoff generation and water table fluctuations in blanket peat: evidence from UK data spanning the dry summer of 1995. Journal of Hydrology, 221(3-4) : 141-160.
    [118] Favre, F.; Boivin, P.; Wopereis, M.C.S.; 1997: Water movement and soil swelling in a dry, cracked Vertisol. Geoderma, 78: 1-2, 113-123.
    [119] Fischer, Douglas T.; et al; 1996: Simulation of a century of runoff across the Tomales Watershed, Marin County, California. Journal of Hydrology. Amsterdam: Elsevier, vol.186, no. 1-4: 255-275.
    [120] Fischer, U.; Dury, O.; Fluhler, H.; Genuchten, M.T.Van; Van, Genuchten M.T.; 1997: discontinuous nonwetting phase. Soil-Science-Society-of-America-Journal, 61: 5, 1348-1354.
    [121] Flerchinger, G. N.; et al; 1998: uniform versus an aggregated water balance of a semi-arid watershed. Hydrological Processes, Vol. 12, no. 2:331-342
    [122] Fox, D.M.; Bryan, R.B.; Price, A.G.; 1996: The influence of slope angle on final infiltration rate for interrill conditions. Geoderma, 80: 1-2, 181-194.
    [123] Frankenberger, Jane R.; 1999: GIS-based variable source area hydrology model. Hydrological Processes, Volume13, and Issue6: 805-822.
    [124] Gabbard, D.S.; Huang, C.; Norton, L.D.; Steinhardt, G.C.; 1998: Landscape position, surface hydraulic gradients and erosion processes. Earth-Surface-Processes-and-Landforms, 23: 1, 83-93.
    [125] Gamier, P.; Rieu, M.; Boivin, P.; Vauclin, M.; Baveye, P.; 1997: Determining the hydraulic properties of a swelling soil from a transient evaporation experiment. Soil-Science-Society-of-America-Journal, 61: 6,
    
    1555-1563.
    [126] Gaze, S.R.; et al; 1997: Measurement of surface redistribution of rainfall and modelling its effect on water balance calculations for a millet field omn sandy soils in Niger. Journal of Hydrology, 188-189:267-284.
    [127] George, Richard J.; Conacher, Arthur J.; 1993. Mechanisms responsible for streamflow generation on a small salt-affected and deeply weathered hillslope. Earth Surface Processes and Landforms, 18(4) : 291-309.
    [128] Germann, P.F.; Dipietro, L.; Singh, V.P.; 1997: Momentum of flow in soils assessed with TDR-moisture readings. Geoderma, 80: 1-2, 153-168.
    [129] Gimenez, D.; Allmaras, R.R.; Muggins, D.R.; Nater, E.A.; 1997: Prediction of the saturated hydraulic conductivity-porosity dependence using fractals. Soil-Science-Society-of-America-Journal, 61: 5, 1285-1292.
    [130] Gourbesville, Philippe; 1997:Assessment of the balance between environmental demands and water resources. Symp 1: Sustainability of Water Resources under increasing uncertainty. IAHS Publication (International Association of Hydrological Sciences) no. 240, 1997. IAHS Press, Wallingford, Engl. p 487-494
    [131] Gupta, G.N., 1991:Response of various tree species to management and their suitability on degraded sandy loam soil of a semiarid regi6n. Indian Journal of Foresty Research. 14(1) : 33-44.
    [132] Hart-GL; Lowery-B; 1997: Axial-radial influence of porous cup soil solution samplers in a sandy soil. Soil-Science-Society-of-America-Journal, 61: 6, 1765-1773.
    [133] Ho, C.K.; Webb, S.W.; 1998: Capillary barrier performance in heterogeneous porous media. Water-Resources-Research, 34: 4, 603-609.
    [134] Indelman, P.; Zlotnik, V.; 1996: Average steady nonuniform flow in stratified formations. Water-Resources-Research, 33: 5, 927-934.
    [135] Johnsson Holger; et al, 1991: Water balance and soil moisture dynamics of field plots with barley and grass ley. Journal of Hydrology, 129:149-173.
    [136] Jong, van Lier Q.J.de; Libardi, P.L.; De Jong van Lier Q.; 1997: Extraction of soil water by plants: development and validation of a model. Revista-Brasileira-de-Ciencia-do-Solo, 21:4, 535-542.
    [137] Kirby, M.J., 1978: Hiislope Hydrology. John Wiley & Sons, Chichester; New York. Kohl, R.A.; Carlson, C.G.; 1997: Volumetric sampling of soil water flow using wicks. Transactions-of-the-ASAE, 40: 5,
    
    1373-1376.
    [138] Kohl, T.; Evans, K.F.; Hopkirk, R.J.; Jung, R.; Rybach, L; 1997: Observation and simulation of non-Darcian flow transients in fractured rock. Water-Resources-Research, 33: 3, 407-418.
    [139] Koilvusalo, H.; Karvonen, T.; Paasonen-Kivekas, M.; 1997: Application of a two-dimension model to calculate water balance of an agricultural hillslope. Phys. Chem. Earth (B), 24(4) : 313-318.
    [140] Kustas, W. P.; et al; 1998: Combining optical and microwave remote sensing for mapping energy fluxes in a semiarid watershed. Remote Sensing of Environment, v.64, and n.2: 116-131.
    [141] Laryea, K.B.;1992: Rainfed Agriculture:Water harvesting and soil water conservation. Outlook on Agriculture, 21(4) : 271--277.
    [142] Leaney, F. W.; Smettem, K. R.; Chittleborough, D. J.; 1993. Estimating the contribution of preferential flow to subsurface runoff from a hillslope using deuterium and chloride. Journal of Hydrology, 147:83-103.
    [143] Lewis, David C.; Burgy, R. H.; 1964: Hydrologic balance from an experimental watershed. Journal of Hydrology. Amsterdam: Elsevier, 1965 Vol. 2, no. 3:197-212.
    [144] Li, K.; Amoozegar, A.; Robarge, W.P.; Buol, S.W.; 1997: Water movement and solute transport through saprolite. Soil-Science-Society-of-America-Journal, 61: 6, 1738-1745.
    [145] Li, YiMin; Masoud, Ghodrati; Li, Y.M.; Ghodrati, M.; 1997: Preferential transport of solute through soil columns containing constructed macropores. Soil-Science-Society-of-America-Journal, 61: 5, 1308-1317.
    [146] Lin, H.S.; Mclnnes, K.J.; Wilding, L.P.; Hallmark, C.T.; 1997: Low tension water flow in structured soils. Canadian-Journal-of-Soil-Science, 77: 4, 649-654.
    [147] Makhlouf, Z.; Michel, C.; 1994: Two-parameter monthly water balance model for French watersheds. Journal of Hydrology, Volume 162, and Issue 3-4: 299-308.
    [148] Martin, Q.W., 1991: Drought management plans for lower Colorado River in Fexas. Journal of Water Resource Planning and Management. NO.6: 645-661.
    [149] Martinez-Mena, M.; Albaladejo, J.; Castillo, V.M., 1998: Factors influencing surface runoff generation in a Mediterranean semi-arid environment: Chicamo watershed, SE Spain. Hydrological Processes, 12(5) : 741-754.
    [150] Mbagwu, J.S.C.; 1995: Saturated hydraulic conductivity in relation to physical properties of soils in the Nsukka Plains, southeastern Nigeria. Geoderma, 68: 1-2, 51-66.
    [151] McCartney, M. P.; Neal, C.; Neal, M.; 1998. Use of deuterium to understand runoff generation in a
    
    headwater catchment containing a dambo. Hydrology and Earth System Sciences, 2(1) : 65-76.
    [152] Milly, P.C.D.; 1994: Climate, interseasonal storage of soil water, and the annual water balance Advances in Water Resources .v 17, n 1-2, p 19-24.
    [153] Mizell, S.A.; French, R.H.; 1995: Beneficial use potential of dry weather flow in the Las Vegas Valley, Nevada Water Resources Bulletin, v 31, n 3, p 447-461.
    [154] Motha, J. A.; Wigham, J. M.; 1995. Modelling overland flow with seepage. Journal of Hydrology, 169:266-280.
    [155] Najjar, R. G.; 1999: The water balance of the Susquehanna River Basin and its response to climate change. Journal of Hydrology, Volume 219, and Issues 1-2:7-19.
    [156] Nassar, I.N.; Horton, R.; Globus, A.M.; 1997:Thermally induced water transfer in salinized, unsaturated soil. Soil-Science-Society-of-America-Journal, 61:5, 1293-1299.
    [157] Newman, B.D.; Campbell, A.R.; Wilcox, B.P.; 1997: Tracer-based studies of soil water movement in semi-arid forests of New Mexico. Journal-of-Hydrology, 196: 1-4, 251-270.
    [158] Nielsen, D.R.; Hopmans, J.W.; Kutilek, M.; Wendroth, O.; 1997: A brief review of soil water, solute transport and regionalized variable analysis. Workshop on special topics about soil physics and crop modelling and simulation held at the Agronomy Campus, University of Sao Paulo, Piracicaba, Brazil, 18-20 June 1997. Scientia-Agricola. 1997, 54: SPECIAL, 89-115.
    [159] Nyhan, J.W.; et al; 1997: A water balance study of four-landfill cover design varying in slope for semiarid regions. Journal of Environment Quality, 26:1385-1392.
    [160] Onda, Y.; Dietrich, W. E.; Booker, F.; 1997. The overland flow generation mechanism in Mt.Vision fire area, Northern California. Transactions-Japanese Geomorphological Union, 18(2) : 158-169.
    [161] Or, D.; Coelho, F.E.; 1996: Soil water dynamics under drip irrigation: transient flow and uptake models. Transactions-of-the-ASAE, 39: 6,2017-2025.
    [162] Ouattara, M.; Wilding, L. P.1991: Influence of soil characteristic on the water balance: examples of two developed toposequences on continental terminal material in Niger.IAHS Publication (International Association of Hydrological Sciences) n. 199. Publ by Int Assoc of Hydrological Sciences, Institute of Hydrology, Wallingford, and Engl. P 187-197.
    [163] Owens, Emmet M.; et al, 1998: Hydrologic analysis and model development for Cannonsville Reservoir. Lake and Reservoir Management, v.14, n.2-3: 140-151.
    [164] Pan, L.; Warrick, A. W.; Wierenga, P. J.; 1997. Downward water flow through sloping layers in the
    
    vadose zone: time dependence and effect of slope length. Journal of Hydrology, 199:36-52.
    [165] Parlange, J.Y.; Hogarth, W.L.; Parlange, M.B.; Haverkamp, R.; Barry, D.A.; Ross, P.J.; Steenhuis, T.S.; 1998: Approximate analytical solution of the nonlinear diffusion equation for arbitrary boundary conditions. Transport-in-Porous-Media, 30: 1, 45-55.
    [166] Perrier, Eugene R. 1986: Small-scale water harvesting schemes: design criteria. Paper-American Society of Agricultural Engineers Publ by ASAE, St. Joseph, MI, USA Pap 86-2502, 22p .
    [167] Piara Singh, G.; et al; 1999: Soybean-chickpea rotation on Vertic Inceptisols I. Effect of soil depth and landform on light interception, water balance and crop yields. Field Crops Research, Volume 63, Issue 3:211-224.
    [168] Pinheiro, A.; Maison, P.; Caussade, B.; English, M.; 1997: Modelling for study of the hydrologic processes in watershed. Water for a changing global community. Proceedings of hem managing water: coping with scarcity and abundance. 27th Congress of the International Association for Hydraulic Research, San Francisco, California, USA, 10-15 August 1997. 1997, 841-846. American Society of Civil Engineers; New York; USA.
    [169] Prazak, J.; Sir, M.; Tesai, M.; 1994: Estimation of plant transpiration from meteorological data under conditions of sufficient soil moisture. Journal of Hydrology, Nov. 162, no. 3-4: 409-427.
    [170] Rama, BrH., 1993: Decision support for crop planning during drought. Water Resource, 26(6) : 371-376.
    [171] Reichle, R.; Kinzelbach, W.; Kinzelbach, H.; 1998: Effective parameters in heterogeneous and homogeneous 20 transport models with kinetic sorption. Water-Resources-Research, 34: 4, 583-594.
    [172] Revol, P.; Clothier, B.E.; Mailhol, J.C.; Vachaud, G.; Vauclin, M.; 1997: Infiltration from a surface point source and drip irrigation. 2. An approximate time-dependent solution for wet-front position. Water-Resources-Research, 33: 8, 1869-1874.
    [173] Richards, Paul L.; et al; 1997: Application of the geographical information systems approach to watershed mass balance studies. Hydrological Processes Vol. 11, no. 7:671-694.
    [174] Rogowski, A. S.; 1996: GIS modeling of recharge on a watershed. Journal of Environmental Quality Vol. 25, no. 3: 463-474.
    [175] Ruan, H.; Illangasekare, T. H.; 1998. A model to couple overland flow and infiltration into macroporous vadose zone. Journal of Hydrology, 210:116-127.
    [176] Sakellariou, Makrantonaki M.; 1997: Water drainage in layered soils. Laboratory experiments and numerical simulation. Water-Resources-Management, 11:6, 437-444.
    
    
    [177] Schulz, K.; Huwe, B.; 1997: Water flow modeling in the unsaturated zone with imprecise parameters using a fuzzy approach. Journal-of-Hydrology, 200: 1-4, 211-229.
    [178] Sembiring, H., 1993: Effect of wheat straw inversion on soil water conservation. Soil Science, 159(2) : 81--89.
    [179] Serralheiro, R.P.; 1995: Furrow irrigation advance and infiltration equations for a Mediterranean soil. Journal-of-Agricultural-Engineering-Research, 62: 2, 117-125.
    [180] Serrano, S.E.; 1998: Analytical decomposition of the nonlinear unsaturated flow equation. Water-Resources-Research, 34: 3, 397-407.
    [181] Shein, Ye V.; Pachepskiy, Ya A.; Guber, A.K.; Chekhova, T.I.; 1996: Experimental determination of hydraulic and hydrochemical parameters in mathematical models for moisture and salt transfer in soils. Eurasian-Soil-Science, 28: 12, 177-187.
    [182] Shinde, D.; Mansell, R.S.; Hornsby, A.G.; 1996: A model of coupled water, heat and solute transport for mulched soil bed systems. Proceedings-Soil-and-Crop-Science-Society-of-Florida, 55: 45-51.
    [183] Singh,R.; Subramanian, K.; Refsgaard, J. C.; 1999: Hydrological modelling of a small watershed using MIKE SHE for irrigation planning. Agricultural Water Management, Volume 41, Issue 3:149-166.
    [184] Smettem, K. R. J.; et al; 1991. The influence of Macropores on runoff generation from a hillslope soil with a contrasting textual. Journal of Hydrology, 199:36-52.
    [185] Steinberg, S.L.; Henninger, D.L.; 1997: Response of the water status of soybean to changes in soil water potentials controlled by the water pressure in microporous tubes. Plant-Cell-and-Environment, 20: 12, 1506-1516.
    [186] Suarez, D.L.; Simunek, J.; 1997: unsaturated water and solute transport model with equilibrium and kinetic chemistry. Soil-Science-Society-of-America-Journal, 1: 6, 1633-1646.
    [187] Sucksdorff, Y.; Ottle, C.; 1990: Application of satellite remote sensing to estimate areal evapotranspiration over a watershed. Journal of Hydrology, Amsterdam: Elsevier, Vol. 121, no. 1-4:321-333.
    [188] Taha, A.; Gresillon, J.M.; Clothier, B.E.; 1997: Modelling the link between hillslope water movement and stream flow: application to a small Mediterranean forest watershed. Journal-of-Hydrology, 203: 1-4, 11-20.
    [189] Tan, B.Q.; OConnor, K.M.; 1996: Application of an empirical infiltration equation in the SMAR conceptual model. Journal-of-Hydrology, 185: 1-4,275-295.
    
    
    [190] Tanaka, T.; Yasuhara, M.; Sakai, H.; Marui, A.; Hino, Mikio; Kitanidis, Peter K.; Takeuchi, Kuniyoshi; 1988. The Hachioji experimental basin study; storm runoff processes and the mechanism of its generation. Journal of Hydrology, 102( 1-4) :139-164.
    [191] Tani, Makoto; 1996: An approach to annual water balance for small mountainous catchments with wide spatial distributions of rainfall and snow water equivalent. Journal of Hydrology. Amsterdam: Elsevier, Vol. 183,no. 3-4:205-225.
    [192] Tayfur, G.; et al; 1993: Application of St. Venant equations for two-dimensional overland flows over rough infiltrating surfaces. Journal of Hydraulic Engineering, 119:51-63.
    [193] Tiktak, A.; et al, 1994: Soil water dynamics and long-term water balance of a Douglas fir stand in Netherlands. Journal of Hydrology, 156:265-283.
    [194] Tsukamoto, Y.; Ohta, T.; 1988. Runoff processes on a steep forested slope. Journal of Hydrology, 102:165-178.
    [195] Tsuyoshi Miyazaki, 1993. Water flow in soils. Marcel Dekker, Inc., New York.
    [196] Van de Griend, A. A.; Arwert, J. A.; 1983. The mechanism of runoff generation from an alpine glacier during a storm traced by oxygen (super 18) O/ (super 16) O. Journal of Hydrology, 62(1-4) : 263-278.
    [197] Van Genuchten, M. Th.; J. Simunek; 1994: The Chain2D Code for Simulating the Two-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably Saturated Porous Media (Version 1. 1) . Research Report NO. 136, U.S.D.A.
    [198] Vorosmarty, C. J.; ey al; 1998: Potential evaporation functions compared on US watersheds: Possible implications for global-scale water balance and terrestrial ecosystem modeling. Journal of Hydrology (Amsterdam), v.207, and n.3-4: 147-169.
    [199] Wang, Guang-Te; Chen, Shulin; 1996: A linear spatial distribution model for a surface rainfall-runoff system. Journal of Hydrology. Amsterdam: Elsevier, Vol. 185, no. 1-4:183-198.
    [200] Warrick, A.W.; Wierenga, P.J.; Pan, L.; 1997: Downward water flow through sloping layers in the vadose zone: analytical solutions for diversions. Journal-of-Hydrology, 192: 1-4, 321-337.
    [201] Wasantha Lal, A. M.; 1998. Performance comparison of overland flow algorithms, Journal of Hydraulic Engineering, 24:342-349.
    [202] Way, Rick L.; et al; 1998: Water balance and flow patterns in a fragipan using in situ soil block. Soil Science, Vol. 163, no. 7: 517-528.
    [203] Wittenberg, H.; et al; 1999: Watershed groundwater balance estimation using streamflow recession
    
    analysis and baseflow separation. Journal of Hydrology. Vol. 219, no. 1-2:20-33.
    [204] Wu, G.; Chieng, S.T.; 1995: Modeling multicomponent reactive chemical transport in nonisothermal unsaturated/saturated soils. Part 1. Mathematical model development. Transactions-of-the-ASAE, 38: 3, 817-826.
    [205] Wu, L.; Pan, L.; 1997: A generalized solution to infiltration from single-ring infiltrometers by scaling. Soil-Science-Society-of-America-Journal, 61:5, 1318-1322.
    [206] Yagi, K.; Minami, K.; Ogawa, Y.; 1998: Effects of water percolation on methane emission from rice paddies: a lysimeter experiment. Plant-and-Soil, 198: 2, 193-200. 23 refs.
    [207] Yao, H.; Hashino, M.; Yoshida, H.;1996: Modeling energy and water cycle in a forested headwater basin. Journal of Hydrology (Amsterdam), v.174, n.3-4:221-234.
    [208] Yin, Zhi-Yong; Brook, George A.; 1992: Evapotranspiration in the Okefenokee Swamp watershed; a comparison of temperature-based and water balance methods. Journal of Hydrology. Amsterdam: Elsevier, Vol. 131, no. 1-4:293-312.
    [209] Yitayew, M.; Khan, A.A.; Warrick, A.W.; 1998: In situ measurements of soil hydraulic conductivity using point application of water. Applied-Engineering-in-Agriculture, 14: 2, 115-120.
    [210] Zhang, RenDuo; Zhang, R.D.; 1997: Infiltration models for the disk infiltrometer. Soil-Science-Society-of-America-Journal, 61: 6, 1597-1603.
    [211] Zepp, H.; et al; 1992: Sentivity and problems in modelling soil moisture conditions. Journal of Hydrology, 131:227-238.
    [212] Zhu, T.X.; et al; 1997: Runoff generation on a semi-arid agricultural catchment: field and experimental studies. Journal of Hydrology, 196(3-4) : 99-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700