作物冠层传输过程中的时间序列分析与阻力估算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近地层大气与植被间的相互作用紧密联系着农业、气象和自然生态过程。植物通过光合作用形成有机物以建构自身,把光能转化为化学能形成生物量和农作物的产量,又通过蒸腾作用散失水分。植被通过光合作用吸收大气中的CO2并释放氧气到大气中,又通过蒸腾作用与大气环境之间交换水汽、热量,这一过程直接受到诸如太阳辐射、温度、大气湍流等环境因素的影响。植物排放到大气中的水汽等也影响着局地的或全球的气候模式。热量、水汽和物质等的交换与输送被不同形式的传输阻力制约着,通量的时间序列具有非线性、非平稳的特征。本文从谱分析的角度研究陆面通量的时间序列的性质,并探讨利用红外成像观测叶片表面温度的方法估算传输过程中的阻力。
    一陆面通量与大气稳定度变化的小波分析
    采用中国科学院地理科学与资源研究所2001 年3 月30 日至4 月24 日对北京顺义5 号干小麦田返青期冬小麦进行涡度相关观测的显热(H)、潜热(LE)、CO2(F-CO2)通量数据,计算得到大气稳定度? (? = z/L)以及反映温度、湿度和CO2 浓度变化的无量纲参数(T/T*、q/q*、c/c*)。本文采用小波变换方法分析这些通量以及大气稳定度和无量纲参数的时间序列,以揭示这些量的变化在数小时到数天的时间尺度上的特征。主要结果有: 1,显热、潜热和CO2 通量、净辐射(Rn)、温度(T)以及大气稳定度(? )数据的连续小波变换把混叠的周期分量分解展开在时间—周期平面上,结果显示,1d 和0.5d 是这些数据所包含的主要周期分量,各量的数据序列都包含丰富的低于0.5d 的短周期分量,大于1d 的长周期分量则彼此不同;2,对连续小波变换系数的统计分析得到小波变换谱,概括了这些量的数据序列所包含的周期分量以及这些周期分量的时间变异性;3,离散多分辨率小波分析把数据序列中的能量方差集中表现为数目较少的小波变换系数,并以相对能量方差分布刻画了这些量所包含的周期分量的平均特征;4,对应于不同的大气条件,
The changes in speed of agriculture, meteorological and ecological processes arethe results of the interactions between vegetation and atmosphere. Photosynthesisand transpiration are processes in which heat, water vapor and mass are beingtransported between vegetation and atmosphere. The processes are driven or affectedby meteorological and environmental factors like solar radiation and wind, the ratesof transport of heat, water vapor and CO2 absorbed by plant change the regional orglobal climatic mode. Since the resistance to transport is highly variable, and isaffected by physiological and water conditions in different ways in different parts,the quantitative estimation of it is needed in predicting the rates of photosynthesisand transpiration, and the ratio between them, the water use efficiency. Land surfacefluxes are non-linear and non-stationary stochastic variables. The analysis of thespectral properties of time series of land surface fluxes and the estimation of transferresistance are the main content of this thesis.
    1. Continuous wavelet transform and discrete multi-resolution analysis of surface fluxes and atmosphericstability
    Variations of land surface fluxes of sensible heat (H), latent heat (LE), and CO2
    (F-CO2) obtained from the eddy-covariance measurements above a winter wheatfield from March 30 to April 24, 2001 were studied at scales ranging from 10 minutesto days. Atmospheric stability ? (? = z/L) and three non-dimentional coefficients(T/T*, q/q* and c/c*) were also calculated from the eddy covariance measurements.Wavelet transform was used in the analysis of land surface fluxes and atmosphericstability, to reveal the changes in land surface fluxes at hours to days scales. Themain results are: (1) Concise and compact information about the fluxes, net radiation(Rn), temperature (T) and ? in the scale-time domain were extracted from the data bycontinuous wavelet analysis, and 1d, 0.5d and short-period (less than 0.5d)components were revealed. Continuous wavelet coefficients were used tocharacterize periodic components of changes in fluxes and ? . (2) Discrete-timemulti-resolution analysis was used to concentrate total energy variance of time seriesof the measurements to a small number of coefficients, plotting the relative energydistribution to get several meaningful characteristics of the data. (3) Under neutralatmospheric conditions, the relative energy distributions of the Haar multi-resolutionanalysis of the three non-dimensional coefficients (T/T*, q/q* and c/c*) displayedclear similarities.2. The use of infrared thermometry in the estimations ofleaf surface effective wind speed and boundary layerresistance within a maize canopy Infrared thermometric observations of leaf surfaces and measurements ofmicroclimatic variables were made at three heights within a maize canopy every 2hin daytime in summer. Infrared photographs of leaves at different heights in a maizecanopy were taken from which surface temperature distributions over the leaveswere obtained. By reversing the relation between wind speed, boundary layerresistance over leaf surface, and partition of radiation energy into sensible and latentheat obtained in wind tunnel experiments under laminar flow, the vertical
引文
崔锦泰,小波分析导论,程正兴,白居宪译,西安交通大学出版社,1992a,pp.1-24,b,pp.65-80
    傅抱璞等,小气候学,气象出版社,1994,pp.87-100
    韩延本,韩永刚,太阳黑子相对数变化的小波分析,科学通报,2001,46 (24): 2031-2035
    门司正三,佐泊敏郎,植物群体中光的因素及其对植物生产的作用,Jap. J. Bot., 1953, 14:
    22-52,朱建人译,光合作用与作物生产译丛,1982,2,pp.1-23
    王天铎,雷宏俶,密植田中水稻、小麦蘖数消长规律的分析,实验生物学报,1961,7(3):207-226
    雷宏俶,王天铎,密、肥条件对水稻群体蘖数变化的影响,实验生物学报,1961,7(3): 228-240
    许大全,光合作用效率,上海科技出版社,2002,pp.89-92
    杨福生,带通信号采样定理,信号处理,1986, 2 (1): 58-61
    杨福生,随机信号分析,清华大学出版社,1990, pp.65
    杨福生,小波变换的工程分析与应用,科学出版社,1999a, pp.12-22、b,pp.32-41、c,pp.44-48、d,pp.217-221
    殷宏章,王天铎等,水稻田的群体结构与光能利用,实验生物学报,1959,6(3): 243-260
    张彤等,基于梅林变换的连续小波变换快速算法,信号处理,1996,12 (4): 342-349
    Loomis R. S., Williams W. A.,,Physiological Aspects of Crop Yield, (eds.), 1969, pp.27-47
    Aballe A., et al., Using wavelets transform in the analysis of electrochemical noise data, Electrochim.Acta, 1999, 44: 4805-4816
    Amthor J. S., et al., Testing a mechanistic model of forest-canopy mass and energy exchange usingeddy correlation: carbon dioxide and ozone uptake by a mixed-oak stand, Aust. J. Plant Physiol.,1994, 21:623-651
    Antonini M., et al., Image coding using wavelet transform, IEEE Trans. Image Process.,1992, 1(2):205-220
    Aphalo P., Jarvis P. G., Do stomata respond to relative humidity? Plant Cell Envir., 1991, 14: 127-132
    Aphalo P., Jarvis P. G., The boundary layer and the apparent responses of stomatal conductance to wind speed and to the mole fraction of CO2 and water vapor in the air, Plant Cell Envir., 1993,16:771-783
    Argoul F., et al., Wavelet analysis of turbulence reveals the multifractal nature of the Richardson cascade, Nature, 1989, 338: 51-53
    Arya S. P. S., The critical conditions for the maintenance of turbulence in stratified flows, J. Roy. Meteor. Soc., 1972, 98: 264-273
    Arya S. P., Introduction to Micrometeorology, Int. Geoohys. Ser., Academic Press, New York, 1988,42: pp.1-2
    Baker J. M., Noman J. M. Kano A., A new approach to Infrared thermometry, Agric. For. Meteorol.,2001, 108: 281-292
    Baldocchi D. D., et al., Discerning forest from the trees: An essay in scaling canopy stomatal conductance, Agric. For. Meteorol., 1991, 54: 197-226
    Baldocchi D. D., Harley P. C., Scaling carbon dioxide and water vapor exchange from leaf canopy in a deciduous forest. II. Model testing and application, Plant Cell Environ., 1995, 18: 1157-1173
    Baldocchi D. D., Meyer T., On using micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation: a perspective, Agric. For. Meteorol., 1998b, 90: 1-25
    Baldocchi D., et al., A spectral analysis of biosphere-atmosphere trace gas flux densities and meteorological variables across hour to year time scales, Agric. For. Meteorol., 2001,107: 1-27
    Baldocchi D., Meyers T. P., A spectral and lag-correlation analysis of turbulence in a deciduous forest canopy, Boundary-Layer Meteorol., 1998a, 45: 31-58
    Baldocchi D., Wilson K. B., Modeling CO2 and water vapor exchange in a temperate broadleaved forest across hourly to decadal time scales, Ecol. Model. 2001, 142: 155-184.
    Ball J. T., et al., A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions, Biggins I., (eds.), Progress in Photosynthesis Research, Martinus Nijhoff Publishers, Netherlands, 1987, pp.221-224
    Batchelof G. K., The Theory of Homogenous Turbulence, Cambridge University Press, 1956, pp.197
    Beyklin G., et al., Fast wavelet transforms and numerical algorithms, Commun. Pure. Appl. Math., 1991, 44: 141-183
    Black T. A., et al., Annual cycles of water vapour and carbon dioxide fluxes in and above a boreal aspen forest, Global Change Biology, 1996, 2: 219-229
    Blackadar A. K., Tennekes H., Assymptotic similarity in neutral barotropic atmospheric boundary layers, J. Atmos. Sci., 1968, 25: 1015-1020
    Blondin P., Parameterization schemes of land-surface processes for mesoscale atmospheric models, Land Surface Evaporation Measurement and Parameterization, Schmugge T. J. and AndréJ. C.,(eds.), Springer-Verlag Press, New York, 1988, pp.31-54
    Bosveld F. C., Bouten W., Evaluation of transpiration models with observations over a Douglas-fir forest, Agric. For. Meteorol., 2001, 108: 247-264
    Bras R. L., Rodrìguez-Iturbe I., Random Functions and Hydrology, Dover Mineola, New York, 1993, pp.559
    Brown H. T., Escombe F., Static diffusion of gases and liquids relationship assimilation of carbon translation in plants, Philos. Trans. R. Soc., London Ser., (B), 1990, 193: 223-291
    Bruce A., Gao H. –Y., Applied Wavelet Analysis with S-Plus, Springer, New York, 1996, pp.642
    Brutsaert W., Radiation, evaporation and the maintenance of turbulence under stable conditions in the lower atmosphere, Boundary-Layer Meteorol., 1972, 2: 309-325
    Busch N. E., et al., The micrometeorology of the turblent flow field in atmospheric surface boundary layer, Acta Polytech. Scand. Phys. Nucleon. Sci., 1968, No. 59: pp.45
    Busch N. E., et al., The micrometeorology of the turbulent flow in the atmospheric surface boundary layer, Acta Polytech. Scand. Phys. Nucleon. Sci., 1968, 59: 45-57
    Businger J. A., et al., Flux-profile relationships in the atmospheric surface layer, J. Atmos. Sci., 1971, 28: 181-189
    Businger J. A., On the sturcture of atmospheric surface layer, J. Meteorol., 1955, 12: 553-561
    Bysova N. L., Vyal’tseva E. F., Temperature fluctuation in the atmospheric boundary layer with unstable stratification, Izv. Atoms. Ocean. Physics, 1970, 6:1209-1212
    Cascetta F., An evaluation of the performance of an infrared tympanic thermometer, Measurement, 1995, 16: 239-246
    Chameides W. L., et al., The role of biogenic hydrocarbon in urban photochemical smog: Atlanta as a case study, Science, 1988, 241: 1473-1475
    Chen W. Y., Lognormality of small-scale structure of turbulence, Phys. Fluids., 1971, 14: 1639-1642
    Choudury B. J., Monteith J. L., Implications of stomatal responses to saturation deficit for the heat balance of vegetatin, Agric. For. Meteorol., 1986, 35: 153-164
    Clarke R. H., Observational studies on the atmospheric boundary layer, Quart. J. Roy. Meteorol. Soc., 1970, 96:241-254
    Collatz G. J., et al., Couple photosynthesis-stomatal conductance model for leaves of C4 plants, Aust. J. Plant Physiol., 1992, 19: 519-538
    Collatz G. J., et al., Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer, Agric. For. Meteorol., 1991, 54: 107-136
    Cowan I. R., Mass, heat and momentum exchange between stands of plants and their atmospheric environment, Quart. J. R. Meteorol., 1968, 94: 523-544
    Cowan I. R., Stomatal behavior and environment, Adv. Bot. Res., 1977, 4: 117-228
    Cowan I. R., Transport of water in the soil-plant-atmosphere system, J. Appl. Ecol., 1965, 2: 221-239
    Daubechies I., Orthonormal bases of compactly supp.orted wavelet, Comm. On Pure and Appl. Math., 1988, 41: 909-996
    Daubechies I., Ten Lectures on Wavelet, Captial City Press, Montpelier, Vermont, Second Printing, 1992, pp.24-32
    Daudet F. A., et al., Leaf boundary layer conductance in a vineyard in Portugal, Agric. For. Meteorol., 1998, 89: 255-267
    Davis A., et al., Multifractal characterizations of non-stationary and intermittency in geophysical field, observed, retrieved or simulated, J. Geophys. Res., 1994, 99 (D4): 8055-8072
    de Bruin H. A., et al., Fluxes in the surface layer under advective conditions, Land Surface Evaporation Measurement and Parameterization, Schmugge T. J. and AndréJ. C., (eds.), Springer Verlag Press, New York, 1988, pp.157-168
    Dimotalis P. E., et al., Mixing at large Schmidt number in the self-similar far field of turbulent jets, J. uid Mech., 1990, 26: 3185-3192
    Donoho D. L., et al., Wavelet shrinkage: asymptotia (with discussion). J. Roy. Statist. Soc., 1995,B57: 301-369
    Dropp.o J. G., Concurrent measurements of ozone dry deposition using correlation and profile flux method, J. Geophys. Res., 1985, 90: 2111-2118
    Dunyak J., et al., Coherent gust detection by wavelet transform, J. Wind Engin. Indust. Aerodyn.,1998, 77&78: 467-478
    Dutton J. A., Fichtl G. H., Approximate equations of motion for gases and liquids, J. Atmos. Sci.,1969, 26: 241-254
    Dyer A. J., Hicks B. B., Flux-gradient relationships in the constant flux layer, Quart. J. Roy. Meteorol. Soc., 1970, 96: 715-721
    Dyer A. J., Hicks B. B., The spatial variability of eddy fluxes in the constant flux layer, Quart. J. Roy.Meteorol. Soc., 1972, 98: 206-212
    El-Kilani R. M., Heat and Mass Exchange within the Soil-Plant Canopy-Atmosphere System: A Theoretical Approach and Its Validation, Ph. D. work, Printed in the Netherlands1997, pp.34-35
    Elliott J. A., Microscale pressure fluctuations measured within the lower atmospheric boundary layer,1972, J. Fluid Mech., 53: 315-383
    Farge M., et al., Improved predictability of two-dimensional turbulent flows using wavelet packetcompression, Fluid Dyn. Res., 1992, 10: 229-250Farge1992,
    Farquhar G. D., et al., A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta, 1980, 149: 78-90
    Farquhar G. D., Feedforward response of stomata to humidity, Aust. J. Plant Physiol., 1978, 149: 78-90
    Farquhar G. D., Sharkey T. D., Stomatal conductance and photosynthesis, Annu. Rev. Plant Physiol.,1982, Stanford University Press, pp.229-251
    Fichtl G. H., Standard deviation of vertical two-point longitudinal velocity differences in theatmospheric boundary layer, Boundary-Layer Meteorol., 1971, 2: 137-151
    Fortin C., et al., Fractal dimension in the analysis of medical image, IEEE/EMBS Magazine, 1992,11 (2): 65-70
    Foufoula-Georgious E., Kumar P., Wavelet in Geophysics. Academic Press, New York, 1995,pp.373-343
    Frisch U., Turbulence, Cambridge Univ. Press, 1995a, pp.296
    Frisch U., Turbulence, Cambridge Univ. Press, 1995b, pp.2
    Fuentes J. D., et al., Ozone deposition onto a deciduous forest during dry and wet conditions, Agric.For. Meteorol., 1992, 62: 1-18
    Gao W., et al., Observation of organized structure in turbulent flow within and above a forest canopy, Boundary-Layer Meteorol., 1989, 47: 39-377
    Garger Ye. K., et al., Temporal and spatial variability of small-scale turbulence in the unstably stratified atmospheric boundary layer, Izv. Atoms. Oceanic Physics, 1971, 7: 649-652
    Garratt J. R., et al., The surface energy balance at local and regional scales-a comparison of general circulation model results with observations, J. Climate, 1993, 6: 1090-1109
    Garratt J. R., The Atmospheric Boundary Layer, Cambridge University Press, Cambridge, 1992, p316
    Gates D. M., Energy exchange and transpiration, In: Water and Plant Life: Problem and Model Approaches, Lange O. L., et. al., (eds.) 1976, pp.137-147
    Gibson C. H., et al., Statistics of the fine structure of turbulent velocity and temperature fields measured at high Reynolds number, J. Fluid Mech., 1970, 41: 153-167
    Gilliam X., et al., Coherent structure detection using wavelet analysis in long time-series, J. Wind Engin. Indust. Aerodyn., 2000, 88: 183-195
    Gisina F. A., Ponomareva S. M., Evalution of the integral scales of velocity and temperature in the ground layer, Izv. Atoms. Ocean. Physics, 1971, 7: 439-442
    Goudriaan J., Crop Micrometeorology: A Simulation Study, Center for Agricultural Publishing and Documentation, 1977, pp.71-110
    Goudriaan J., van Laar H. H., Relations between leaf resistance, CO2-concentration and CO_2 assimilation in maize, beans, lalang grass and sunflower, Photosynthetica, 1978, 12: 241-249
    Goulden M. L., et al., Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy, Global Change Biol., 1996, 2: 168-182
    Grace J., et al., The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest, Global Change Biology, 1996, 2: 209-217
    Grantz D. A., et al., Ozone deposition to a cotton (Gossypium hirsutum L.) field: Stomatal and surface wetness effects during the California Ozone Deposition Experiment, Agric. For. Meteorol., 1997, 85: 19-31
    Grantz D. A., Vaughn D. L., Vertical profiles of boundary layer conductance and wind speed in a cotton canopy measured with heated brass surrogate leaves, Agric. For. Meteorol., 1999, 97: 187-197
    Green S. R., Modeling turbulent air flow in a stand of widely-spaced trees, J. Comp. Fluid Dyn. Appl., 1995, pp.294-312
    Grosman A., Morlet J., Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM J., Math. Anal., 1984, 723-736
    Gross G., A numerical study of the air flow within and around a signal tree, Boundary-Layer Meteorol, 1987, 40: 311-327
    Gu, Y. J., Dziewonski A. M., Global variability of transition zone thickness, J. Geophys. Res., 2002, 107(B7): 10.1029/2001JB000489.
    Gupta V. K., Waymire E., Multiscale properties of spatial rainfall and river flow distributions, J. Geophys. Res., 1990, 95: 1999-2009
    Gupta V. K., Waymire E., Statistical self-similarity in river networks parameterized by elevation, Water Resour. Res., 1989, 25: 463-476
    Haugen D. A., et al., An experimental study of Reynolds stress and heat atmospheric surface layer, Quart. J. Roy. Meteorol. Soc., 1971, 97: 168-180
    Higuchi H., et al., On the structure of a two-dimensional wake behind a pair of flat plates, Phys. Fluid 1994, 6 (1): 297-305
    Hollinger D. Y., et al., Carbon dioxide exchange between an undisturbed old-growth temperate forest and atmosphere, Ecology, 1994, 75: 134-150
    Holschneider M., et al., A real time algorithm for signal analysis with help of wavelet transform, Combes J., (eds.) Wavelet, time-frequency methods and phase space, Proc. First Intern. Conf. on Wavelet, Springer-Verlag, 1989, pp.298-304
    Hoogenboom G., Contribution of agrometeorology to the simulation of crop production and its applications, Agric. For. Meteorol., 2000, 103: 137-157
    Hutjes R. W. A., et al., Biospheric aspects of the hydrologic cycle. J. Hydrol, 1998, 213: 1-21
    Inoue E., On the turbulent structure of air flow within crop canopies, J. Meteorol. Soc. Jpn., 1963, 41: 317-325
    Janssens I. A., et al., Forest floor CO2 fluxes estimated by eddy covariance and chamber-based model, Agric. For. Meteorol., 2001, 106: 61-69
    Jarvis P. G., et al., Seasonal variation of carbon dioxide, water vapor and energy exchanges of a boreal spruce forest, J. Geophys. Res., 1997, 102 (D): 28953-28966
    Jarvis P. G., The interpretation of the variations in water potential and stomatal conductance found in canopies in the field, Phil. Trans. Roy. Soc. London, 1976, Ser. B, 273: 593-610
    Johnson I. R., Thornley J. H. M., A model of instantaneous and daily canopy photosynthesis, J. Theor. Biol., 1984, 107:531-545
    Johnstone I. M., Silverman B. W., Wavelet threshold estimators for data with correlated noise, J. R. Stat. Soc., 1997, B 59 (2): 319-351
    Jones D., et al., Efficient approximation of continuous wavelet transform, Elec. Let., 1991, 27 (9):748-750
    Jones G. H., Use of Infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling, Agr. For. Metorol. 1999, 95: 139-149
    Jones H. G., Empirical models of the conductance of leaves in apple orchards, Plant Cell Environ., 1989, 12: 301-308
    Jones H. G., Plants and Microclimate, Cambridge Univ., Press, 1982, pp.102
    Jordan D. A., et al., Characterization of turbulence scales in the atmospheric surface layer with the continuous wavelet transform, J. Wind Eng. Indust. Aerodyn., 1997, 69-71: 709-716
    Kaimal J. C., Finnigan J. J., Atmospheric Boundary Layer Flow: Their Sturcture and Measurement, Oxford University Press, New York, 1994, pp.289
    Katul G., Albertson J., Low dimensional turbulent transport mechanics near the forest atmosphere interface, Bayesian Inference in Wavelet Based Models, Vidakovic, (eds.), Springer-Verlag, New York, Lecture Notes in Statistics, 1999, 141: 361-380
    Katul G., et al., A Lagrangian dispersion model for predicting CO2 sources, sinks, and fluxes in a uniform loblolly pine (Pinus taeda L.) stand, J. Geophys. Res., 1997a, 102: 9309-21
    Katul G., et al., Spatial variability of turbulent fluxes in the roughness sublayer of an even-aged pine forest. Boundary-Layer Meteorol. 1999, 93: 1-28
    Katul G., et al., The turbulent eddy motion at the forest-atmosphere, J. Geophys. Res., 1997b, 102: 13409-21
    Katul G., et.al., Multiscale analysis of vegetation surface fluxes: from seconds to years, Adv. Water Res., 2001, 24: 1119-1132
    Katul G., Vidkovic B., Identification of low-dimensional energy containing/flux transporting eddy motion in the atmospheric surface layer using wavelet thresholding methods, J. Atmos. Sci., 1998, 54:91-103
    Kaufman M. R., Leaf conductance as a function of photosynthetic photo flux density and absolute humidity difference from leaf to air, Plant Physiology, 1982, 69: 1018-1022
    Kelliher F. M., et al., Evaporation from an eastern Siberian Larch forest, Agric. For. Meteorol., 1997,85: 135-147
    Kolomogorov A. N., A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number, J. Fluid Mech., 1962, 13: 82-85
    Kowalczyk E. K., et al., A Soil-Canopy Scheme for Use in a Numerical Model of Atmosphere –1D Stand-Alone Model, CSIRO Division of Atmospheric Research Technical Paper, 1991, No. 23, pp.56
    Kowalczyk E. K., et al., Implementation of a Soil-Canopy Scheme into the CSIRO GCM –Regional Aspects of the Model Response, CSIRO Division of Atmospheric Research Technical Paper, 1994,No. 32, pp.59
    Krim H., Pesquet J-C., Multiresolustion analysis of a class of nonstationary processes, IEEE Trans. Inf. Theory, 1995, 4: 1010-1020
    Kukharets V. P., Tsvang L. R., Spectra of the turbulent heat fluxes in the atmospheric boundary layer,Izv. Atoms. Ocean. Physics, 1969, 5: 651-655
    Kumar P., Foufoula-Georgiou E., A multicomponent decomposition of spatial rainfall fields. Segregation of large and small scale features using wavelet transform, Water Resour. Res., 1993, 29 (8): 2515-2532
    Kumar P., Role of coherent structure in the stochastic dynamic variability of precipitation, J. Geophys. Res., 1996, 101 (26): 393-404
    Labat D., et al., Rainfall-runoff relations for karstic springs—Part I: Convolution and spectral analyses, J. Hydrol., 2000, 238: 123-148
    Labat D., et al., Rainfall-runoff relations for Karstic springs. Part II: continuous wavelet and discrete orthogonal multiresolution analyses. J. Hydrol., 2000, 238: 149-178
    Lamprecht I., et. al., Flower ovens: thermal investigations on heat producing plants, Thermochimica Acta, 2002, 391: 1027-118
    Lang A. G., et al., Inequality of eddy transfer coefficients for vertical transports of sensible heat and latent heat under advective inversions, Boundary-Layer Meteorol., 1983, 25: 25-41
    Laykhtman D. L. Ponomareva S. M., On the ratio of the turbulent transfer coefficients for heat and momentum in the surface layer of the atmosphere, Izv. Atoms. Oceanic Physics, 1969, 5: 719-722
    Lee X., et al., Carbon dioxide exchange and nocturnal processes over a mixed deciduous forest, Agric. For. Meteorol., 1996, 81: 13-29.
    Lee X., et al., Modelling the effect of mean pressure gradient on the mean flow within forests, Agric. For. Meteorol., 1994, 68: 201-212
    Lee X., et al., Observation of gravity waves in boreal forest, Boundary-Layer Meteorl., 1997, 84:383-398
    Lee X., On micrometeorological observations of surface-air exchange over tall vegetation, Agric. For. Meteorol., 1998, 91: 39-49
    Leuning R., A critical appraisal of a coupled stomatal photosynthesis model for C3 plants, Plant Cell Envir., 1995, 18: 339-357
    Leuning R., et al., A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy. II: Comparison with measurements, Agric. For. Meteorol., 1998, 91: 113-125
    Leuning R., A critial appraisal of a combined stomatal-photosynthesis model for C3 plants, Plant Cell Environ., 1995, 18: 339-335
    Lhomme J. P., The concept of canopy resistance: historical survey and comparison of different approaches, Agric. For. Meteorol., 1991, 54: 227-240
    Li Z. J., et al., A first-order closure scheme to describe counter-gradient momentum transport in plant canopies, Boundary-Layer Meteorol., 1985, 33: 77-83
    Liandrat J., Moret-Bailly F., The wavelet transform: some applications to fluid dynamics and turbulence, Eur. J. Mech., 1990, B 9 (1): 1-9
    Liu P. C., Wavelet spectrum analysis and ocean wind waves. In: Foufoula-Georgiou, E., Kumar, P., (eds.). Wavelets in Geophysics. Academic Press, New York, 1995, pp.151-166.
    Lloyd J., et al., A simple calibrated model of Amazon rainforest productivity based on leaf biochemistry properties, Plant Cell Environ., 1995, 18: 1129-1145
    Long S. R., et al., Blocking and trapping of waves in an inhomogeneous flow, Dyn. Atmos. Oceans, 1993, 20: 79-106
    Lovejoy S., Area-perimeter relation for rain and clouf areas, Science, 1982, 216: 185
    Mahrt L., Ek M., Spatial variability of turbulence fluxes and roughness lengths in HAPEX_MOBILHY, Boundary-Layer Meteorol., 1993, 65; 381-400
    Mallat S., A theory of multiresolution signal decomposition: The wavelet transform, IEEE Trans., 1989a PAMI-11 (7): 674-693
    Mallat S., A Wavelet Tour of Signal Processing, Academic Press, San Diego, 1998, pp.234
    Mallat S., IEEE. Trans. Pattern Anal. Mach. Intell, 1989, 11 (7): 674
    Mallat S., Multiresolution approximation and wavelet orthonormal bases of L2, Tans. Amer. Math. Soc., 1989b 315: 69-78
    Mandelbrot B., The Fractal Geometry of Nature, W. H. Freeman and Company Press, 1983, pp.1-20
    McBean G. A., An investigation of turbulence within the forest, J. Appl. Meteorol., 1968, 7: 410-416
    McBean G. A., et al., The turbulent energy budget near the surface, J. Geophys. Res., 1971, 76:6540-6549
    McBean G. A., Miyake M., Turbulent transfer mechanisms in the atmospheric surface layer, Quart. J. Roy. Meteorol. Soc., 1972, 98: 383-398
    McNaughton K. G., Effective stomatal and boundary-layer resistances of heterogeneous surfaces,Plant Cell Envir., 1994, 17: 1061-1068
    McNaughton R. E., et al., A model of canopy photosynthesis and water use incorporating amechanistic formulation of leaf CO2 exchange, Fo. Ecol. Manage., 1992, 52:261-278
    Meyer S. D., O’Brien J. J., Spatial and temporal 26-day SST variations in the equatorial Indian Ocean using wavelet analysis, Geophys. Res. Lett., 1994, 21 (9): 777-780
    Meyers T. P., Baldocchi D. D., The budgets of turbulent kinetic energy and Reynolds stress within and above a deciduous forest, Agric. For. Meteorol., 1991, 53: 207-222
    Meyers T. P., Paw U K. T., Testing of higher-order closure model for airflow within and above plant canopies, Boundary-Layer Meteorol., 1986, 37: 297-311
    Miller D. R., et al., Air flow across an alpine forest clearing: a model and field measurements, Agric. For. Meteorol., 1991, 56: 209-225
    Milthorpe F. L., Moorby J., An Introduction of Crop Physiology, Cambridge Univ., Press, London and New York, 1974, pp.24-102
    Miyake M., et al., Comparison of turbulent fluxes over water determined by profile and eddy correlation techniques, Quart. J. Roy. Meteorol. Soc., 1970, 96: 132-137
    Moncrieff J. B., et al., The propagation of errors in long-term measurements of land-atmosphere fluxes of carbon dioxide and water, Global Change Biology, 1996, 2: 231-240
    Monin A., Yaglom A., Statistical Fluid Mechanics, MIT Press, Cambridge, Ma, 1975, vol. 2: pp.879
    Monteith J. L., Evaporation and surface temperature, Q. J. R. Meteorol. Soc., 1981, 107: 1-27
    Monteith J. L., Unsworth M. H., Principles of Environmental Physics, Arnold Press, 1999, pp.101-120
    Monteith J. L., Unsworth M. H., Principles of Environmental Physics, Arnold Press, 1999, pp.231-240
    Mott K. A., Parkhurst D. F., Stomatal responses to humidity in air and heliox, Plant Cell Envir., 1991,14: 509-515
    Munné-Bosch S., Schwarz K., Alegre L., Water deficit in combination with high solar radiation leads to midday depression of α-tocopherol in field-grown lavender (Lavandula stoechas) plants, Aust. J. Plant Physiol., 2001,28:315-321
    Myneni R. B., Modeling radiative transfer and photosynthesis in three-dimensional vegetation canopies, Agric. For. Meteorol., 1991, 55: 323-344
    Novak M. D., et al., Turbulent exchange processes within and above a straw mulch. Part I: Mean wind speed and turbulent statistic, Agric. For. Meteorol., 2000, 102: 139-154
    Olejnik J., et al., Evaluation of a water balance model using data for bare soil and crop surface in Middle Europe, Agric. For. Meteorol., 2001, 106: 105-116
    Panofsky H. A., Spectra of atmospheric variables in the boundary layer, Radio. Sci. 1969a, 4: 1101-1109
    Panofsky H. A., The spectrum of temperature, Radio. Sci. 1969b, 4, 1143-1146
    Park K. S., et. al., Near-infrared spectral data transfer using independent standardization samples: acase study on the trans-alkylation process, Chemom. Intel. Lab. Sys. 2001, 55: 53-65
    Paw U K. T., Mathematical analysis of operative temperature and energy budget, J. Therm. Biol.,1987, 12: 227-233
    Pearman G. I., et al., Boundary layer heat transfer coefficients under field conditions, Agric. For.Meteorol., 1972, 10: 83-92
    Pereira A. R., Shaw R. H., A numerical experiment on the mean wind structure inside canopies of vegetation, Agric. Meteorol., 1980, 22: 303-318
    Philip J. R., Plant water relations: some physical aspects, Annu. Rev. Plant Physiol., 1966, 17: 245-268
    Rao K. S., et al., Local advection of momentum, heat and moisture in micrometeorology, Boundary-Layer Meteorol., 1974, 7: 331-348
    Raupach M. R., et al., A wind-tunnel study of turbulent flow close to regularly arrayed rough surfaces, Boundary-Layer Meteorol., 1980, 18: 373-397
    Raupach M. R., Finnigan J. J., Single-layer models of evaporation from plant canopies are correct but useless: Discuss, Aust. J. Plant Physiol., 1988, 15: 705-716
    Raupach M. R., Vegetation-atmosphere interaction in homogeneous and heterogeneous terrain: Some implications of mixed-layered dynamics, Vegetation, 1991, 91: 105-120
    Raupach M. R., Vegetation-atmosphere interaction in homogeneous and surface conductance at leaf, canopy and regional scales, Agric. For. Meteorol., 1995, 73: 151-179
    Rauphach M. R., Vegetation atmosphere interaction and surface conductance at leaf canopy and regional scales, Agric. For. Meteorol., 1995, 73: 151-179
    Richardson W. B., et al., Multi-scale wavelet analysis of mammograms, Progress in Wavelet Analysis and Application, Meyer R., (eds.), 1993, pp.599-608
    Roques S., Meyer Y., (eds.), Progress in wavelet analysis and applications, Editions Frontieres Dreux, 1993, pp.758
    Ross J., The Radiation Regime and Architecture of Plant Stands, Kluwer Academic Publisher, The Hague, 1981, pp.12-127
    Rowntree P. R., Atmospheric parameterization schemes for evaporation over land: Basic concepts
    and climate modeling aspect, Land Surface Evaporation Measurement and Parameterization, Schmugge T. J. and AndréJ. C., (eds.), Springer-Verlag Press, New York, 1988, pp.5-31
    Rowntree W. J., The effect of soil moisture on circulation and rainfall in a tropical model, Quart. J. Roy. Meteorol. Soc., 1977, 103:29-46
    Ruapach M. R., et al., Experiments on scalar dispersion within a model plant canopy: Part I. The turbulence structure, Boundary-Layer Meteorol., 1986, 35: 21-52
    Schhepera H., et al., Fourier methods to estimate the fractal dimension from self-affine signal, IEEE/EMBS Magazine, 1992, 11 (2):57-64
    Schulze D. E., et al., The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions: 1. A simulation of the daily course of stomatal resistance, Oecologia, 1980, 17: 159-170
    Seller P. J., et al., A revised land surface parameterization (SiB2) for atmospheric GCMs Part I: Model formulation, J. Climate, 1996, 9: 676-705
    Seller P. J., et al., Canopy reflectance, photosynthesis and transpiration. III: A reanalysis using improved leaf models and a new canopy integration scheme, Rem. Sens. Envir., 1992, 42: 187-216
    Sellers P. J., et al., A simple biosphere model (SiB) for use within general circulation models, J. Atmos. Sci., 1986, 43: 505-531
    Serway R. A., Physics for Scientists and Engineers, Saunders College Publishing, Philadelphia, PA, 1986, pp.1108
    Shaw R. H., et al., Influence of foliar density and thermal stability on profiles of Reynolds stress and turbulence intensity in a deciduous forest, Boundary-Layer Meteorol., 1988, 45: 391-409
    Show R. H., Seginer I., Calculation of velocity skewness in real and artificial plant canopies, Boundary-Layer Meteorol., 1987, 39: 315-332
    Shuttleworth W. J., et al., An integrated micrometeorological system for evaporation measurement, Agric. For. Meteorol., 1988, 43: 295-317
    Shuttleworth W. J., Wallance J. C., Evaporation from sparse crops -an energy combination theory, Quart. J. R. Meteorol., 1985, 111: 839-855
    Siddhartha S.S., Coherent structure in numerically simulated jets with and without off-source heating, Fluid Dyn. Res., 2000, 26: 105-117
    Sivakumar M. V., et al., Agrometeorology and sustainable agriculture, Agric. For. Meteorol., 2000, 103: 11-26
    Smith M., The application of climatic data for planning and management of sustainable rained and irrigated crop production, Agric. For. Meteorol., 2000, 103: 99-108
    Sperry J. S., et al., Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant, Cell, Environ, 1998, 21: 347-359
    Steward D. W., Modeling surface conductance of pine forests, Agric. For. Meteorol., 1988, 43: 19-35
    Stull R. B., An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, 1988a, pp.267-313, b, pp.26
    Szilagyi J., et al., An objective method for determining principal time scales of coherent eddy structure using orthonormal wavelet, Adv. Water Resour., 1999, 22 (6): 561-566
    Takeuchi N., et al., Wavelet analysis of meteorological variables under winter thunderclouds over the Japan sea, J. Geophys. Res., 1994, 99 (D5): 10751-10757
    Taylor G. I., The spectrum of turbulence, Proc. Roy. Soc. London, 1938, A164: 476-490
    Tennekes H., Free convection in the turbulent Ekman layer of the atmosphere, J. Atmos. Sci., 1970, 27: 1027-1034
    Thakor N., Wavelet analysis of evoked potential, Proc. IEEE/EMBS Annual Conf., 1992, 2446-2447
    Thom A. S., Momentum absorption by vegetation, Quart. J. R. Meteorol., 1971, 97: 414-428
    Thom A. S., Momentum, mass and heat exchange in plant communities, Vegetation and the Atmosphere, Monteith J. L., (eds), Academic Press, New York, Vol. I, 1975a, pp.57-82
    Thom A. S., Momentum, mass and heat exchange in plant communities. Vegetation and the Atmosphere, J. L. Monteith (eds.) Academic Press, New York, Vol. I, 1975b, pp.58-80
    Thompson N., Turbulence measurements above a pine forest, Boudary-Layer Meteorol., 1979, 16: 293-310
    Thornley J. H., Johnson I. R., Plant and Crop Modeling, Oxford University Press, Oxford, 1990, pp.47-98
    Tillman J. E., The indirect determination of stability, heat and momentum fluxes in the atmospheric boundary layer from simple scalar variables during dry unstable conditions, J. Appl. Meteorol., 1972, 11: 783-792
    Torrence C., Compo G. P., A practial guide to wavelet analysis. Bull. Am. Meteorol. Soc., 1998, 79:61-78
    Trambouze W., Voltz M., Measurement and modeling of the transpiration of a Mediterranean vineyard, Agric. For. Meteorol., 2001, 107: 153-166
    Van Pul A., Van Boxel J. H., Comment on a first-order closure scheme to describe counter-gradient momentum transport in plant canopies by Z. J. Li, D. R. Miller and J. D. Lin, Boundary-Layer Meteorol., 1990, 51: 313-315
    Vattay G., Harnos A., Scaling behavior in daily air humidity fluctuations, Phys. Rev. Lett., 1994, 73: 768
    Vergassola M., Frisch U., Wavelet transform of self-similar processes, Physics, 1991, D (54): 58-64
    Verma S. B., et al., Eddy fluxes of CO2, water vapor, and sensible heat over a deciduous forest, Boundary-Layer Meteorol., 1986, 36: 71-91
    Vidakovic B. D., et al., Multiscale denoising of self-similar processes, J. Geophy. Res., 2000, 105:27049-27058
    von Caemmer S., Farquhar G. D., Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves, Planta, 1981, 153: 376-387
    Wang Y. P., Leuning R., A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy. I: Model description and comparison with a multi-layered model, Agric. For. Meteorol., 1998, 91: 89-111
    Watanabe T., Kondo J., The influence of canopy structure and density upon the mixing length within and above vegetation, J. Meteorol. Soc. Jpn., 1990, 68: 227-235
    Wikle C., et al., Hierarchical Bayesian space-time models, J. Environ. Ecol. Statist., 1998, 5: 117-154
    Willis G. E., Deardorff J. W., On the use of Taylor’s translation hypothesis for diffusion in the mixed layer, Quart. J. R. Meteorol. Soc., 1976, 102: 817-822
    Wilson J. D., A secondary-order closure model for flow through vegetation, Boundary-Layer Meteorol., 1988, 42: 371-392
    Wilson J. D., et al., Micro-meteological methods for estimating surface exchange with a disturbed wind flow, Agric. For. Meteorol., 2001, 107: 207-225
    Wilson N. R., Shaw R. H., A high order closure model for canopy flow, J. Appl. Meteorol., 1977, 1197-1205
    Wu J. G., et al., Effects of leaf area profiles and canopy stratification on simulated energy fluxes: the problem of vertical spatial scale, Ecol. Model., 2000, 134:283-297
    Wyngaard J. C., LeMone M. A., Behavior of the refractive index structure parameter in the entraining convective boundary layer, J. Atmos. Sci., 1980, 37: 1573-1585
    Wyngaard J. C., On surface-layer turbulence, Workshop on Micrometeorology, Haugen D. A., (eds.),

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700