基于光子晶体的生物分子编码载体
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Encoded Carriers for Biomolecules Based on Photonic Crystals
  • 作者:赵祥伟
  • 论文级别:博士
  • 学科专业名称:微生物
  • 学位年度:2006
  • 导师:赵宇华 ; 顾忠泽
  • 学科代码:071005
  • 学位授予单位:浙江大学
  • 论文提交日期:2006-04-01
摘要
多元分析技术是一种同时分析大量种类的生物分子相互作用的技术。这种技术的原理一般是基于把不同的生物分子与不同的载体或者标记连接来进行分子标识,也就是所谓的生物分子编码。与传统的一元分析相比,多元分析技术可以使多种分子同时被分析,从而节省了分析时间、成本和样品的消耗量。现在的编码方法已经从基因微阵列式的固定载体编码发展到了多种多样的流动载体编码。光学编码是各种编码中操作、检测最简单,应用最广的一种编码方式。但是目前光学编码中最常用的编码元素还是荧光染料,由于荧光染料所产生的编码颜色来自于分子的化学结构,因此稳定性不高,还有用于编码时遇到的检测以及编码量等问题都对其应用造成了一定的限制。因此本文提出了一种利用光子晶体来编码生物分子载体的新方法,试图避免这些问题,并对编码载体的制备和应用做了如下相应的研究:
     1.开发了一套连续制备单分散编码微球的装置。探讨了影响水相溶液流速、油相溶液流速,锥形玻璃滴头到导流管距离,锥形玻璃管内径等因素对微球大小,单分散度等的影响和变化舰律。还探讨了溶液的配比对成球稳定性和球形度等的影响。
     2.利用该微球制备装置,制备了光子晶体珠光颜料编码聚苯乙烯微球。控制影响微球与生物分子偶联以及生物检测的因素,制备的微球粒径大小均匀,具有均质性良好的表面,同时编码颜色着色均匀,编码稳定。通过对微球的超声洗涤处理,可以得到适合吸附或者共价固定生物分子如蛋白质的编码微球载体。试验结果标明,该编码聚苯乙烯町以利用物理吸附法和共价偶联法实现与生物分子的连接,同时适用于荧光法和酶联显色法等标记检测方法。其检测不需要复杂的仪器设备,具有很大的潜在应用价值,有望成为96孔板的替代选择。
     3.利用该微球制备装置,将单分散纳米粒子的胶体溶液注入到油相溶液,以胶体溶液液滴为模板制备了大小可控的胶体光子晶体编码微球。这种微球比表面积大,编码颜色稳定。并将其用于多元免疫检测分析,探讨了生物分子的固定方法,编码稳定性、准确性与编码量以及检测的灵敏度等问题。通过多元免疫检测证明了其做为编码载体的可靠性与优越性。
     本文制备的两种光子晶体编码载体与文献报道的编码载体相比具有以下优点:
     1.编码来源与光子晶体的物理结构,非常稳定,没有荧光染料编码的光漂白、光淬灭等现象,易于储存。
     2.编码载体的解码,只要普通白光光源即可,不需要专门的激发光与滤光片,也不需要高分辩率的光学系统,所以解码系统非常简单。
Multiplex technology can analysis the interactions of thousands of kinds of biomolecules in parallel. The principle lies in that different kinds of biomolecules are marked by different carriers or labels, which is called biomolecular encoding. Compared with traditional single analysis technology, multiplex technology can save the time, sample consumption and the cost by analyzing lots of kinds of targets within the same sample. Up to now, the encoding strategies developed from fixed carriers such as glass slides used in gene chip to kinds of fiuidic carriers such as beads and barcodes, among which the optical encoding strategies are the mostly used methods because of their simplicity in operation and decoding. But the mostly used encoding element in optical encoding is fluorescence, which comes from the material chemical structure and is not stable. The encoding capacity and decoding of fluorescence limit their applications. Hence, in this dissertation a new encoding method for biomolecular carriers based on photonic crystal nanomaterial is proposed, of which the fabrication and application are studied as below.
    1 An apparatus were developed to fabricate monodispersed encoded polymer beads based on the emulsion droplets. The factors which will affect the sizes and the dispersities of the beads such as the velocity of the water phase and oil phase solution, the diameter of the glass orifice, and the distance between the orifice and the glass tube are discussed. The mixing ratio of the solution is optimized for the best sphere structure and stability of the droplets.
    2 Polystyrene beads encoded with biomimic pearl pigment were prepared with the apparatus. The factors affect the bioanalysis, the robust conjugation between biomolecules, and the encoded carriers were discussed and well controlled. The result beads were uniform in color and sizes and have homogeneous surfaces. After ultrasonic washing the beads were ready for binding with biomolecules such as proteins. Our experiments show that the beads are suitable for protein immobilization techniques such as physical adsorption and covalent binding. At the same time, kinds of lable detection technique can be applied based on the encoded beads such as fluorescent labels and enzyme lables. Since the signal detection of the beads is very simple and can use conventional equipments in bioanalysis, the encoded beads can be alternatives for commonly use 96-well microplates.
引文
1 Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 1087, 58: 2059-2062
    2 John S. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 1087, 58: 2486-2489
    3 Turberfield A J, Photonic crystals made by holographic lithography. MRS Bulletin, 2001, 26: 632-636
    4 Campbell M, Sharp D N, Harrison M T, RG Denning, and AJ Yurberfield, Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature, 2000, 404: 53-56
    5 Wanke M C, Lehmann O, Mueller K, Q. Wen, M. Stuke, Laser rapid prototyping of photonic band-gap microstructures, Science, 1997, 275: 1284-1286
    6 Toader O, Chan U and John S, Photonic band gap architectures for holographic lithography, Physical Review Letters, 2004, 92: 0439051-1-4
    7 Deubel M, Freymann G V, Wegener M, S. Pereira, K. Busch, and. CM Soukoulis, Direct laser writing of three-dimensional photonic crystal templates for the telecommunications, Nature materials, 2004, 3: 444-447
    8 Noda S, 3D and 2D photonic crystals in Ⅲ-Ⅴ semiconductors, MRS bulletin, 200126: 618-621
    9 Lu Y, Yin Y and Xia Y, Fabrication of three-dimensional photonic crystals with nonspherical colloidals as the building blocks, Advanced materials, 2001, 13: 409-413
    10 Astratov V N, Optical spectroscopy of opal matrices with CdS embedded in its pores: Quantom confinement and photonic band gap effects, Ilnuovo Cimento, 1995, 17: 1349-1354
    11 Yin Y, Lu Y, Gates B, Xia Y, A practical route to complex aggregates of monodispersed colloidals with well defined sizes, shapes, and structures, Journal of American Chemical Society, 2001, 123: 8718-8729
    12 Fink Y, Winn J N , Fan S, Chen C. Michel J., Joannopoutos JD Thomas EL. A Dielectric Omnidirectional Reflector. Science, 1998, 282: 1679-1682
    13 Brown E R, Parker C D, Yablonovitch E. J, Optical Society of America.B, 1993, 10 (2) : 404~410
    14 Joannopoulos J D, Villeneuve P R, Fan Shan-hui, Photonic crystals: putting a new twist on light, Nature, 1997, 386: 143-147
    15 Krauss T F, Richard D L R. Progress of Quantum Electronics, 1999, 23: 51~96.
    16 Richard D L R, Chirs S. Nature, 2000, 408: 653~655.
    17 Lei X Y, Li H, Ding F, Zhang W and Ming N B, Novel application of a perturbed photonic crystal: High quality filter, Applied Physics Letter, 1997, 71: 2889-289118 M. Sigalas, CM Soukolis, EN Economou, CT Chan, KM Ho, photonic band gaps and defects in two dimensions:studies of the transmission coefficient. Physical Review Letters, 1993, B 48:14121-14126
    
    19 Fan S, Joannopoulous J D, Photonic crystals. Optics and Photonics News, 2000,11:28-41
    
    20 Ibanescu, M., Fink, Y., Fan, S., Thomas, EL, Joannopoulos, JD. An All-Dielectric Coaxial Waveguide, Science, 2000, 289:415-419
    
    21 Cregan, RF, Mangan, BJ, Knight, JC, Birks, TA, Russell, PSJ, Roberts, PJ, Allan, DC. Single-Mode Photonic Band Gap Guidance of Light in Air, Science, 1999, 285:1537-1539
    
    22 J. Trull, J. Martorell, R. Vilaseca, Angular dependence of phase matched second harmonic generation in a photonic crystal, Joural of Optical Society of America B 1998, 15: 2581-2585
    
    23 van Blaaderen, R. Ruel, and P. Wiltzius, Template-Directed Colloidal Crystallization, Nature, 1997,385 : 321—324
    
    24 Krassimir P. Velikov, Christina G. Christova, Roel P. A. Dullens, and Alfons van Blaaderen, Layer-by-Layer Growth of Binary Colloidal Crystals, Science , 2002 , 296 : 106—109
    
    25 Pan, GS, Kesavamoorthy, R. and Asher, SA, Optically Nonlinear Bragg Diffracting Nanosecond OpticalSwitches," Phys Rev Lett 1997, 78:3860-3863
    
    26 Shouheng Sun, C. B. Murray, Dieter Weller, Liesl Folks, and Andreas Moser, Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices, Science, 2000 287: 1989-1992
    
    27 J. H. Holtz and S. A. Asher, Polymerized Colloidal Crystal Hydrogel Films as Intelligent Chemical Sensing Materials, Nature 1997, 389: 829-832
    
    28 Velev O D, Kaler E W, In situ assembly of colloidal particles into miniaturized biosensors., Langmuir, 1999, 15:3693-2698
    
    29 O. D. Velev, T. A. Jede, R. F. Lobo and A. M. Lenhoff, "Porous Silica Via Colloidal Crystallization", Nature 1997, 389: 447-448
    
    30 O. D. Velev, P. M. Tessier, A. M. Lenhoff and E. W. Kaler, "A Class of Porous Metallic Nanostructures", Nature 1999, 401: 548-548
    
    31 Braun P V, Wiltzius P, Microporous materials electrochemically grown photonic crystals, Nature, 1999,402:603-604
    
    32 Stacy A. Johnson, Patricia J. Ollivier, and Thomas E. Mallouk, Ordered Mesoporous Polymers of Tunable Pore Size from Colloidal Silica Templates Science, 1999, 283: 963-965
    
    33 Ackerson B J, Schatzel K, Classical growth of hard sphere colloidal crystals, Phyical review E, 1995,52:6448-6460
    
    34 Harland J L, Henderson S I, Underwood S M, Megen W van, Observation of accelerated nucleation om dense colloidal fluids of hard sphere particles, Physical Review letters, 1995, 75: 3572-3575
    35 Williams R C, Smith K M, Crystallization insect virus, Nature, 1957, 179: 119-120
    36 Younan Xia, Byron Gates, Yadong Yin, and Yu Lu, Monodispersed Colloidal Spheres: Old Materials with New Applications, Advanced Materials, 2000, 12: 693-713
    37 Johnson NP, McComb DW, Richel A, Treble BM and. De la Rue RM, Synthesis and optical properties of opal and inverse, opal photonic crystals, Synthetic Metals, 2001, 116, 369-473
    38 Velev, OD, TA Jede, RF Lobo and AM Lenhoff, Microstructured Porous Silica via Colloidal Crystallization, Nature, 1997, 389: 447-448
    39 Kalinina, O.; Vickreva, O.; Kumacheva, E. Colloid Crystal Growth under Oscillatory Shear, Advanced Materials, 2000, 2: 110-112
    40 Brian T. Holland, Christopher E Blanford, Andreas Stein,Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids, Science, 1998, 281: 538-540
    41 Holgado, M.; Garcia-Santamaria, E; Blanco, A.; lbisate, M.; Cintas, A.; Miguez, H.; Serna, C. J.; Molpeceres, C.; Reque, Electrophoretic Deposition To Control Artificial Opal Growth, Langmuir, 15: 4701-4704
    42 Okubo T. Giant colloidal single crystals of polystyrene and silica in deonized suspension, Langmuir, 1994, 10(6): 1695-1702
    43 Masuda Y, Itoh M, Yonezawa U and Koumoto K, Low dimensional arrangement of SiO_2 particles, Langmuir, 2002, 18(10): 4155-5159
    44 Pieranski P, Ltrzelecki S, Pansu B, Thin colloidal crystals, Physical review letters, 1983, 50(12):900-903
    45 Neer S, Bechinger C, Leiderer P and Palberg T, Finite-size effects on the closest packing of hard spheres, Physical review letters, 1997, 79(12): 2348-2351
    46 S. Park, Y. Xia, Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters, Langmuir 1999, 15: 266-273
    47 R. M. Amos, J. G. Rarity, P. R. Tapster, and T. J. Shepherd, Fabrication of large-area face-centered-cubic hard-sphere colloidal crystals by shear alignment, Physical Review E, 2000, 61: 2929-2935
    48 ND Denkov, OD Velev, PA Kralchevsky, OB lvanov,. H. Yoshimura, K. Nagayama, Two-dimensional crystallization, Nature 1993, 361: 26-26
    49 Zhong-Ze Gu, Akira Fujishima, and Osamu Sato, Fabrication of High-Quality Opal Films with Controllable Thickness, Chemistry of Materials. 2002, 14: 760-765
    5o Kamp, U., Kitaev, V., yon Freymann, G., Mabury, S., Ozin, G.A., Colloidal Crystal Capillary Columns: Towards an Optical Chromatography, Advanced Materials. 2005, 17 (4), 438-443
    51 J. H. Holtz and S. A. Asher, Polymerized Colloidal Crystal Hydrogel Fihns as Intelligent Chemical Sensing Materials, Nature 1997, 389: 829-832
    52 L. Liu, P. Li, and S. A. Asher, Entropic Trapping of Macromolecules by Mesoscopic PeriodicVoids in a Polymer Hydrogel, Nature, 397,1998: 141-144
    
    53 K. Lee and S. A. Asher, Photonic Crystal Chemical Sensors: pH and Ionic Strength, J. Am. Chem. Soc.,2000, 122: 9534-9537
    
    54 S. Asher, S. Peteu, C. Reese, M. Lin and D. Finegold, Polymerized Crystalline Colloidal Array Chemical Sensing Materials for Detection of Lead in Bodily Fluids, Analy. and Bioanaly. Chem., 2002, 373: 632-638
    
    55 V. Alexeev, A. Goponenko, A. Sharma, I.K. Lednev, C. Wilcox, D. Finegold and S.A. Asher, Photonic Crystal Carbohydrate Sensors: Low Ionic Strength Sugar Sensing, J. Am Chem. Soc, 2003, 125: 3322.
    
    56 C. Reese, A. Mikhonin, M. Kamenjicki, A. Tikhonov and S.A. Asher, Nanogel Nanosecond Photonic Crystal Optical Switching, J. Am. Chem. Soc, 2004, 126: 1493
    
    57 C. Geary, I. Zudans, A. Goponenko, S. Asher and S. Weber, Electrochemical Investigation of Pb2+ Binding and Transport through a Polymerized Crystalline Colloidal Array Hydrogel Containing Benzo-18-Crown-6, Anal. Chem., 2004, 77(1): 185-192.
    
    58 A. Sharma, T. Jana, R. Kesavamoorthy, L. Shi, M. Virji, D. Finegold and S.A. Asher, A General Photonic Crystal Sensing Motif: Creatinine in Bodily Fluids, J. Am. Chem. Soc, 2004, 126: 2971-2977.
    
    59 Weiping Qian, Zhong-Ze Gu, Akira Fujishima, and Osamu Sato, Three-Dimensionally Ordered Macroporous Polymer Materials: An Approach for Biosensor Applications, Langmuir, 2002, 18: 4526-4529
    
    60 Brian Cunningham, Jean Qiu, Peter Li, Bo Lin, Enhancing the surface sensitivity of colorimetric resonant optical biosensors. Sensors and Actuators B, 2002, (87): 365-370
    
    61 Brain Cunningham, Bo Lin, Jean Qiu, Peter Li, Jane Pepper, Brenda Hugh, A plastic colorimetic resonant optical biosensor for multiparallel detection of lable-free biochemical interactions, Sensors and Actuators B, 2002, 85: 219-226
    
    62 Brian Cunningham, Peter Li, Bo Lin, Jane Pepper, Colorimetric resonant reflection as a direct biochemical assay technique, Sensors and Actuators B, 2002, 81: 316-328
    
    63 Peter Y. Li, Bo Lin, John Gerstenmaier, Brian T. Cunningham, A new method for label-free imaging of biomolecular interactions, Sensors and Actuators B 2004 (99): 6-13
    
    64 Bo Lin, Jean Qiu, John Gerstenmeier, Peter Li, Homer Pien, Jane Pepper, Brian Cunningham, A label-free optical technique for detecting small molecule interactions, Biosensors and Bioelectronics 2002 (17): 827-834
    
    65 Brain Cunningham, Bo Lin, Jean Qiu, Peter Li, Jane Pepper, Brenda Hugh, A plastic colorimetic resonant optical biosensor for multiparallel detection of lable-free biochemical interactions, Sensors and Actuators B, 2002, 85: 219-226
    
    66 Zhong-Ze Gu, Rumiko Horie, Shoichi Kubo,Yasuhiro Yamada, Akira Fujishima, and OsamuSato, Fabrication of a Metal-Coated Three-Dimensionally Ordered Macroporous Film and its Application as a Refractive IndexSensor, Angew. Chem. Int. Ed. 2002, 41: 1154-1156
    67 Karen E. Shafer-Peltier, Christy L. Haynes, Matthew R. Glucksberg, and Richard E Van Duyne, Toward a Glucose Biosensor Based on Surface-Enhanced Raman Scattering, Journal of American Chemical Society, 2003, 125: 588-593
    68 Jesper B. Jensen, Poul E. Hoiby, Grigoriy Emiliyanov, Ole Bang, Lars H. Pedersen, Anders Bjarklev, Selective detection of antibodies in microstructured polymer optical fibers, OPTICS EXPRESS, 2005, 13: 5883—5889
    69 Collins, B. E., K.-P. Dancil, G. Abbi, and M. J. Sailor, Determining protein size using an electrochemically machined pore gradient in silicon. Adv. Funct. Mater., 2002. 12(3): 187-191.
    7o Gao, J., T. Gao, Y. Y. Li, and M. J. Sailor, Vapor Sensors Based on Optical Interferometry from Oxidized Microporous Silicon Films. Langmuir, 2002. 18: 2229-2233.
    71 Cunin, F., T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, Biomolecular screening with encoded porous silicon photonic crystals. Nature Materials 2002. 1: 39-41
    72 Schmedake, T. A., F. Cunin, J. R. Link, and M. J. Sailor, Standoffdetection of chemicals using porous silicon "Smart Dust" particles. Advanced Materials, 2002. 14: 1270-1272.
    73 Yang Yang Li, Frederique Cunin, Jamie R. Link, Ting Gao, Ronald E. Betts, Sarah H. Reiver, Vicki Chin, Sangeeta N. Bhatia, Michael J. Sailor, Polymer Replicas of Photonic Porous Silicon for Sensing and Drug Delivery Applications, Science, 2003, 299: 2045-2047
    74 Kevin Braeckmans, Stefaan C. De Smedt, Marc Leblans, Rudi Pauwels, Joseph Demeester. Encoding Microcarries: Present and future technologies, Nature reviews: Drug discovery, 2002, 1: 447-456
    75 Brenner S, Lerner R A, Encoded combinatorial chemistry, Proceedings of National Academic Society of USA, 1992, 89:5381-5383
    76 吴增茹.李有勇.徐筱杰,组合库的筛选及在新药研究中的应用,北京大学报,2000,36(2):275—285
    77 Service, R. F. Radio tags speed compound synthesis. Science 1995, 270: 577
    78 Nicolaou, K. C., Xiao, X. Y., Parandoosh, Z., Senyei, A.& Nova, M. R Radiofrequency encoded combinatorial chemistry. Angew. Chem. Int. Edn Engl. 1995, 34, 2289-2291
    79 Miller, K. Downsizing DNA assays. Scientist, 2002, 16: 52-52
    80 Xiao, X., Zhao, C., Potash, H. & Nova, M. R Combinatorial chemistry with laser optical encoding. Angew. Chem. Int.Edn Engl. 1997, 36: 780-782
    81 Zhou, H. H., Roy, S., Schulman, H. & Natan, M. J. Solution and chips arrays in protein profiling. Trends in Biotechnology. 2001, 19 (Suppl.): 34-3982 BR Martin, DJ Dermody, BD Reiss, M. Fang, LA Lyon, MJ Natan, TE Mallouk. Orthogonal self-assembly on colloidal gold—platinum nanorods. Adv. Matter. 1999, 11: 1021-1025
    
    83 Nicewarner-Pena, S. R.; Freeman, R. G; Reiss, B. D.; He, L.; Pena, D. J.; Walton, I. D.; Cromer, R.; Keating, C. D.; Natan, M. J., Submicrometer metallic barcodes. Science 2001, 294 (5540), 137-141.
    
    84 Braeckmans, K.; De Smedt, S.; Roelant, C; Leblans, M.; Pauwels, R.; Demeester, J. NAT MATER 2003, 2: 169-173.
    
    85 BJ Battersby, D. Bryant, W. Meutermans, D. Matthews, ML Smythe, and M. Trau. Toward larger chemical libraries:encoding with fluorescent colloids in combinatorial chemistry. J. Am. Chem. Soc. 2000, 122: 2138-2139
    
    86 Trau, M. and Battersby, B. J. Novel colloidal materials for high-throughput screening applications in drug discovery and genomics. Adv. Mater. 2001,13: 975-979
    
    87 http://www.luminexcorp.com/
    
    88 Vignali, D. A. A. Multiplexed particle-based flow cytometric assays. J. Immunol. Methods 2000,243:243-255
    
    89 http://www.illumina.com/
    
    90 K. L. Gunderson, S. Kruglyak, M. S. Graige, F. Garcia, B. G. Kermani, C. Zhao, D. Che, T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski, R. Yang, C. Siegmund, J. Haas, L. Zhou, A. Oliphant, J.-B. Fan, S. Barnard, and M. S. Chee, Decoding Randomly Ordered DNA Arrays, Genome Research, 2004, 14:870-877
    
    91 Trau, M. & Battersby, B. J. Novel colloidal materials for high-throughput screening applications in drug discovery and genomics. Adv. Mater. 2001, 13: 975-979
    
    92 Battersby, B. J., Lawrie, G. A. and Trau, M. Optical encoding of microbeads for gene screening: alternatives to microarrays. Drug Discov. Today 2001, 6 (HTS Suppl.): 19-26
    
    93 Bruchez, M., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels.Science 1998,281:2013-2016
    
    94 Han, M., Gao, X. H., Su, J. Z. and Nie S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnol. 2001, 19, 631-635
    
    95 Dejneka, M. J.; Streltsov, A.; Pal, S.; Frutos, A. G.; Powell, C. L; Yost, K.; Yuen, P. K.; Muller, U.; Lahiri, J., Rare earth-doped glass microbarcodes. Proceedings of the National Academy of Sciences of the United States of America 2003, 100, (2), 389-393.
    
    96 Li, Y.Y., VS. Kollengode, and MJ. Sailor, Porous silicon/polymer nanocomposite photonic crystals by microdroplet patterning. Adv. Mater., 2005. 17(10): p. 1249-1251
    
    97 Vaino, A. R.; Janda, K. D., Euclidean shape-encoded combinatorial chemical libraries. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 14: 7692-7696.
    1 张玺,倪旭翔陆祖康,一种新颖的悬浮式牛物芯片愉测技术,光学仪器,2005,27(1):3-7
    2 曹同玉,戴兵,戴俊燕,单分散大粒径聚合物微球的合成及应刖,高分子通报,1995(3):174-180
    3 郝红,梁国正,微胶囊技术及其应用,现代化工,2002,22(3):60-62
    4 郭慧林,赵晓鹏,纳米胶囊的制备及其应用,功能材料,2003,34(6):609—611
    5 许燕侠,赵亮,刘挺,张剑秋,微胶囊的制备技术,上海化工,2005,30(3):21-24
    6 张町达,徐冬梅,王平,微胶囊化方法,功能高分子学报,2001,14(4):474-480
    7 刘晓庚,谢亚桐,微胶囊制备方法的比较,粮食与食品工业,2005,12(1):28-31
    8 陈建山,周钢,吴宇雄,罗洁,微胶囊制备技术及其应用,精细化工中间体,2003,33(6):17-19
    9 A. Imhofand D. J. Pine, Ordered Macroporous Materials by Emulsion Templating, Nature 1997, 389: 948-951
    10 Mason, T. G.; Bibette, J. Shear Rupturing of Droplets in Complex Fluids, Langmuir, 1997, 13(17): 4600-4613.
    11 E B. Umbanhowar, V. Prasad, and D. A. Weitz, Monodisperse Emulsion Generation via Drop Break Off in a Coflowing Stream, Langmuir 2000, 16, 347-351
    12 K. Nagai, T. Norimatsu, Y. Izawa, T.Yamanaka. In: H. S. Nalwa, Encyclopedia ofnanoscience and nanotechnology, Los Angeles : American SeieneePublishers, 2004. 4: 407
    13 K. Nagai, M. Nakajima, T. Norimatsu, Y. Izawa, T.Yamanaka. Journal of Polymer Science., 2000, 38: 3412-3417
    14 HanYang, KeijiNagai, XiangweiZhao, HaihuaChen, ZhongzeGu. Fabrication of photo-encoded beads for bioanalysis, Journal of nanoscience and nanotechnology, 2005, 5(11): 1821-18251 Braeckmans, K.; De Smedt, S.; Leblans, M.; Pauwels, R.; Demeester, J., Encoding microcarriers: Present and future technologies. Nature Reviews Drug Discovery 2002, 1 : 447-456.
    2 Verpoorte, E., Beads and Chips: new recipes for analysis. Lab On A Chip, 2003, 3, 4: 60N-80N
    3 Czarnik, A. W., Encoding methods for combinatorial chemistry. Current Opinion In Chemical Biology, 1997, 1: 60-66.
    4 Cunin, E, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S.N. Bhatia, and M. J. Sailor, Biomolecular screening with encoded porous silicon photonic crystals, Nature Materials 2002, 1: 39-41
    5 吴自强,唐四丁,徐海龙,浅谈云母钛珠光颜料,化工新犁材料,1997,8:19-20
    6 葛志强,周涛,曾平,陈冠群,云母钛珠光颜料的研究进展,涂料工业,2005,35(8):42-49
    7 梁明仁,工廷吉,魏俊峰,周萍华,云母珠光颜料研制方法介绍,华东地质学院学报,1995,18(1):64-69
    8 陶义训主编,免疫学和免疫学检验,人民卫生出版社,北京,1995:129
    9 钱卫平,许斌,吴蕾,宋震东,工春晓,俞枋,陆祖宏,lgG分子存单品硅片表面导向性固定的XPS和EIA研究,传感技术学报,1999,12(2):145—150
    10 沈钟,王果庭,胶体与界面化学(第二版),化学工出版社,北京,1997:394
    11 Vladimir Hlady and Jos Buijs, Protein adsorption on solid surfaces, Current Opinion in Biotechnology, 1996, 7: 72-771 焦李,张书平,酶联免疫分析技术及应用,化学工业m版社,北京,2004
    2 杨晓达,常义保,慈云祥,免疫分析法进展,化学进展,1995,7(2):83—97
    3 Markus F. Templin, Dieter Stoll, Jochen M. Schwenk, Oliver POtz, Stefan Kramer, Thomas O. Joos, Protein microarrays: Promising tools for proteomic research, Proteomics 2003, 3: 2155-2166
    4 Ronald C. McGlennen, Miniaturization Technologies for Molecular Diagnostics, Clinical Chemistry 2001, 47: 393-402
    5 www.luminex.com
    6 陶义训主编,免疫学和免疫学检验,人民卫生出版社,北京,1995:129
    7 Satoh, Ayano; Kojima, Kyoko; Koyama, Tamami; Ogawa, Haruko; Matsumoto, lsamu, hnmobilization of Saccharides and Peptides on 96-Well Microtiter Plates Coated with Methyl Vinyl Ether-Maleic Anhydride Copolymer, Analytical Biochemistry, 1998, 260: 96-102
    8 Vynios, D. H.; Vamvacas, S. S.; Kalpaxis, D. L.; Tsiganos, Aggrecan Immobilization onto Polystyrene Plates through Electrostatic Interactions with Spermine, Analytical Biochemistry, 1998, 260: 64-70
    9 Volga Bulmus, Hakan Ayhan, Ethan Piskin, Modified PMMA monosize microbeads for glucose oxidase immobilization, The chemical engineering Journal, 1997, 65: 71-76
    10 Harma, H.; Aronkyto, R; Lovgren, T., Multiplex immunoassays on size-categorized individual beads using time-resolved fluorescence. Analytica Chimica Acta 2000, 410, (1-2), 85-96.
    11 Stoll, D.; F. Templin, M.; Schrenk, M.; C. Traub, R; F.VohringeR; C.; O. Joos, T., Protein Microarray Technology. Frontiers in Bioscience 2002, 7: C12-32.
    12 杜磊,刘烈雄,曹元成,基于光谱自编码做球的多佯品免疫荧光混合筛选和荧光成像,精细化工,2004,21(12):909-919
    13 Nicewarner-Pena, S. R.; Freeman, R. G.; Reiss, B. D.; He, L.; Pena, D. J.; Walton, I. D.; Cromer, R.; Keating, C. D.; Natan, M. J., Submicrometer metallic barcodes. Science 2001, 294, (5540), 137-141.
    14 Fulton, R. J.; McDade, R. L.; Smith, R L.; Kienker, L. J.; John R. Kettman, J., Advanced multiplexed analysis with the FlowMetrixTM system. CLINICAL CHEMISTRY 1997, 43, 1749-1756.
    15 Han, M.; Gao, X.; Su, J.; Nie, S,, Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. NATURE BIOTECHNOLOGY 2001, 19, (7), 631-635.
    16 Braeckmans, K.; De Smedt, S.; Leblans, M.; Pauwels, R.; Demeester; J., Encoding microcarriers: Present and future technologies. NATURE REVIEWS DRUG DISCOVERY 2002, 1, (6), 447-456.
    17 RudolfM. Lequin, Enzyme lmmunoassay (EIA)/Enzyme-Linked lmmunosorbent Assay (ELISA), Clinical Chemistry, 2005, 51: 1-41 Cunin, F., T. A. Schmedake, J.R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, Biornolecular screening with encoded porous silicon photonic crystals. Nature Materials 2002. 1: 39-41
    2 Velev, O. D.; Lenhoff, A. M.; Kaler, E. W., A class of microstructured particles through colloidal crystallization. Science 2000, 287, (5461), 2240-2243.
    3 Yi, G. R.; Moon, J. H.; Yang, S, M., Ordered macroporous particles by colloidal templating. Chemistry of Materials 2001, 13, (8), 2613-2618.
    4 Yi, G. R.; Moon, J. H.; Manoharan, V. N.; Pine, D. J.; Yang, S. M., Packings of uniform microspheres with ordered macropores fabricated by double templating. Journal of the American Chemical Society 2002, 124, (45), 13354-13355.
    5 Moon, J. H.; Yi, G. R.; Yang, S, M.; Pine, D. J.; Bin Park, S., Electrospray-assisted fabrication of uniform photonic balls. Advanced Materials 2004, 16, (7), 605-609.
    6 Hong, S. H.; Moon, J. H.; Lim, J. M.; Kim, S. H.; Yang. S. M., Fabrication of spherical colloidal crystals using electrospray. Langmuir 2005, 21, (23), 10416- 0421.
    7 Yi, G. R.; Manoharan, V. N.; Klein, S.; Brzezinska, K. R.; Pine, D. J.; Lange, F, F.; Yang, S. M., Monodisperse micrometer-scale spherical assemblies of polymer particles. Advanced Materials 2002, 14, (16), 1137-1140.
    8 Gu, Z. Z.; Yu, Y. H.; Zhang, H.; Chen, H.; Lu, Z.; Fujishima, A.; Sato, O., Self-assembly of monodisperse spheres on substrates with different wettability. Applied Physics a-Materials Science & Processing 2005, 81, (1), 47-49
    9 Hong, S. H.; Moon, J. H.; Lira, J. M.; Kim, S. H.; Yang, S. M., Fabrication of spherical colloidal crystals using electrospray, Langmuir 2005, 21, (23), 10416-10421.
    10 Umbanhowar, R B.; Prasad, V.; Weitz, D. A., Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir 2000, 16, (2), 347-351.
    11 Zhong-Ze Gu, Akira Fujishima, and Osamu Sato, Fabrication of High-Quality Opal Films with Controllable Thickness, Chemistry of Materials. 2002, 14: 760-765
    12 Yi, G. R.; Moon, J. H.; Yang, S. M., Macrocrystalline colloidal assemblies in an electric field. Advanced Materials 2001, 13, (15), 1185-1188.
    13 Yong-Hong Ye, Francois LeBlanc, Alain Hache and Vo-Van Truong, Applied Physics Letters, 2001, 78: 52-54
    14 Zhong-Ze Gu, Hiroshi Uetsuka, Kazuyuki Takahashi Rie Nakajima Hiroshi Onishi, Akira Fuj ishima, Osamu Sato, Structural Color and the Lotus Effect, Angewandte Chemie International Edition, 2003(42): 894-897
    15 Vladimir Hlady, Jos Buijs, Protein adsorption on solid surfaces, Current Opinion in Biotechnology, 1996, 7: 72-77
    16 Vukusic, R; Hooper, 1., Directionally controlled fluorescence emission in butterflies. Science 2005, 310, (5751), 1151-1151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700