家蚕感染浓核病毒中国(镇江)株相关组织蛋白研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家蚕浓核病毒是感染家蚕的四种主要病毒之一,主要通过食下感染,与其它浓核病毒不同,家蚕浓核病毒只感染家蚕中肠上皮组织的圆筒型细胞。患病蚕呈现空头,下痢,吐液等症状,是蚕桑生产上一种比较严重的病毒病。家蚕品种间对浓核病毒的感受性差异很大,一些品种对BmDNV具有完全的非感受性,而一些品种极易感染,家蚕对浓核病毒感受性差异的蛋白质分子机理目前尚不十分明确。本研究以对家蚕浓核病毒镇江株(Bombyx mori densovirus Zhenjiang Strain, BmDNV-ZJ)感受性和非感受性近等基因系蚕品种为材料,采用生物测定、地高辛标记的酶联免疫测定、蛋白质双向电泳和基质辅助质量飞行时间质谱技术,在蛋白水平上对家蚕感染浓核病毒相关组织进行了研究,研究结果将有助于进一步弄清家蚕对BmDNV的感受性分子机制,阐明家蚕浓核病毒的致病机理。
     通过生物测定和地高辛标记的酶联免疫吸附测定初步分析了家蚕对BmDNV-ZJ的感受性机制。试验表明:家蚕的消化液、血液中不存在对BmDNV-ZJ侵染性有影响的蛋白因子,感受性家蚕品种的中肠组织蛋白中可能存在对BmDNV-ZJ侵染性有影响的蛋白因子,而非感受性家蚕品种的中肠组织蛋白中不存在影响BmDNV-ZJ侵染性的蛋白因子,且BmDNV-ZJ与感受性家蚕品种中肠组织蛋白的结合具有组织特异性。
     通过蛋白质双向电泳和基质辅助质量飞行时间质谱技术对两个不同感受性家蚕品种的中肠组织蛋白进行了比较分析。2-DE电泳结果表明,两个品种间的中肠组织蛋白的点数、位置、点形等差异很小。MALDI-TOF MS鉴定的9个差异蛋白点中都有较强的肽质量指纹信号峰,其中感受性品种JS的中肠组织中有6个差异蛋白点,4个可能为氢离子转运ATP合酶β亚基1,氢离子转运ATP合酶β亚基2,组织蛋白酶D或3-羟酰辅酶A脱氢酶;抵抗性蚕品种NIL的中肠组织中有3个差异蛋白点, 2个可能是组织蛋白酶。
     通过对BmDNV-ZJ感受性和非感受性蚕品种血液和围食膜组织蛋白比较分析表明:两个蚕品种的血液和围食膜组织蛋白的差异很小,其凝胶图谱上的蛋白点数、位置、点形等都几乎一样。两品种的血液组织蛋白大多为一类中性略偏碱性的蛋白质,酸性和碱性极端的蛋白质很少;围食膜组织部分蛋白大多为一类中低分子量、偏中性的蛋白质。
     在血液组织蛋白中发现5个有显著差异的蛋白点:其中只在感受性蚕品种血液组织中发现的差异蛋白可能为酪蛋白激酶,另一个可能为新型组织蛋白;而在非感受性蚕品种血液中发现的特异蛋白点可能是类丝氨酸蛋白酶、线粒体延伸因子,而且其血淋巴蛋白的含量也极显著地高于感受性品种。从这些差异蛋白点可能的功能中可以看出,家蚕品种间对BmDNV-ZJ感受性差异可能与蚕品种间的血液组织蛋白差异无关。
     在围食膜组织蛋白中共发现4个有显著差异的蛋白点,其中在感受性蚕品种围食膜组织中,发现1个可能为新型组织蛋白的特异性蛋白点,其余3个蛋白点在含量上相互间存在显著差异。所发现的4个差异蛋白点是否与蚕品种对BmDNV-ZJ感受性差异有关尚待进一步研究。
     感受性蚕品种在BmDNV-ZJ侵染初期,中肠组织受BmDNV-ZJ诱导产生的蛋白可能为Serpin-2(调控蛋白酶活性和细胞凋亡)和Thiol peroxiredoxin(具有抗氧化、消除自由基等功能)。血液组织受诱导而得到特异性表达的蛋白可能是丝裂原活化蛋白激酶(调控细胞凋亡)或类抗氧化酶蛋白(具有抗氧化、消除自由基等功能)。表明感受性蚕品种在BmDNV-ZJ感染初期,其内生性免疫防御途径可能通过受侵染部位(中肠)和免疫防御组织(血液)分泌抗氧化蛋白等抗性蛋白因子和细胞凋亡等方式来阻止或延缓病毒的进一步侵染。
     感受性蚕品种在感染浓核病毒晚期,其中肠、血液组织蛋白量急剧下降,有近30%的蛋白点消失,其余蛋白点的含量大幅下调达50%以上。表明由于浓核病毒专一性地侵染中肠上皮组织,破坏了中肠的消化吸收功能,阻断了营养物质的输入,无法满足家蚕生长发育的需要,进而极大地减少了自身组织蛋白的合成。
Bombyx mori Densovirus (BmDNV) is one of the four main viruses infecting silkworm. The BmDNV infects silkworm mainly through oral administration, and replicates only in the columnar cells of midgut epithelium, which is different from other densoviruses. The symptom of diseased silkworm includes body transparency, diarrhea, vomiting and so on. Thus the densonucleosis is a kind of severe viral diseases to the silkworm in sericultural production. The susceptibility to BmDNV differs according to the silkworm strains. Some strains are absolutely non-susceptible to BmDNV, while few are easily to be infected. The molecular mechanism of the silkworm susceptibility to BmDNV at protein level is unknown presently. In this paper, with two near isogenic silkworm strains, JS and NIL, respectively susceptible and non-susceptible to BmDNV Zhenjiang Strain (BmDNV-ZJ) as materials, proteins in the silkworm tissues related to the infection of BmDNV-ZJ were studied by bioassay, DIG-labeled ELISA, two dimensional electrophoresis (2-DE) and matrix-assisted laser ionization time-of-flight mass spectrometry (MALDI-TOF MS).
     The results will be helpful for the understanding of the molecular mechanism of silkworm susceptibility to BmDNV and the pathogenesis of the silkworm densonucleosis.
     The purified virus was incubated with extract from different tissues of susceptible silkworm strain JS and non-susceptible silkworm strain NIL, then the infectivity of the virus was tested by bio-assay and the combination activity of the virus with proteins from the extract measured by DIG-labeled ELISA. The results indicated that there were no protein factors affecting the invasion of the virus in digestive juice and blood. Some protein factors enhancing the invasion probably exist in the midgut of JS but not in NIL. It is speculated that protein factor as virus receptor may exist in the midgut of JS, but not in the NIL. Meanwhile,the combination activity was tissue-specific to the midgut of JS.
     Proteins in the midgut of JS and NIL were analyzed comparatively by two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix-assisted laser ionization time-of-flight mass spectrometry (MALDI-TOF MS). The results showed that there was less difference in the number, location and shape of the protein spots on the 2-DE image between the two strains. Protein peptide mass fingerprints (PMF) of all the 9 distinguished specific spots, six in JS and three in NIL , showed high intensity when analyzed by MALDI-TOF MS.Among the six specific spots in JS, four might be H+ transporting ATP synthase beta subunit isoforms 1 and 2, cathepsin D or 3-hydroxyacyl-CoA dehydrogenase, respectively. Of the three specific spots in NIL, two spots might be cathepsin.
     Comparative analysis of proteins in the hemolymph and peritrophic membrane (PM) between JS and NIL indicated that there was less difference in tissue proteins from hemalymph or PM between the two strains, the number, location and shape of the protain spots on the 2D image were very similar. The proteins from the blood of both the two silkworm strains were mainly neutral and slightly alkaline ones with very few extremely acid or extremely alkaline ones. The proteins from PM was mostly middle or low in molecular weight and neutral in isoelectric point value.
     Total five differentiated spots were distinguished on 2-D image of the hemolymph proteins. One spots distinguished in the susceptible strain might be casein kinase and another be an un-reported protein. Spots distinguished in the non-susceptible strain might be masquerade-like serine proteinase and mitochondrial elongation factor respectively. Moreover, the protein content in the hemolymph of non-susceptible strain was remarkably higher than that in the susceptible strain. According to the probable function of these differentiated spots, it is suggested that the susceptibility of silkworm strains against BmDNV-ZJ may be not related with the difference of their hemolymph proteins.
     Total four differentiated spots were detected in PM proteins. A specific spot distinguished in the PM of susceptible strain might be an un-reported protein. The protein content of each counterpart spots of the rest three is remarkably different between the susceptible and non-susceptible strains. It is not clear whether the four differentiated spots were related with the difference of susceptibility to BmDNV-ZJ among the silkworm strains.
     In the susceptible strains, serpin-2 (regulating protease activity and apoptosis) and thiol peroxiredoxin (anti-oxidation and eliminating free radicels) was detected in the midgut in the initial stage of infection by BmDNV-ZJ. They might be the products by the induction of the virus infection. The proteins specifically expressed in the hemolymph against the infection might be mitogen-activated protein kinase (regulating apoptosis) or peroxiredoxin-like protein (anti-oxidation and eliminating free radicels). According to the probable functions of these differentiated proteins, it is speculated that the silkworm of susceptible strain may prevent the BmDNV-ZJ infection from further development in the initial stage of infection through endogenous immune defense ways such as the apoptosis and the secretion of resistant protein factors in midgut (the infected position) and blood (the tissue of immune defense), like anti-oxidation proteins.
     In the advanced stage of infection by BmDNV-ZJ, the amount of proteins extracted from midgut and hemolymph of the silkworm of susceptible strain decreased rapidly. About 30% spots disappeared and the down-regulation of the rest spots was more than 50%. This implies that the protein synthesis is significantly reduced due to destruction of the digestion and absorption function of the midgut caused by the virus infection.
引文
1. 川獭茂实 家蚕浓核病毒. 国外农学-蚕业, 1990, 3:9-13.
    2. 崔颖俊, 裘智勇, 赵巧玲等. 家蚕幼虫消化液蛋白质组学分析,蚕业科学,2008,34(1)50-54
    3. 郭海涛,张珈敏,胡远扬. 蟑螂浓核病毒全核苷酸序列与基因组结构. 科学通报,2000 45: 1076-1080
    4. 高镰, 蔡幼民. 家蚕浓核病毒中国(镇江株)核酸结构的研究. 蚕业科学, 1980,14(3): 138-140.
    5. 郭锡杰, 钱元骏, 胡雪芳, 王红林. 我国家蚕浓核病毒寄生组织部位研究. 蚕业科学, 1985,11(2):93-98.
    6. 黄龙全,家蚕抗浓核病育种方法研究,蚕业科学,1986,12(1)29-35
    7. 胡雪芳,钱元骏,王红林,家蚕浓核病毒对不同蚕品种的侵染性研究. 蚕业科学 1984,10(2):87-90.
    8. 贺福初,孙建中,叶鑫生等.蛋白质科学.北京:军事医学科学出版社,2002:1-74.
    9. 侯勇,官建,赵萍等. 家蚕中肠组织蛋白质组学研究. 蚕业科学,2007,33(2):216-222
    10. 侯勇等,家蚕脂肪体蛋白质组学的研究. 生物工程学报,2007,23(5)867-872
    11. 侯勇,家蚕丝腺等组织蛋白质组学研究[博士学位论文].重庆:西南农业大学,2007.
    12. 金奇.医学分子病毒学.科学出版社.2001. 30
    13. 靳远祥,徐孟奎,姜永煌,等.家蚕茧色限性品种雌雄绢丝腺组织蛋白质组双向凝胶电泳分析. 农业生物技术学报, 2004,12(4):431-435
    14. 靳远祥,徐孟奎,陈玉银等. 家蚕雌性附腺及其 Ng 突变体的蛋白质组差异研究. 生物化学与生物物理进展,2004,31(7):622-627
    15. 吕鸿声. 细小病毒科的昆虫病毒. 昆虫病毒分子生物学. 1998;北京:中国农业科技出版社:381-400.
    16. 鲁华云,叶健,李建营,等.家蚕不同品种后部丝腺蛋白质双向电泳图谱比较.蚕业科学,2006,32(1):114-117
    17. 利布莱尔 D C.蛋白质组学导论.北京:科学出版社,2005:17-69.
    18. 李建武,袁明秀,陈丽蓉等. 生物化学实验原理和方法[M]. 北京:北京大学出版社,1997.390-397
    19. 李明珠,张部昌,黄留玉.蛋白质组学中的分离检测术.生物技术通讯,2005,16(1):93-95.
    20. 李永芳,孙玉昆,胡雪芳等. 家蚕浓核病毒的核酸研究,蚕业科学 1986; 12 (4): 238-239.
    21. 罗祖玉, 施志仪. 自主性细小病毒非结构蛋白对转化细胞的毒性及其调控复制和转录的机理. 复旦学报,1999,38(5):578-583.
    22. 蒲蛰龙.昆虫病理学[M].广州:广东科技出版社,1992.
    23. 钱元骏,胡雪芳,孙玉昆等,家蚕浓核病毒的研究,蚕业科学,1986,12(2):89-94
    24. 秦俭, 易文仲. 家蚕浓核症病毒中国(镇江)株不感受性的连锁分析. 蚕业科学, 1988, 14 (3):129-132
    25. 裘智勇,李木旺,沈兴家等,.家蚕对浓核病毒中国镇江株抵抗性机制的初步研究. 蚕业科学,2007,33(4):596-601
    26. 裘智勇,李木旺,沈兴家等,家蚕对浓核病毒(镇江株)抵抗性和感受性品种的中肠组织蛋白比较分析,蚕业科学,2008,第二期
    27. 单士刚,姚青,彭建新等,动物病毒诱导的细胞凋亡及其生理意义,病毒学报,2006,22(3):233-236
    28. 沈飞英,钟伯雄,楼程富等.家蚕五龄幼虫中部丝腺细胞的蛋白质组成比较.中国农业科学,2005,38(5):1052-1058
    29. 沈飞英,钟伯雄,楼程富等.家蚕5龄幼虫不同时期中部丝腺细胞蛋白质双向电泳分析.蚕业科学,2006,32(1):25-35
    30. 王开芬, 谢天恩.家蚕浓核病毒感染蚕种原代细胞的超显微结构观察. 蚕业科学, 1993, 19(2):113-114
    31. 汪家政,范明. 蛋白质技术手册. 北京:科学出版社,2000.42-46
    32. 吴卫成,钟伯雄,孟智启等.家蚕 4 眠期与 5 龄期后部丝腺细胞蛋白质组成分析.蚕业科学,2005,31(3):273-279
    33. 许光治,郭锡杰等.家蚕浓核病毒(镇江)株主要结构蛋白基因的克隆及表达.病毒学报,2004,20,(3), 278-282
    34. 叶健,钟伯雄,林健荣,等.家蚕温敏性品种胚胎发育的蛋白质表达谱变化.蚕业科学,2005,31(3):362-365
    35. 颜新培,钟伯雄,徐孟奎,等.家蚕 5 龄后部丝腺蛋白质构成与茧层量的关系.蚕业科学,2003,29(4):344-348
    36. 颜新培,徐盂奎.家蚕从基因组到蛋白质组的研究.科技通报,2004,20(3):252-257
    37. 颜新培,钟伯雄,曹家树,等.家蚕催青期胚胎蛋白质图谱的建立. 蚕业科学,2004,30(1):28-33
    38. 颜新培,钟伯雄,徐孟奎,等.家蚕催青前期胚胎蛋白质双向电泳图谱分析.昆虫学报,2005,48(2):295-330
    39. 杨复华. 病毒学. 湖南科学技术出版社,1992.
    40. 姚国华,颜新培,钟伯雄,等.家蚕胚胎发育关联的初始蛋白质研究.蚕业科学,2004,30(4):436-439
    41. 姚 勤,李 军等,家蚕对浓核病毒中国株(BmDNV-3)抗性及感性品系中肠的差异蛋白质分析,昆虫学报,2007,50(12):1219-1224
    42. 浙江农业大学主编,蚕体解剖生理学,北京:农业出版社,第二版,1981
    43. 钟伯雄等.家蚕胚胎发育时期的蛋白质变化及构造分析.遗传学报,1999, 26(6):627-633
    44. 钟伯雄.五龄家蚕若干组织器官蛋白质数据库构建.遗传学报,2001,28(3):217-224
    45. 钟伯雄,陈金蛾,颜新培,等.家蚕催青后期胚胎蛋白质双向电泳图谱分析.昆虫学报,2005,48(4):637-642
    46. 章波,向渝梅,白云. 抗氧化蛋白 Peroxiredoxin 家族研究进展,生理科学进展,2004,35(4):352-355
    47. 中国农业科学院蚕业研究所.中国养蚕学.上海:上海科技出版社,1990.563-564
    48. Abbott A. And now for the proteome. Nature, 2001, 409(6822): 747
    49. Abd-Alla A, Jousset FX, Li Y et al. NS-3 protein of the Junonia coenia densovirus is essential for viral DNA replication in an Ld 652 cell line and Spodoptera littoralis larvae. J Virol 2004; 78(2):790-797.
    50. Abe, H.,Watanabe, H. and Eguchi, R. Genetic relationship between nonsusceptilities of the silkworm, Bombyx mori to two densonucleosis viruses. J.Seri.Sci.Jpn.,1987, 56:443-444
    51. Abe H, Sugasaki T. Kanehara M, et al. Identification and genetic mapping of RAPD markers linked to the densonucieosis refractoriness gene, nsd-2, in the silkworm, Bombyx mori. Genes Genet Syst 2000, 75: 93-96.
    52. Afanasiev B N, Gaylow E E, Buchatsky L P, et al. Nucleotide sequence and genomic organization of Aedes densonucleosis virus. Virology, 1991, 185: 323-336.
    53. Afanasiev HN, Kozlov YV, Carlson JO, Beaty BJ. Densovirus of Aedes aegypti as an expression vector in mosquito cells. Exp. Parasitol., 1994, 70:322-339.
    54. Akhilesh Pandey。Matthias Mann.Proteomics to study genes and genomes.Nature,2000。405:837-846
    55. Alfred M H, Anthony A J. Insect transgenesis. Insect transgenesis 2000; America: CRC Press LLC.
    56. Angelika GSrg,Waiter Weiss,Michael J Dunn.Current two-dimensional electrophoresis technology for proteomics.Proteomics,2004,4(12):3665-3685
    57. Bando, H., Choi, H,Ito, Y, Nakagaki, M. and Kawase, S., 1992. Structural analysis on the single-stranded genomic DNAs of the virus newly isolated from silkworm: the DNA molecules share a common terminal sequence. Arch. Virol., 124, 187-193.
    58. Bando H., Hayakawa T., Asano S., et al. Analysis of the genetic information of a DNA segment of a new virus from silkworm. Arch Virol. 1995, 140(6):1147-55.
    59. Bando H, Kusuda J, Kawase S. Molecular cloning and characterization of Bombyx mori desovirus genome. Arch Virol, 1987, 93: 139-146.
    60. Bano H, Kusuda J, Gojobori T, et al. Organization and nucleotide sequence od a densovirus genome imply a host-dependent evolution of the parvoviruses. J.Virol. 1987, 61: 553-560.
    61. Barbis D.P., Chang S.F., Parrish C.R. Mutations adjacent to the dimple of canine parvovirus capsid structure affect sialic acid binding. Virology,1992, 191:301-308
    62. Belloncik S. Potential use of densovirus as biological control agents of insects pests. Handbaok of parvoviruses 1990, Florida:CRC Press,Vo1.2(Ch.19)
    63. Beeck AOD, Caillet-Fauquet P. The NSl protein of the autonomous parvovirus minute virus of mice blocks cellular DNA replication: a consequence of lesions to the chromatin? J Virol 1997, 71(7):5323-5329.
    64. Bird CH, Sutton VR, Sun J, et al. Selective regulation of apoptosis: the cytotoxic lymphocyte serpin proteinase inhibitor 9 protects against granzyme B-mediated apoptosis without perturbing the Fas cell death pathway. Mol Cell Biol, 1998, 18(11):6387-6398
    65. Blonder J,Rodriguez Galan M C,Lucas D A,et a1.Proteomic investigation of natural killer cell microsomes using gas-phase fractionation by mass spectrometry.Proteomics,2004,1698(1):87-95.
    66. Bodendorf U, Cziepluch C, Jauniaux JC, Rommelaere J. Nuclear export factor CRMI interacts with nonstructural proteins NS2 from parvovirus minute virus of mice. J Virol 1999,(73):7759-7769.
    67. Bossin H, Fournier P, Royer C, Barry P. Junonia coenia densovirus-based vectors for stable transgene expression in Sf9 cells: influence of the densovirus sequences on genomic integration. J Virol 2003; 77(20):11060-11071.
    68. Brandenburger A. Legendre D, Avalosse B, et al. NS-1 and NS-2 proteins may act synergistically in the cytopathogenicity of parvovirus MVMp. Virology. 1990, 174 (2): 576-584.
    69. Brownstein DG, Smith AL, Johnson EA. The pathogenesis of infection with minute virus of mice depends on expression of small nonstructural protein NS2 and on the genotype of allotropic determinants VP1 and VP2. J Viro , 1992, 66:3118-3124.
    70. Brown K.E., Anderson S.M., Young N.S. Erythrocyte P antigen: cellelar receptor for B19 parvovirus. Science, 1993, 262:114-117
    71. Buchatskii LP, Litvinov GS, Lebedinets NN, Filenko OM. Effect of temperature on the infectivity of the iridovirus and densonucleosis virus of blood sucking mosquitoes. Vopr. Virusol, 1988; 33(5):603-606.
    72. Buzza MS, Hirst CE, Bird CH, et al. The granzyme B inhibitor, PI-9, is present in endothelial and mesothelial cells, suggesting that it protects bystander cells during immune responses. Cell Immunol. 2001, 210(1):21-29.
    73. Cano E, Mahadevan LC. Parallel signal processing among mammalian MAPKs. TIBS, 1995, 20(3): 117-122
    74. Casal Jl. Use of parvovirus-like particles for vaccination and induction of multiple immune responses. Biotechnol Appl Biochem, 1999, 29(Pt2):141-150
    75. Chang SF, Sgro JY, Parrish CR. Multiple amino acids in the capsid structure of canine parvovirus coordinately determine the canine host range and specific antigenic and hemagglutination properties. J Virol, 1992, 66(12):6858-6867
    76. Chao YC, Young SY. Characterization of a picornavirus isolated from Pseudoplusia includena, Lepidoptera, Noctuidae. J.Invertebr Pathol. 1986, 47:247-257.
    77. Chun J, McMaster J, Han Y, et al. Two-dimensional gel analysis of haemolymph proteins from Plasmodium-melanizing and -non-melanizing strains of Anopheles gambiae. Insect Mol Biol. 2000 Feb, 9(1):39-45.
    78. Corsini J, Afanasiev B, Maxwell IH. Autonomous pavovirus and densovirus gene vectors.Adv Virus Res 1996; 47:303-353.
    79. Cotmore S, D.Abramo Jr A M, Carbonell L F et al. The NS2 polypeptide of parvovirus MVM is required for capsid assembly in murine cells. Virology, 1997, 231:267-280.
    80. Dalziel R.G., Hopkins J., Watt N.J. et al. Identification of a putative cellular receptor for the lentivirus visna virus. J.Gen.Virol., 1991, 72(8):1905-1991
    81. D.E.Kalume,M.Okulate,J.Zhong,et al. A proteomic analysis of salivary glands of female Anopheles gambiae mosquito.Proteomics, 2005, 5: 3765-3777
    82. D.G.Biron, L.Marche, F.Ponton, et al. Behavioural manipulation in a grasshopper harboufing hairworm: a proteomics approach. Proc Biol Sci, 2005, 272:2117-2126
    83. Ding C, Urabe M, Bergoin M, et al. Biochemical characterization of Junonia coenia densovirusnonstructural protein NS-1 .J Virol, 2002, 76: 338-345.
    84. Dumas B, Jourdan M, Pascaud A M, et al. Complete nucleotide sequence of the cloned infectious genome of Junonia coenia densovirus reveals an organization unique among parvoviruses. Virology, 1992, 191:202-222.
    85. El Far, Li Y, Fediere G, Abol-Ela S. Lack of infection of vertebrate cells by the densovirus from the maize worm Mythimna loreyi (M1DNV). Virus Res 2004; 99(1):17-24
    86. Eguchi R, Furuta Y and Ninaki O. Dominant nonsusceptibility to densonucleosis virus in the silkworm,Bombyx mori. J Seri Sci Jpn, 1986, 55: 177-178.
    87. Eguchi, R, Ninaki, O. Hara, W. Genetical analysis on the nonsusceptibilities to densonucleosis virus in the silkworm, Bombyx mori., J.Seri.Sci.Jpn.,1991, 60:384-389
    88. E.Vierstraete, A.Cerstiaens,G.Baggerman,G, et al. Proteomics in Dro-sophila melanogaster:first 2D database of larval hemolymph proteins.Biochem Biophys Res Commun,2003,304:831-838
    89. Fediere G. Li Y, Zadori Z, et al. Genome organization of Casphalia extranea densovirus, a new iteravirus. Virology 2002, 292(2):299-308.
    90. Fields S. Proteomics in genomeland. Science, 2001, 291(5507):1221-1224
    91. F.Levy,P.Bulet,L.Ehret-Sabatier,Proteomic analysis of the systemic immune response of Drosophila.Mol Cell Proteomics, 2004, 3:156-166
    92. Fox JM, Stevenson MAM, Bloom ME. Replication of aleutian mink disease parvovirus in vivo is influenced by residues in the VP2 protein. J Viro1 1999, 73(10):8713-8719
    93. Gao H, J.Zhang, Y.Hu, Complete sequence and organization of Periplaneta fuliginosa densovirus genome. Acta virologica. 2000, 44:315-322
    94. Garzon S, Kurstak E. Ultrastructural studies on the morphogenesis of the densonucleosis virus parvovirus. Virology, 1976, 70(2):517-531.
    95. G.I.Prevot, C.Laurent Winter,et al. Two-dimensional gel analysis of midgu t proteins of Anopheles stephensi lines with different susceptibility to Plasmodium falciparum infection. Insect Mol Biol,1998, 7:375-383
    96. G.Baggerman,A.Cerstiaens,A.De Loof,L.Peptidomics of the larval Drosophila melanogaster central nervous system.J Biol Chem, 2002,277:40368-40374
    97. Grog A, Obermaier C, Boguth G, et al. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 2000, 21(6):1037-1053
    98. Gross O, Tal J. Expression of the insect parvovirus GmDNV in vivo: the structural and nonstructural proteins are encoded by opposite DNA strains. J Invertbr Pathol, 2000, 75:126-132.
    99. Hayakawa T, Kojima K, Nonaka K et al. Analysis of protein encoded in bipartite genome of a new type of parvo-like virus isolated from silkworm-structural protein with DNA polymerase motif. Virus Res, 2000, 66: 101-108
    100.Hase T, Summers PL, Edkels KH. Flavivirus entry into cultured mosquito cells and human peripheral blood monocytes. Arch Virol, 1989, 104(1-2):129-143.
    101.Hernando E, Lamas-Saiz AL, Foces-Foces C, McKenna R. Biochemical and physical characterization of parvovirus Minute Virus of mice virus-like particles. Virology 2000; 267:299-309.
    102.Hou Y, Xia Q, Zhao P,et al.Studies on middle silk gland and posterior silk gland of silkworm (Bombyx mori)using two-dimensional electrophoresis and mass spectrometry.Insect Biochemistry and Molecular Biology. 2007, 37, 486-496
    103.Hueffer K., Parker J.S., Weichert W.S., et al. The natural host range shift and subsequent evolution of canine parvovirus resulted from virus-specific binding to the canine transferrin receptor. J.Virol., 2003, 77:1718-1726
    104.Hurtado A, Rueda P, Nowicky J, Sarraseca J. Identification of domains in canine parvovirus VP2 essential for the assembly of virus-like particles. J.Virol. 1996, 70(8): 5422-5429.
    105.Hu Y, J. Zhang, T.Iizuka and H.Bando. A densovirus newly isolated from the smoky-brown cockroach Periplaneta fuliginosa. Arch.Virol. 1994, 138: 365-372.
    106.Iwasita Y, Chao YC. The development of a densonucleosis virus isolated from silkworm larvae, Bombyx mori, of China. The ultrasturcture and functioning of insect cells 1982, Tokyo: Society for insect ce11s: 161-164.
    107.Jayarama Vasudevacharya, Richard W Compans. The NS and capsid genes determine the host range of porcine parvovirus. Virology. 1992, 187: 515-524.
    108.Jin Yuan-xiang, Chen Yu-yin, Xu Meng-kui, et a1.Studies ofmiddle silkgland proteins of cocoon color sex-limited silkworm(Bombyx mori .)using two-dimensional polyaerylamide gel electrophoresis. Journal of Biosciences, 2004, 29(1):45-49
    109.Jousset FX, Jourdan M, Compagnon B et al, Restriction maps and sequence homologies of two densovirus genomes. J Gen Virol, 1990; 71(Pt 10):2463-2466.
    110.J.Royet,et al.Drosophila melanogaster innate immunity:an emerging role for peptidoglycan recognition proteins in bacteria diction, Cell Mol Life Sci,2004, (61):537-546
    111.Kaludov N., Brown K E., Walters R.W., et al. Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity. J.Virol, 2001, 75:6884-6893.
    112.Kawase, S., Cai Y, Bando, H, et al.Chemical properties of Yamanashi isolate of Bombyx mori densonucleosis virus. J. Seric. Sci. Jpn. 1984, 53, 341-347.
    113.Kelly DC, Elliott RM. Polyamines contained by two densonucleosis viruses. J Virol 1977 21(1):408-410.
    114.Kerr JR. The parvoviridae; an emerging virus family. Infect Dis Rev. 2000, 2(3):99-109
    115.Kittayapong P, Baisley KJ, Neill SL. A mosquito densovirus infecting Aedes aegypti and Aedes albopictus from Thailand. Am J Trop Med Hyg, 1999, 61(4):612-617.
    116.Kojima K, Hirano A, Shin-ichiro Asano et al. Analysis of the BmDNV-2 specific DNA polymerase and the common terminal sequence binding proteins. J Seric Sci Jpn, 2001, 70: 103-108
    117.Lee KS, Kim SR, Park NS, et al. Characterization of a silkworm thioredoxin peroxidase that is induced by external temperature stimulus and viral infection. Insect Biochem Mol Biol, 2005, 35(1):73-84.
    118.Legendre D, Rommelaere J. Terminal regions of the NS-1 protein of the parvovirus minute virus of mice are involved in cytotoxicity and promoter trans- inhibition. J Virol. 1992, 66(10): 5705-5713.
    119.Legrand C., Rommeleare J., Caillet Fauquet P. MVM NS-2 protein expression is required with NS-1 for maximal cytotoxicity in human transformed cells. J. Virol 1993, 195:149-155.
    120.Li M W, Shen L, Xu A Y, et al. Genetic diversity among the silkworm (Bombyx mori L.,Lep., Bombycidae) germplasm revealed by microsatellites. Genome, 2005, 48: 802-810.
    121.Lippincott W, Wilkins. parvoviridae: The viruses and their replication. Fields Virology 2000.
    122.Li Y, Zadori Z, Bando H. et al. Genome organization of the densovirus from Bombyx mori (BmDNV-1) and enzyme activity of its capsid. J GenVirol, 2001, 82: 2821-2825.
    123.Liu J.M., Green S.W., Shimda T., Young N.S., A block in full-legth transcript maturation in cells nonpermissive for B19 parvovirus. J.Virol., 1992, 66:4686-4692
    124.M.Ashida. The prophenoloxidase cascade in insect immunity, Res Immunol, 1990, 141: 908-910
    125.Meynadier G. Staining of inclusion bodies fo the granulosis virus by dibromo-hydroxy mercur influorescein-crystal violet reaction. Ann Inst Pasteur (Paris). 1962 Jun; 102:753-755.
    126.M.Guedes Sde,R.Vitorino,K.Tomer,et al. Drosoph-ila melanogaster larval hemolymph protein mapping.Biochem Biophys Res Commun,2003,312:545-554
    127.M.P.Schippers, R.Dukas, R.W.Smith,et al.Lifetime perform ance inforaging honeybees:behaviour and physiology. J Exp Biol,2006,209:3828-3836
    128.Muwang Li, Qiuhong Guo, Chengxiang Hou, et al.Linkage and mapping analyses of the densonucleosis non-susceptible gene nsd-Z in the silkworm Bombyx mori using SSR markersGenome, 2006 ,Vol. 49,397-402
    129.Naeger L K, Cater J and Pintel D J. The small nonstructural protein (NS2) of the parvovirus minutevirus of mice is required for the efficient replication and infectious virus production in a cell-typespecific manner. J Virol, 1990, 64: 6166-6175
    130.Nakagaki M, Kawase S. Structural proteins of densonucleosis virus isolated from silkworm, Bombyx mori. J. Seric. Sci. Jpn, 1980, 36(166):171.
    131.Nakagaki M, Morinaga T, Chun-qin Zhou et al. 1999. Increasing curves of two virus DNAs in the midgut epithelium of infected with Bombyx mori densocleosis virus type 2 (BmDNV-2). J Seric Sci Jpn, 1999. 68:173-180
    132.Parker J.S., Murphy W.J., Wang D., et al. Canine and feline parvivirus can use human or feline transferrin receptors to bind, enter, and infect cells. J.Virol., 2001, 75:3896-3902
    133.Parrish CR. Mapping specific functions in the capsid structure of canine parvovirus and feline panleukopenia virus using infectious plasmid clones.Virology, 1991,183 (1):195-205
    134.Parrish C.R. Emergence, natural histury, and variation of canine, mink, and feline parvivirus. Adv.Virus Res., 1990,38:403-450
    135.Pasquale G.D., Davidson B.L., Sten C.S., et al. Identification of PDGFR as a receptor for AAV-5 transduction. Nat.Med., 2003, 9:1306-1312
    136.PetersW. Zoo physiology: Peritrophicmembranes, Berlin: Springer-Verlag,1992.
    137.Potempa J, Korzus E, Travis J. The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J Biol Chem.1994,269(23):15957-15960
    138.Qing K., Hansen J., et al. Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat.Med., 1999, 5:71-77
    139.Qiu J., Handa A., Kirby M., et al. The interaction of heparin sulfate and adeno-associated virus 2. Virology, 2000, 269: 137-147
    140.Ried M., Girod U. A., Leike K., et al. adeno-associated virus capsids displaying immunglobulin-binding domains permit antibody-mediated vector retargeting to specific cell surface receptors. J.Virol., 2002, 76:4559-4566
    141.R.Predel, C.Wegener,W.K.Russell,S.E.Tichy, et al. Peptidomics of CNS-associated neurohemal systems of adult Drosophila melanogaster:a mass spectrometric survey of peptides from in-dividual flies.J Comp Neurol,2004,474:379-392
    142.Rueda P, Martinez-Torrecuadrada JL, Sarraseca J, Sedlik C. Engineering parvovirus-like particles for the induction of B-cel1,CD4+and CTL responses. Vaccine, 2000, 18:325-332.
    143.Silverman GA, Bird PI, Carrell RW, et al. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem. 2001, 276(36):33293-33296
    144.Simpson AA, Chandrasekar V, Hebert B, Sullivan GM, Rossmann MG, Parrish CH. Host range and variability of calcium binding by surface loops in the capsids of canine and filine parvoviruses. J. Mol. Biol., 2000, 300:597-610.
    145.Simpson AA, Chipman PR, Baker TS, Tijssen, P and Rossmann MG,The structure of an insect parvovirus (Galleria mellonella densovirus) at 3.7 resolution. Structure, 1998, 6: 1355-1367
    146.S.M.Paskewitz, L.Shi. The hemolymph proteome of Anopheles gambiae.Insect Biochem Mol Biol, 2005, 35:815-824
    147.Spitzer AL, Parrish CR, Maxwell IH. Tropic determinant for canine parvovirus and feline panleukopenia virus functions through the capsid protein VP2.J.Gen.Virol, 1997, 78:925- 928.
    148.Summerford C., Bartlett J.S., Samulski R.J., αVβ5 integrin: a co-receptor for adeno- associated virus type 2 infection. Nat.Med., 1999, 5:78-82.
    149.Summerford C., Samulski R J., Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J. Virol., 1998, 72:1438-1445
    150.Thomas C Hunter,Nancy L Andon,Antonius Koller,et a1.The functional proteomics toolbox methods and applications.Journal of Chromatography B,2002,782:165-181
    151.Tijssen P., Kurstak E. Studies on the structure of the two infectious types of densonucleosis virus. Intervirology 1979; 11(5):261-267.
    152.Tijssen P, Li Y, EI Far M, Szelei J. Organization and expression strategy of the ambisense genome of densonucleosis virus of Galleria mellonella. J Virol 2003: 77 (19) : 10357-10365
    153.Van Regenmortel MHV, Fauquet CM, et al. Virus taxonomy: classification and nomenclature of viruses. (Seventh reports of the International Committee on Taxonomy of Viruses) Academic Press, San Diego, 2000.
    154.Vanacker JM, Rommelaere J. Nonstructural proteins of autonomous parvoviruses: from cellular effects to molecular mechanisms. J Virol, 1995, 69(6):291-297.
    155.Walters R.W., Yi S., Keshavjee S., et al. Binding of adeno-associated virus type 5 to 2,3-linked sialic acid is required for gene transfer. J.Biol.Chem., 2001, 276:20610-20616.
    156.Wang P,Granados RR,et al. Observation on the presence of the peritrophic membrane in larval Trichoplusia ni and its role in limiting baculovirus infection. J Invertebr Pathol. 1998, 72:57-62
    157.Ward TW, Kimmick MW, Afanasiev BN. Characterization of the structural gene promoter of Aedes aegypti densovirus. J Virol 2001, 75(3):1325-1331.
    158.Wasinger V C,Cordwell S J,Cerpa-Poljak A,et a1.Progress with gene-product mapping of the Mollieutes:Mycoplasma genitalium.Eleetrophoresis,1995,16(7):1090~1094
    159.Watanabe H, Kurihara Y. Copmarative histopathology of two densonucleosis in the silkworm, Bombyx mori. J Invertbr Pathol 1988, 51: 289-290.
    160.Watanabe H, Maeda S. Genetically determined nonsusceptibility of the silkworm, Bombyx mori to infection with a densonucleosis virus. J Invertbr Pathol 1981, 38:370-373.
    161.Willwand K, Hirt B. The major capsid protein VF2 of minute virus of mice can from particles which bind to the 39-terminal hairpin of replicative from DNA and packagesingle-strand viral progeny. J Virol, 1993; 67:5660-5663
    162.Xia Q, Zhou Z, Lu C, et al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science, 2004 Dec 10,306 (5703):1937-40.
    163.Y.Uno, T.Fujiyuki, M.Morioka, et al. Identification of proteins whose expression is up-or down-regulated in the mushroom bodies in the honeybee brain using proteomics.FEBS Lett,2007,58 1:97-101
    164.Zadori Z, Szelei J, Lacoste MC, Li Y. A viral pholipase A2 is required for parvovirus infectivity. Dev Cell 2001, 1(2):291-302.
    165.Zhang P, Aso Y, Yamamoto K, et a1. Proteome analysis of silkgland proteins from the silkworm,Bombyx mori.Proteomics, 2006, 6:2586-2599
    166.Zhang P, Yamamoto K, Aso Y, et a1. Proteomic study of isoforms of the p25 component of Bombyx mori Fibroin. Biosci Biotech Bioch, 2005, 69:2086-2093
    167.Zhang P,Yamamoto K,Wang Y,et a1.Utility of dry gel from two-dimensional electrophoresis for peptide mass fingerprinting analysis of silkworm proteins. Biosci Biotech Bioch, 2004,68(10):2148-2154

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700