猪流行性腹泻病毒S蛋白抗原表位鉴定及受体结合域的初步筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪流行性腹泻(porcine epidemic diarrhea, PED)是由猪流行性腹泻病毒(porcine epidemic diarrhea virus, PEDV)引起猪的一种急性、高度接触性肠道传染病。在过去30年间,虽然PEDV常规疫苗被广泛应用,但是PED在各国猪场中的感染仍然非常严重,给养猪业带来巨大经济损失。所以,关于PEDV的新型疫苗、侵入机制和免疫机理的研究是十分必要的。众所周知,病毒的抗原表位、受体与受体结合域在病毒侵染和抗病毒免疫中起着重要作用。S蛋白是PEDV一个表面的结构蛋白,它既含有介导病毒侵入宿主细胞的受体结合域,又拥有介导机体产生病毒中和抗体的抗原表位。鉴于此,本研究对PEDV S蛋白的抗原表位和受体结合域进行筛选与鉴定,为PEDV诊断方法和新型疫苗的研究以及抗病毒免疫策略的设计提供信息。
     为获得PEDV S基因及其分子特性,本试验克隆了PEDV CV777毒株细胞适应毒的S基因,序列比对结果表明,获得的S基因与PEDV CV777毒株S基因参考序列核苷酸的同原性为99.4 %,推导氨基酸的同原性为99.8 %。S蛋白氨基酸的疏水性、信号肽序列和N-侧链连接糖基化位点分析表明,克隆的S基因保持了其亲本毒株CV777 S基因的分子特性。根据冠状病毒II群成员S蛋白S1和S2亚基之间的保守基序(GxCx和保守九肽),PEDV S蛋白可以被划分为2个功能区即S1(第1~789位氨基酸)和S2(第790~1383位氨基酸),其中S1区包含了病毒主要的中和表位和受体结合域。
     为了分析S蛋白S1区抗原表位特征,利用fd丝状噬菌体展示系统,构建了S1基因特异性肽库,以PEDV多克隆血清为靶蛋白对构建的肽库进行3轮生物淘选,结果获得了3个高亲和力序列,分别命名为S1P1(第248~280位氨基酸)、S1P2(第442~499位氨基酸)和S1P3(第697~742位氨基酸)。ELISA和Western blot结果显示,S1P1、S1P2和S1P3的GST融合蛋白均与PEDV多克隆血清反应,其中S1P3反应性最强。为了进一步揭示S1P1、S1P2和S1P3短肽的抗原性,三个短肽GST融合蛋白和它们串联后GST融合蛋白(S1P123-GST)的单因子鼠血清被制备。间接免疫荧光试验(IFA)和ELISA结果证实,抗S1P2、S1P3和S1P123 GST融合蛋白的单因子鼠血清能识别天然的PEDV。本试验结果表明,S1P1、S1P2和S1P3是PEDV S蛋白3个线性抗原表位,S1P2和S1P3表位具有良好的免疫原性。
     PEDV S蛋白S1区在介导中和抗体产生过程中发挥重要作用。为了鉴定S蛋白S1区的免疫优势区,利用PCR扩增了4个相互重叠、覆盖S1基因的片段,分别命名为S1A、S1B、S1C和S1D。四个片段PCR产物分别克隆到pGEX-6p-1原核表达载体后,经IPTG诱导均获得了表达。Western blot和ELISA结果显示,S1D-GST融合蛋白(第636~789位氨基酸)与PEDV的多克隆抗体具有强反应性。IFA和Western blot结果表明,抗S1D-GST融合蛋白的鼠血清能够识别天然的S蛋白。病毒中和试验表明,S1D-GST融合蛋白能介导鼠产生对PEDV具有中和作用的抗体。为了对中和表位区(S1D)的抗原表位进行精确定位,制备并获得了6株抗S1D特异性的单克隆抗体,Western blot结果显示,6株单克隆抗体均能识别天然的S蛋白。利用噬菌体展示和肽扫描技术对6株单克隆抗体识别的表位进行了鉴定,结果显示,单克隆抗体2C4、3C3和5F8识别的表位是S蛋白的第744~759位氨基酸(S1D5),单克隆抗体3G3、6E6和3G5识别的表位是S蛋白的第756~771位氨基酸(S1D6)。ELISA和IFA结果表明,抗S1D5和S1D6表位融合蛋白的鼠血清均能识别天然的S蛋白。进一步的肽扫描(Pepscan)结果显示,S1D5表位的核心序列是Y748SNIGVCK755(SS5),S1D6表位的核心序列是L764QDGQVKI771(SS6)。
     病毒细胞受体和受体结合域的信息能为病毒疫苗和抗病毒药物设计提供策略。为了揭示PEDV的受体结合域信息,本试验以PEDV可溶性的细胞受体猪氨基肽酶N(pAPN)为靶蛋白对S1基因特异性肽库进行3轮生物淘选,然后对30个淘选的噬菌体克隆进行测序。序列分析发现,2个噬菌体克隆展示无义氨基酸序列,其余28个噬菌体克隆展示的氨基酸序列位于S蛋白第249~529位氨基酸区域,这个区域被命名为MRR。为了进一步印证MRR区与pAPN在体外的相互作用,利用Bac-to-Bac杆状病毒表达系统对MRR基因进行真核表达。Western blot结果表明,表达的MRR重组蛋白能够与兔抗PEDV的多克隆抗体反应。但是,进一步的pull-down实验结果显示,利用抗pAPN的鼠血清通过Western blot检测不到与MRR重组蛋白结合的pAPN。本试验结果提示,PEDV S蛋白第249~529位氨基酸区域(MRR)是pAPN细胞受体的一个潜在的结合区域。
     本研究鉴定出PEDV S蛋白5个线性抗原表位即S1P1(第248~280位氨基酸)、S1P2(第442~499位氨基酸)、S1P3(第697~742位氨基酸)、SS5(第748~755位氨基酸)和SS6(第764~771位氨基酸),1个中和表位区(S1D,第636~789位氨基酸),1个猪氨基肽酶N潜在的受体结合域(MRR,第249~529位氨基酸)。这些抗原表位以及受体结合域的揭示对进一步分析PEDV S蛋白的结构与功能以及建立以表位为基础的抗原抗体诊断方法和基于表位的疫苗设计具有指导意义。
Porcine epidemic diarrhea (PED) is a highly contagious, enteric disease of swine caused by porcine epidemic diarrhea virus (PEDV). During the past 30 years, in spite of preparation of inactivated and live attenuated vaccines, PED has frequently broken out in many swine-raising countries of Asia, resulting in large economic losses. Thus, there is a need to develop novel vaccine of the PEDV, and understand the mechanism of viral entry and immunization. The S protein of PEDV is a glycoprotein localized on the virion surface, which plays a key role in the induction of the neutralizing antibodies and specific receptor binding and cell membrane fusion, because of possessing the neutralizing epitopes and receptor binding domain. Given this, screening and identification of the receptor binding domain and antigenic epitopes were carried out in this study. It is necessary to provide some valuable information for development of diagnosis technology and novel vaccine, and for designing antiviral immunization strategy of PEDV.
     In order to obtain information about molecular properties of PEDV S gene, the S gene of PEDV strain CV777 adapted to Vero E6 cells was sequenced, using three overlapping cDNA clones which were amplified by RT-PCR based on viral genome RNA. Sequence analysis showed that identity of nucleotides and deduced amino acids was 99.4 % and 99.8 % respectively, comparing with the reference sequence of S gene of PEDV strain CV777. Analysis result of the amino acids hydrophobicity, signal peptide sequence and N-linked glycosylation demonstrated that these molecular properties of the cloned gene S were the same to the parental virus PEDV strain CV777. S protein was divided into the S1 domain (aa 1~789) and S2 domain (aa 790~1383) according to the presence of conserved nonamer and the GxCx motifs at the proteolytic cleavage site of S protein in other members of coronavirus, group II. The S1 domain contains major neutralization epitopes and receptor binding domain of PEDV.
     To analyze antigenic epitopes of PEDV S protein, the S1 gene targeted libraries containing the major immunodominant region S1 (aa 1~789) of PEDV spike glycoprotein gene were constructed using the fd phage display system which the exogenous polypeptides were expressed in the N-terminal of the fd phage gene III coat protein. The S1 libraries were panned three times with the purified rabbit sera against PEDV. Three short peptides which were displayed by recombinant fd phages showed strong binding affinity with the PEDV antisera, and were designated S1P1 (aa 248~280), S1P2 (aa 442~499) and S1P3 (aa 697~742) respectively. The results of ELISA and Western blot indicated that the GST fusion proteins of the three short peptides were all recognized by the PEDV antisera and S1P3 showed strong binding activity. To further determined antigenicity of the epitopes S1P1, S1P2 and S1P3, the antisera of the GST fusion proteins S1P1, S1P2, S1P3 and S1P123 (fused epitopes of S1P1, S1P2 and S1P3) were prepared. The result of the IFA and ELISA demonstrated that the epitopes S1P2, S1P3 and the fusion epitope S1P123 were able to induce the S1-specific antisera with the binding ability to the native S protein of PEDV cultured in Vero E6 cells. The result showed that the epitopes S1P1, S1P2 and S1P3 were three linear antigenic epitopes on the spike protein of PEDV, and the epitopes S1P2 and S1P3 had good immunogenicity.
     The S1 domain of PEDV S protein plays a key role in the induction of the neutralizing antibodies. To identify immunodominant region on S protein, the gene encoding its major immunodominant region S1 was amplified by PCR. Four truncated S1 proteins spanning the entire S1 domain fused to GST protein were prepared. These recombinant proteins were designated as S1A-GST, S1B-GST, S1C-GST and S1D-GST. To identify the most important antigenic region of the S1, the truncated S1-GST fusion proteins were examined for their ability to react with immune serum against PEDV and to elicit the formation of neutralization antibodies in immunized animals. It was found that the region S1D (aa 636~789) was able to react with PEDV antiserum and to elicit formation of neutralization antibodies in mice. Moreover, the immune serum against S1D showed the binding ability to the native S protein of PEDV. To accurately identify epitopes on neutralizing epitope region S1D, six specific monoclonal antibodies (McAbs) against the S1D region were prepared. In western blot, these McAbs could react with the native S protein of PEDV. In order to mapping epitopes of the domain S1D, the S1-phage library and Pepscan technology were carried out. The result showed that the McAbs 2C4, 3C3 and 5F8 recognized the epitope S1D5 (aa 744-759), and the McAbs 3G3, 6E6 and 3G5 recognized the epitope S1D6 (aa 756-771). The antisera of the epitopes S1D5 and S1D6 could react with the native S protein of PEDV. Furthermore, Pepscan of the two linear epitopes demonstrated that SS2 (Y748SNIGVCK755) and SS6 (L764QDGQVKI771) are two core epitopes on the epitopes S1D5 and S1D6, respectively.
     Information of cellular receptor and its receptor binding region could provide better strategies for developing effective vaccine and medicine. To identify the receptor binding domain of porcine aminopeptidase N (pAPN) receptor of PEDV, the S1 gene targeted libraries of PEDV were panned three times with the soluble pAPN based on standard procedure. Thirty phage clones which selected randomly from the binding-phages of pAPN, were sequenced by the dideoxy method. The result showed that polypeptides displayed by twenty-eight phage clones (excepted two meaningless sequences) were focused on 249~529 amino acids (MRR) on S protein of PEDV. In order to investigate interaction between pAPN and the region MRR of the PEDV S protein, His fusion gene of the region MRR was expressed in insect cells (sf9) using Bac-to-Bac? baculovirus expression system. In Western blot, MRR fusion protein with His tag could react with antiserium of PEDV. However, the further pull-down assay demonstrated that the binding activity of the recombinant protein MRR and pAPN could not be detected in Western blot. These data suggested that the region MRR of the PEDV S protein was a potential receptor binding domain of the porcine aminopeptidase N (pAPN).
     All together, five linear antigenic epitopes S1P1 (aa 248~280), S1P2 (aa 442~499), S1P3 (aa 697~742), SS5 (aa 748~755) and SS6 (aa 764~771), one neutralizing epitopes (S1D, aa 636~789), and one potential receptor binding domain (MRR, aa 249~529) of the porcine aminopeptidase N (pAPN) were identified on the S protein of PEDV. These data could provide the basis for the development of immunity-based prophylactic, therapeutic, and diagnostic techniques for the control of porcine epidemic diarrhea virus and further structure and function analysis of spike protein.
引文
1. 白雪帆,张英,汪毅.应用PEPSCAN技术研究单克隆抗体L13F3识别的抗原表位.第四军医大学学报,2000,21(7):850~852.
    2. 陈建飞,冯力,时洪艳,孙东波,白兴华,佟有恩.猪流行性腹泻病毒 CH/S 株 N 蛋白基因的遗传变异及其原核表达.中国预防兽医学报,2007,29(11):856~860.
    3. 杜勇,侯利华,李敬云.应用噬菌体随机肽库研究艾滋病病人血清中特异抗原表位.中华实验和临床病毒学杂志,2000,14(4):338~340.
    4. 冯力,时洪艳,陈建飞.猪病毒性腹泻疾病的预防.养猪,2005,28(5):35~37.
    5. 郭慧芳,张文红,温冬青,韩锋产,张虎明,罗进,阎小君.UreB蛋白B细胞抗原表位快速筛选与鉴定.生物化学与生物物理进展,2006,33(l):83~86.
    6. 来鲁华.蛋白质的结构预测与分子设计.第 1 版.北京:北京大学出版社,1993,pp:49.
    7. 李全喜,王琰.从噬菌体短肽库中筛选单克隆抗体识别的抗原表位.中华微生物学和免疫学杂志,1997,17(1):64~67.
    8. 廖延雄主编.兽医微生物实验诊断手册[M].北京:中国农业出版社,1991,pp:201~102.
    9. 马思奇,王明,冯力,李伟杰.猪传染性胃肠炎与猪流行性腹泻二联氢氧化铝细胞灭活疫苗的研究.中国畜禽传染病,1995,(6):23~27.
    10. 马思奇,王明,周金法,冯力.猪流行性腹泻病毒适应 Vero 细胞培养及传代细胞毒制备氢氧化铝灭活疫苗免疫效力试验.中国畜禽传染病,1994,(2):15~19.
    11. 欧阳理,王庆林.从随机多肽库中筛选日本血吸虫抗原模拟表位诱导保护性免疫的研究.中国热带医学,2002,2(2):132~135.
    12. 潘卫,戚中田.从HCV核心蛋白噬菌体随机展示肽库中筛选抗原表位.细胞与分子免疫学杂志,2001,17(1):20~23.
    13. 沈倍奋.分子文库[M].北京:科学出版社,2001.
    14. 沈南,吕良敬,陈顺乐.U1RNP70KD, Sm2D, SSB及β2GP1自身抗原的重组表达及临床研究.上海医学,2000,23(5):263~266.
    15. 孙东波,冯力,陈建飞,时洪艳,佟有恩,刘胜旺,陈洪岩.猪流行性腹泻病毒CH/JL毒株S 基因的克隆、序列分析及线性抗原表位区的鉴定.病毒学报,2007,23(3):224~229
    16. 孙东波,冯力,时洪艳,陈建飞.猪流行性腹泻病毒分子生物学研究进展.动物医学进展,2006a,27(10):11~14.
    17. 孙东波,冯力,时洪艳,刘胜旺,陈洪岩,佟有恩,李伟杰,王明,马思奇,陈建飞.猪传染性胃肠炎病毒重组N蛋白抗原间接ELISA抗体检测方法的建立.中国预防兽医学报,2006b,28(5):572~580.
    18. 王明,张为民.猪传染性胃肠炎与猪流行性腹泻穴位针刺免疫的研究.中国畜禽传染病,1997,19(6):6~13.
    19. 宣华.应用猪胎肠单层细胞培养猪流行性腹泻病毒的研究.兽医大学学报,1984,3:202~208.
    20. 殷震, 刘景华主编.动物病毒学[M].第二版,北京:科学出版社,1997,pp:688~690.
    21. 余丽芸,侯喜林.流行性腹泻病毒E基因与pSFV重组RNA的构建.黑龙江八一农垦大学学报,2005,17(1):47~50.
    22. Alberts B. The cell as a collection of protein machines: Preparing the next generation of molecular biologists. Cell, 1998, 92: 291~294.
    23. Annette H., Andreas F.K. Characterization of determinants involved in the feline infectious peritonitis virus receptor function of feline aminopeptidase N. J Gen Virol. 1998, 79(6): 1387~1391.
    24. Appel J.R., Pinilla C., Niman H. Elucidation of discontinuous linear determineants in peptide. J Immunol. 1990, 144 (3): 976.
    25. Babcock G.J., Esshaki D.J., Thomas W.D., Ambrosino D.M. Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor. J Virol. 2004, 78(9): 4552~4560.
    26. Babcock G.J., Esshaki D.J., Thomas W.D., Ambrosino D.M. Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor. J Virol. 2004, 78(9): 4552~4560.
    27. Bae J.L., Lee J.G., Kang T.J., Jang H.S., Jang Y.S., Yang M.S. Induction of antigen-specific systemic and mucosal immune responses by feeding animals transgenic plants expressing the antigen. Vaccine, 2003, 21(25-26): 4052~4058.
    28. Ballesteros M.L., Sánchez C.M., Enjuanes L. Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism. Virology, 1997, 227(2): 378~88.
    29. Beate S., Hans J.G., Reinhard B., Georg H. The S protein of bovine coronavirus is a hemagglutinin recognizing 9-0-acetylated sialic acid as a receptor determinant. J Virol. 1991, 65(11): 6232~6237.
    30. Bernasconi C., Guscetti F., Utiger A., Van Reeth K., Ackermann M., Pospischil A. Experimental infection of gnotobiotic piglets with a cell culture adapted porcine epidemic diarrhoea virus: clinical, histopathological and immunohistochemical findings. Proceedings of the 3rd ESVV Congress, Interlaken, Switzerland, 1995, pp: 542~546.
    31. Bonavia A., Zelus B.D., Wentworth D.E., Talbot P.J., Holmes K.V. Identification of a Receptor-Binding Domain of the Spike Glycoprotein of Human Coronavirus HCoV-229E. J Virol. 2003, 77(4): 2530~2538.
    32. Bonavia A., Zelus B.D., Wentworth D.E., Talbot P.J., Holmes K.V. Identification of a receptor-binding domain of the spike glycoprotein of human coronavirus HCoV-229E. J Virol. 2003, 77(4): 2530~2538.
    33. Boris T., Shmuel C., Meir W. The epitopes for natural polyreactive antibodies are rich in proline. Immunology, 1997, 94: 6335~6339.
    34. Bosch B.J., Van Der Zee R., De Haan C.A., Rottier P.J. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol.2003, 77 (16): 8801~8811.
    35. Brian D.A., Baric R.S. Coronavirus genome structure and replication. Curr Top Microbiol Immunol. 2005, 287: 1~30.
    36. Bridgen A., Duarte M., Tobler K., Laude H., Ackermann M. Sequence determination of the nucleocapsid protein gene of the porcine epidemic diarrhoea virus confirms that this virus is a coronavirus related to human coronavirus 229E and porcine transmissible gastroenteritis virus. J Gen Virol. 1993, 74 (9): 1795~1804.
    37. Bridgen A., Kocherhans R., Tobler K., Carvajal A., Ackermann M. Further analysis of the genome of porcine epidemic diarrhoea virus. Adv Exp Med Biol. 1998, 440: 781~786.
    38. Broliden P.A., Von Gegerfelt A., Clapham P., Rosen J., Feny? E.M.,Wahren B., Broliden K. Identification of human neutralization-inducing regions of human immunodeficiency virus type 1 envelope glycoproteins. Proc Natl Acad Sci USA. 1992, 89(2): 461~465.
    39. Brymora A., Cousin M.A., Roufogalis B.D., Robinson P.J. Enhanced protein recovery and reproducibility from pull-down assays and immunoprecipitations using spin columns. Anal Biochem. 2001, 295: 119~122.
    40. Carvajal A., Diego R., Lanza I., Rubio P., Carmenes P., Schwyzer M. Evaluation of an ELISA for the detection of porcine epidemic diarrhea virus (PEDV) in faces of naturally infected pigs. In Pro 3d Congr ESVV, Interlaken, Switzerland, 1995a, pp: 516~519.
    41. Carvajal A., Diego R., Lanza I., Rubio P., Carmenes P., Schwyzer M. Evaluation of a blocking ELISA using monoclonal antibodies for the detection of porcine epidemic diarrhea virus and its antibodies. J Vet Diagn Invest. 1995b, 7(1): 60~64.
    42. Carvajal A., Diego R., Lanza I., Rubio P., Carmenes P., Schwyzer M. Seroprevalence of porcine epidemic diarrhea virus infection among different types of breeding swine farms in Spain. Preventive Vet Med. 1995c, 23(1): 33~40.
    43. Carvajal A., Lanza I., Diego R., Rubio P., Cármenes P. Evaluation of a blocking ELISA using monoclonal antibodies for the detection of porcine epidemic diarrhea virus and its antibodies. J Vet Diagn Invest. 1995, 7(1): 60~64.
    44. Carvajal A., Lanza I., Diego R., Rubio P., Girrnenes P. Seroprevalence of porcine epidemic diarrhea virus infection among different types of breeding swine farms in Spain. Prev Vet Med. 1995, 23: 33~40.
    45. Cavanagh D., Brian D.A., Briton P., Enjuanes L., Horzinek M.C., Lai M.M.C., Laude H., Plagemann P.G.W., Siddell S., Spaan W., Talbot P.J. Nidovirales: a new order comprising Coronaviridae and Arteriviridae. Arch Virol. 1997, 142(3): 629~633.
    46. Chae C., Kim O., Choi C., Min K., Cho W.S., Kim J., Tai J.H. Prevalence of porcine epidemic diarrhea virus and transmissible gastroenteritis virus infection in Korean pigs. Vet Rec. 2000, 147(21): 606~608.
    47. Chang S.H., Bae J.L., Kang T.J., Kim J., Chung G.H., Lim C.W., Laude H., Yang M.S., Jang Y.S. Identification of the epitope region capable of inducing neutralizing antibodies against the porcineepidemic diarrhea virus. Mol Cells, 2002, 14(2): 295~299.
    48. Chasey D., Cartwright S.F. Virus-like particles associated with porcine epidemic diarrhea. Res Vet Sci. 1978, 25(2): 255~256.
    49. Cheng Q.H., Niu X.Y. Investigation on epidemic diarrhea in pigs in Qinghai region. Chinese Qinghai Journal of Animal and Veterinary Science, 1992, 22(3): 22~23.
    50. Chirinos-Rojas C.L., Steward M.W., Partidos C.D. A phage-displayed mimotope inhibits tumour necrosis factor-alpha-induced cytotoxicity more effectively than the free mimotope. Immunology, 1999, 96(1): 109~113
    51. Christine W., Christel S.W., Dave C., Ulrich N., Georg H. Sialic acid is a receptor determinant for infection of cells by avian infectious bronchitis virus. J Gen Virol. 2006, 87(5): 1209~1216.
    52. Chua M.M., MacNamara K.C., San Mateo L. Effects of an epitope-specific CD8 T-Cell response on murine coronavirus central nervous system disease: protection from virus replication and antigen spread and selection of epitope escape mutants. J Virol. 2004, 78(3): 1150~1159.
    53. Claude L., Nathalie A., Neil R.C., Pierre J.T. Involvement of aminopeptidase N (CD13) in Infection of Human Neural Cells by Human Coronavirus 229E. J Virol. 1998, 72(8): 6511~6519
    54. Corapi W.V., Darteil R.J., Audonnet J.C., Chappuis G.E. Localization of antigenic sites of the s glycoprotein of feline infectious peritonitis virus involved in neutralization and antibody-dependent enhancement. J Virol. 1995, 69(5): 2858~2862.
    55. Cruz D.J., Kim C.J., Shin H.J. Phage-displayed peptides having antigenic similarities with porcine epidemic diarrhea virus (PEDV) neutralizing epitopes. Virology, 2006, 354(1): 28~34.
    56. Cruz D.J., Shin H.J. Application of a focus formation assay for detection and titration of porcine epidemic diarrhea virus. J Virol Methods, 2007, 145(1): 56~61.
    57. Cui X.L., Nagesha H.S., Holmesa I.H. Mapping of conformational epitopes on capsid protein VP2 of infectious bursal disease virus by fd-tet phage display. J Virol Methods, 2003, 114: 109~112.
    58. De Arriba M.L., Carvajal A., Pozo J., Rubio P. Isotype-specific antibody-secreting cells in systemic and mucosal associated lymphoid tissues and antibody responses in serum of conventional pigs inoculated with PEDV. Vet Immunol Immunopathol. 2002, 84(1-2): 1~16.
    59. De Arriba M.L., Carvajal A., Pozo J., Rubio P. Lymphoproliferative responses and protection in conventional piglets inoculated orally with virulent or attenuated porcine epidemic diarrhoea virus. J Virol Methods, 2002, 105(1): 37~47.
    60. De Arriba ML, Carvajal A, Pozo J, Rubio P. Mucosal and systemic isotype-specific antibody responses and protection in conventional pigs exposed to virulent or attenuated porcine epidemic diarrhea virus. Vet Immunol Immunopathol. 2002, 85(1-2): 85~97.
    61. Debouck P., Pensaert M., Coussement W. The pathogenesis of an enteric infection in pigs experimentally induced by the coronanvirus-like agent CV777. Vet microbial. 1981a, 6: 157~165.
    62. Delmas B., Gelfi J., Haridon L.'R., Vogel L.K., Sjostrom H., Noren O., Laude H. Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV. Nature, 1992, 357 (6377): 417~420.
    63. Delmas B., Gelfi J., Kut E., Sjostrom H., Noren O., Laude H. Determinants essential for the transmissible gastroenteritis virus–receptor interaction reside within a domain of aminopeptidase-N that is distinct from the enzymatic site. J Virol. 1994, 68 (8): 5216~5224.
    64. Delmas B., Gelfi J., Laude H. Antigenic structure of transmissible gastroenteritis virus. II. domains in the peplomer glycoprotein. J gen Virol. 1986, 67(7): 1405~1418.
    65. Delmas B., Gelfi J., Sjostrom H., Noren, O., Laude, H. Further characterization of aminopeptidase-N as a receptor for coronaviruses. Adv Exp Med Biol. 1993, 342: 293~298.
    66. Delmas B.J., Gelfi R.L., Haridon L., Vogel H., Laude H. Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV. Nature, 1992, 357: 417~419.
    67. Deregt D., Parker M.D., Cox G.C., Babiuk L.A. Mapping of neutralizing epitopes to fragments of the bovine coronavirus E2 protein by proteolysis of antigen-antibody complexes. J Gen Virol. 1989, 70(3): 647~658.
    68. Duarte M., Gelfi J., Lambert P., Rasschaert D., Laude H. Genome organization of porcine epidemic diarrhoea virus. Adv Exp Med Biol. 1993, 342: 55~60.
    69. Duarte M., Laude H. Sequence of the spike protein of the porcine epidemic diarrhoea virus. J Gen Virol. 1994, 75 (5): 1195~1200.
    70. Duarte M., Tobler K., Bridgen A., Rasschaert D., Ackermann M., Laude H. Sequence analysis of the porcine epidemic diarrhea virus genome between the nucleocapsid and spike protein genes reveals a polymorphic ORF. Virology, 1994, 198(2): 466~476.
    71. Ducatelle R., Coussement W., Charlier G., Debouck P., Hoorens J. Three-dimensional sequential study of the intestinal surface in experimental porcine CV777 coronavirus enteritis. Zentralbl Veterinarmed (B), 1981a, 28: 483~493.
    72. Ducatelle R., Coussement W., Debouck P., Hoorens J. Pathology of experimental CV777 coronavirus enteritis in piglets. I. Histological and histochemical study. Vet Pathol. 1982, 19(1): 46~56.
    73. Ducatelle R., Coussement W., Pensaert M., Debouck P., Hoorens J. In vivo morphogenesis of a new porcine enteric coronavirus, CV777. Arch Virol. 1981b, 68: 35~44.
    74. Emmanuel D., Jacob Y., Saron M.F. Lyssavirus glycoproteins expressing immunolo-gically potent foreign B cell and cytotoxic T lymphocyte epitopes as prototypes for multivalent vaccines. J Gen Virol. 1999, 80: 2343~2351.
    75. Fan J.H., Lin Y.J. Cloning and sequence analysis of the M gene of porcine epidemic diarrhea virus LJB/03. Virus Genes, 2005, 30: 69~73.
    76. Fennestad K.L., Mansa B., Christensen N., Larsen S., Svehag S.E. Pathogenicity and persistence of pleural effusion disease virus isolates in rabbits. J Gen Virol. 1986, 67 (6): 993~1000.
    77. Fields., Song O. A novel genetic system to detect protein–protein interactions. Nature, 1989, 340: 245~246.
    78. Follis K.E., York J., Nunberg J.H. Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell–cell fusion but does not affect virion entry. Virology, 2006, 350(2): 358~69.
    79. Gao S.Y., Zha E.H., Li B.X., Qiao X.Y., Tang L.J., Ge J.W., Li Y.J. High-level prokaryotic expression of envelope exterior of membrane protein of porcine epidemic diarrhea virus. Vet Microbiol. 2007, 123(1-3): 187~193.
    80. Ge J.W., Li B.X., Tang L.J., Li Y.J. Cloning and sequence analysis of the N gene of porcine epidemic diarrhea virus LJB/03.Virus Genes, 2006, 33(2): 215~219.
    81. Gershoni J.M., Stem B., Venisova G. Combinatorial libraries, epitope structure and the prediction of conformations. Immunol Today, 1997, 18 (5): 108~110.
    82. Godet M., Grosclaude J., Delmas B., Laude H. Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein. J Virol. 1994, 68 (12): 8008~8016.
    83. Gonzalez J.M., Gomez P.P., Cavanagh D., Gorbalenya A.E., Enjuanes L. A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch Virol. 2003, 148: 2207~2235.
    84. Guscetti F., Bernasconi C., Tobler K., Van Reeth K., Pospischil A., Ackermann M. Immunohistochemical detection of porcine epidemic diarrhea virus compared to other methods. Clin Diagn Lab Immunol. 1998, 5(3): 412~414.
    85. Harlow E., Whyte P., Franza B.R., Schley C. Association of adenovirus early-region 1A proteins with cellular polypeptides. Mol Cell Biol. 1986, 6(5): 1579~1589.
    86. He Y.X., Lu H., Siddiqui P., Zhou Y., Jiang S. Receptor-binding domain of severe acute respiratory syndrome coronavirus spike protein contains multiple conformation-dependent epitopes that induce highly potent neutralizing antibodies. J Immunol. 2005, 174: 4908~4915.
    87. He Y.X., Zhou Y.S., Wu H., Luo B.J., Chen J.M., Li W.B., Jiang S.B. Identification of immunodominant sites on the spike protein of severe acute respiratory syndrome (SARS) coronavirus: implication for developing SARS diagnostics and vaccines. J Immunol. 2004, 173(6): 4050~4057.
    88. Hideo G., Nobuyuki M., Hiroshi I. Mapping of epitopes and structural analysis of antigenic sites in the nucleoprotein of rabies virus. J Gen Virol. 2000, 81: 119~127.
    89. Hideyuki K., Yasuko K., Yamada., Fumihiro T. Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. J Virol. 1994, 68(9): 5403~5410.
    90. Hofmann H.K., Pyrc L., Van D.H., Geier M., Berkhout B., Pohlmann S. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci USA, 2005, 102(22): 7988~7993.
    91. Hofmann M., Wyler R. Enzyme-linked immunosorbent assay for the detection of porcine epidemic diarrhea coronavirus antibodies in swine sera. Vet Microbiol. 1990, 21(3): 263~273.
    92. Hofmann M., Wyler R. Propagation of the virus of porcine epidemic diarrhea in cell culture. J Clin Microbiol. 1988, 26(11): 2235–2239.
    93. Hofmann M., Wyler R. Propagation of the virus of porcine epidemic diarrhea in cell culture. J ClinMicrobiol. 1988, 26(11): 2235~2239.
    94. Hofmann M., Wyler R. Quantitation, biological and physicochemical properties of cell culture-adapted porcine epidemic diarrhea coronavirus (PEDV). Vet Microbiol. 1989, 20(2): 131~142.
    95. Hong P.J., Dwight C.L., Lei S., Melissa H., Lecia P., Jason N., Michael F., Christine W.L., Stanley P., Paul B.M. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol. 2005, 79(33): 14614~14621.
    96. Hoop J.P., Wood K.R. Prediction of protein antigenic determinants from amino acid sequences. Immunology, 1981, 78 (6): 3824.
    97. Horvath I., Moscari E. Ultrastructural changes in the small intestinal epithelium of suckling pigs affected with a transmissible gastroenteritis (TGE)-like disease. Arch Virol. 1981, 68: 103~113.
    98. Hou X.L., Yu L.Y., Liu J. Development and evaluation of enzyme-linked immunosorbent assay based on recombinant nucleocapsid protein for detection of porcine epidemic diarrhea (PEDV) antibodies. Vet Microbiol. 2007, 123(1-3): 86~92.
    99. Hsiao K.M., McMahon S.L., Farnham P.J. Multiple DNA elements are required for the growth regulation of the mouse E2F1 promoter. Genes Dev. 1994, 8: 1526~1537.
    100. Hua R.H., Zhou Y.J., Wang Y.F., Hua Y.Z., Tong G.Z. Identification of two antigenic epitopes on SARS-CoV spike protein. Biochem Biophys Res Commun. 2004, 319(3): 929~935.
    101. Hwang E.K., Kim J.H., Jean Y.H., Bae Y.C., Yoon S.S., Park C.K., Kweon C.H., Yoon Y.D., Ackermann M. Current occurrence of porcine epidemic diarrhea in Korea. RDA J Agri Sci. 1994, 36: 587~596.
    102. Ishikawa K., Sekiguchi H., Ogino T., Suzuki S. Direct and rapid detection of porcine epidemic diarrhea virus by RT-PCR. J Virol Methods, 1997, 69(1-2): 191~195.
    103. Jamie K.S., George P.S. Searching for peptide ligands with an epitope library. Science, 1990, 249 (4967): 386.
    104. Jung K., Ahn K., Chae C. Decreased activity of brush border membrane-bound digestive enzymes in small intestines from pigs experimentally infected with porcine epidemic diarrhea virus. Res Vet Sci. 2006, 81(3): 310~315.
    105. Jung K., Chae C. RT-PCR-based dot blot hybridization for the detection and differentiation between porcine epidemic diarrhea virus and transmissible gastroenteritis virus in fecal samples using a non-radioactive digoxigenin cDNA probe. J Virol Methods, 2005, 123(2): 141~146.
    106. Jung K., Ha Y., Ha S.K., Kim J., Choi C., Park H.K., Kim S.H., Chae C. Identification of porcine circovirus type 2 in retrospective cases of pigs naturally infected with porcine epidemic diarrhoea virus. Vet J. 2006, 171(1): 166~168.
    107. Jung K., Kang B.K., Kim J.Y., Shin K.S., Lee C.S., Song D.S. Effects of epidermal growth factor on atrophic enteritis in piglets induced by experimental porcine epidemic diarrhoea virus. Vet J. 2007 Jun 15 [Epub ahead of print].
    108. Jung K., Kang B.K., Lee C.S., Song D.S. Impact of porcine group A rotavirus co-infection on porcine epidemic diarrhea virus pathogenicity in piglets. Res Vet Sci. 2007 Aug 27 [Epub ahead of print].
    109. Jung K., Kim J., Ha Y., Choi C., Chae C. The effects of transplacental porcine circovirus type 2 infection on porcine epidemic diarrhoea virus-induced enteritis in preweaning piglets. Vet J. 2006, 171(3): 445~450.
    110. Jung K., Kim J., Kim O., Kim B., Chae C. Differentiation between porcine epidemic diarrhea virus and transmissible gastroenteritis virus in formalin-fixed paraffin-embedded tissues by multiplex RT-nested PCR and comparison with in situ hybridization. J Virol Methods, 2003, 108(1): 41~47.
    111. Jung K., Kim J., Kim O., Kim B., Chae C. Differentiation between porcine epidemic diarrhea virus and transmissible gastroenteritis virus in formalin-fixed paraffin-embedded tissues by multiplex RT-nested PCR and comparison with in situ hybridization. J Virol Methods, 2003, 108(1): 41~47.
    112. Kadoi K., Sugioka H., Satoh T., Kadoi B.K. The propagation of a porcine epidemic diarrhea virus in swine cell lines. New Microbiol. 2002, 25(3): 285~290.
    113. Kaetlin J.R., Pallas D.C., DeCaprio J.A., Kaye F.J., Livingston D.M. Identification of cellular proteins that can interact specifically with the T/E1A-binding region of the retinoblastoma gene products. Cell, 1991, 64: 521~532.
    114. Kang J.H., Kwon D.H., Chung T.W., Kim Y.D., Lee H.G., Kim J.W., Choe I.S., Kim K.W., Lim J.S., Song E.Y., Kim C.H. Development of a simple and rapid immunochromatographic strip test for diarrhea-causative porcine rotavirus in swine stool. J Virol Methods, 2007, 146(1-2): 74~79.
    115. Kang T.J., Han S.C., Yang M.S., Jang Y.S. Expression of synthetic neutralizing epitope of porcine epidemic diarrhea virus fused with synthetic B subunit of Escherichia coli heat-labile enterotoxin in tobacco plants. Protein Expr Purif. 2006, 46(1): 16~22.
    116. Kang T.J., Kang K.H., Kim J.A., Kwon T.H., Jang Y.S., Yang M.S. High-level expression of the neutralizing epitope of porcine epidemic diarrhea virus by a tobacco mosaic virus-based vector. Protein Expr Purif. 2004, 38(1): 129~135.
    117. Kang T.J., Kim Y.S., Jang Y.S., Yang M.S. Expression of the synthetic neutralizing epitope gene of porcine epidemic diarrhea virus in tobacco plants without nicotine. Vaccine, 2005b, 23(17-18): 2294~2297.
    118. Kang T.J., Seo J.E., Kim D.H., Kim T.G., Jang Y.S., Yang M.S. Cloning and sequence analysis of the Korean strain of spike gene of porcine epidemic diarrhea virus and expression of its neutralizing epitope in plants. Protein Expr Purif. 2005a, 41(2): 378~383.
    119. Kant A., Koch G., Roozelaar D.J., Kusters J.G., Poelwijk F.A., Zeijst B.A. Location of antigenic sites defined by neutralizing monoclonal antibodies on the S1 avian infectious bronchitis virus glycopolypeptide. J Gen Virol. 1992, 73:591~596.
    120. Karplus P.A., Schultz G.E. Prediction of chain flexibility in proteins. Immunology, 1985, 72 (2): 212.
    121. Keller P.M., Arnold B.A. Idetification of HIV-1 vaccine candidate peptides by screening randomphage epitope library. Virology, 1993, 193: 709~716.
    122. Keng C.T., Zhang A., Shen S., Lip K.M., Fielding B.C., Tan T.H., Chou C.F., Loh C.B., Wang S.F., Fu J.L., Yang X.M., Lim S.G., Hong W., Tan Y.J. Amino acids 1055 to 1192 in the S2 region of severe acute respiratory syndrome coronavirus S protein induce neutralizing antibodies: implications for the development of vaccines and antiviral agents. J Virol. 2005, 78(6): 3289~3296.
    123. Kida K., Hohdatsu T., Fujii K. Selection of antigenic variants of the S glycoprotein of feline infectious peritonitis virus and analysis of antigenic sites involved in neutralization. J Vet Med Sci. 1999, 61(8): 935~938.
    124. Kim O, Chae C. Experimental infection of piglets with a korean strain of porcine epidemic diarrhoea virus. J Comp Pathol. 2003, 129(1): 55~60.
    125. Kim O., Chae C. Comparison of reverse transcription polymerase chain reaction, immunohistochemistry, and in situ hybridization for the detection of porcine epidemic diarrhea virus in pigs. Can J Vet Res. 2002, 66(2): 112~116.
    126. Kim O., Chae C. In situ hybridization for the detection and localization of porcine epidemic diarrhea virus in the intestinal tissues from naturally infected piglets. Vet Pathol. 2000, 37: 62~67.
    127. Kim O., Chae C., Kweon C.H. Monoclonal antibody-based immunohistochemical detection of porcine epidemic diarrhea virus antigen in formalin-fixed, paraffin-embedded intestinal tissues. J Vet Diagn Invest. 1999, 11(5): 458~462.
    128. Kim O., Choi C., Kim B., Chae C. Detection and differentiation of porcine epidemic diarrhoea virus and transmissible gastroenteritis virus in clinical samples by multiplex RT-PCR. Vet Rec. 2000, 146(22): 637~640.
    129. Kim S.H., Kim I.J., Pyo H.M., Tark D.S., Song J.Y., Hyun B.H. Multiplex real-time RT-PCR for the simultaneous detection and quantification of transmissible gastroenteritis virus and porcine epidemic diarrhea virus. J Virol Methods, 2007, 146(1-2): 172~177.
    130. Knipe D.M., Howley P.M., Griffin D.E. Chapter 36: Coronaviruses in Fields Virology. 4thed. Philadelphia: Lippincott Williams & Wilkins, 2001, pp: 1187~1197.
    131. Knuchel M., Ackermann M., Müller H.K., Kihm U. An ELISA for detection of antibodies against porcine epidemic diarrhoea virus (PEDV) based on the specific solubility of the viral surface glycoprotein. Vet Microbiol. 1992, 32(2): 117~134.
    132. Koch G., Hartog L., Kant A., Roozelaar D.J. Antigenic domains on the peplomer protein of avian infectious bronchitis virus: correlation with biological functions. J Gen Virol. 1990, 71:1929~1935.
    133. Kocherhans R., Bridgen A., Ackermann M., Tobler K. Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence.Virus Genes, 2001, 23(2): 137~144.
    134. Kocherhans R., Bridgen A., Ackermann M., Tobler K. Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence.Virus Genes, 2001, 23(2): 137~144.
    135. Kolb A.F., Hegyi A., Maile J., Heister A., Hagemann M., Siddell S.G. Molecular analysis of the coronavirus–receptor function of aminopeptidase. N Adv Exp Med Biol. 1998, 440: 61~67.
    136. Krempl C., Herrler G. Sialic acid binding activity of transmissible gastroenteritis coronavirusaffects sedimentation behavior of virions and solubilized glycoproteins. J Virol. 2001, 75(2): 844~849.
    137. Kubota S., Sasaki O., Amimoto K., Okada N., Kitazima T., Yasuhara H. Detection of porcine epidemic diarrhea virus using polymerase chain reaction and comparison of the nucleocapsid protein genes among strains of the virus. J Vet Med Sci. 1999, 61(7): 827~830.
    138. Kusanagi K., Kuwahara H., Katoh T., Nunoya T., Ishikawa Y., Samejima T., Tajima M. Isolation and serial propagation of porcine epidemic diarrhea virus in cell cultures and partial characterization of the isolate. J Vet Med Sci. 1992, 54(2): 313~318.
    139. Kuwahara H., Nunoya T., Samejima T., Tajima M. Passage in piglets of a coronavirus associated with porcine epidemic diarrhea. Jpan Vet Med Assoc. 1988, 41: 169~173.
    140. Kweon C.H., Kwon B.J., Jung T.S., Kee Y.J., Hur D.H., Hwang E.K., Rhee J.C., An S.H. Isolation of porcine epidemic diarrhea virus (PEDV) in Korea. Kor J Vet Res. 1993, 33: 249~254.
    141. Kweon C.H., Kwon B.J., Lee J.G., Kwon G.O., Kang Y.B. Derivation of attenuated porcine epidemic diarrhea virus (PEDV) as vaccine candidate. Vaccine, 1999, 17(20): 2546~2553.
    142. Kweon C.H., Kwon B.J., Woo S.R., Kim J.M., Woo G.H., Son D.H., Hur W., Lee Y.S. Immunoprophylactic effect of chicken egg yolk immunoglobulin (IgY) against porcine epidemic diarrhea virus (PEDV) in piglets. J Vet Med Sci. 2000, 62(9): 961~964.
    143. Kweon C.H., Lee J.G., Han M.G., Kang Y.B. Rapid diagnosis of porcine epidemic diarrhea virus infection by polymerase chain reaction. J Vet Med Sci. 1997, 59(3): 231~232.
    144. Kyte J., Doolittle R.F. A Simple method for displaying hydropathic character of a protein. J Mol Biol. 1983, 157 (1): 105.
    145. Larralde O.G., Martinez R., Camacho F., Amin N., Aguilar A., Talavera A., Stott D.I., Perez E.M. Identification of hepatitis A virus mimotopes by phage display, antigenicity and immunogenicity. J Virol Methods, 2007, 40(1-2): 49~58.
    146. Lee C., Park C.K., Lyoo Y.S., Lee D.S. Genetic differentiation of the nucleocapsid protein of Korean isolates of porcine epidemic diarrhoea virus by RT-PCR based restriction fragment length polymorphism analysis. Vet J. 2007 Aug 27 [Epub ahead of print].
    147. Lee C., Park C.K., Lyoo Y.S., Lee D.S. Genetic differentiation of the nucleocapsid protein of Korean isolates of porcine epidemic diarrhoea virus by RT-PCR based restriction fragment length polymorphism analysis. Vet J. 2007 Aug 27 [Epub ahead of print].
    148. Lee H.K., Yeo S.G. Cloning and sequence analysis of the nucleocapsid gene of porcine epidemic diarrhea virus Chinju99. Virus Genes, 2003, 26(2): 207~212.
    149. Lee H.M., Lee B.J., Tae J.H., Kweon C.H., Lee Y.S., Park J.H. Detection of porcine epidemic diarrhea virus by immunohistochemistry with recombinant antibody produced in phages. J Vet Med Sci. 2000, 62(3): 333~337.
    150. Legrand D., Vigié K., Said E.A., Elass E., Masson M., Slomianny M.C., Carpentier M., Briand J.P., Mazurier J., Hovanessian A.G. Surface nucleolin participates in both the binding and endocytosis of lactoferrin in target cells. Eur J Biochem. 2004, 271(2): 303~317.
    151. Li BX, Ge JW, Li YJ. Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus. Virology, 2007, 365(1): 166~172.
    152. Lin C.W., and Wu S.C. Identification of mimotopes of the Japanese encephalitis virus envelope protein using phage-displayed combinatorial peptide library. J Mol Microbiol Biotechnol. 2004, 8(1): 34~42.
    153. Masayuki I., Hamano K., Takehiko S.S. Epitope mapping of anti-reca protein IgGs by region specified polymerase chain reaction mutagenesis. J Biol Chem. 1992, 267 (9): 6291~6296.
    154. Matthews L.J., Davis R., Smith G.P. Immunogenically fit subunit vaccine components via epitope discovery from natural peptide libraries. J Immunol. 2002, 169(2): 837~846.
    155. Meyer G., Novel N.M. Optical approach to atomic force microscopy. Appl Phys Lett. 1988, 53(12): 1045~1047.
    156. Michael W. The development of a mimotope-based synthetic peptide vaccine against respiratory syncytial virus. Biologicals, 2001, 29: 215~219.
    157. Mullen L.M., Nair S.P., Ward J.M., Rycroft A.N., Henderson B. Phage display in the study of infectiousdiseases. Trends Microbiol. 2006, 14(3): 141~147.
    158. Murielle G., Jeanne G., Bernard D., Hubert L. Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein. J Virol. 1994, 68(12): 8008~8016.
    159. Oem J.K., Chang B.S., Joo H.D., Yang M.Y., Kim G.J., Park J.Y., Ko Y.J., Kim Y.J., Park J.H., Joo Y.S. Development of an epitope-blocking-enzyme-linked immunosorbent assay to differentiate between animals infected with and vaccinated against foot-and-mouth disease virus. J Virol Methods, 2007, 42(1-2):174~181.
    160. Oh J.S, Song D.S, Park B.K. Identification of a putative cellular receptor 150 kDa polypeptide for porcine epidemic diarrhea virus in porcine enterocytes. J Vet Sci. 2003, 4(3): 269~275.
    161. Oh J.S., Song D.S., Yang J.S., Song J.Y., Moon H.J., Kim T.Y., Park B.K. Comparison of an enzyme-linked immunosorbent assay with serum neutralization test for serodiagnosis of porcine epidemic diarrhea virus infection. J Vet Sci. 2005, 6(4): 349~352.
    162. Oh J.S., Song D.S., Yang J.S., Song J.Y., Yoo H.S., Jang Y.S., Park B.K. Effect of soluble porcine aminopeptidase N on antibody production against porcine epidemic diarrhea virus. J Vet Sci. 2004, 5(4): 353~357.
    163. Oszvald M., Kang T., Tomoskozi S., Amas C., Tamas L., Kim T.G., Yang M.S. Expression of a synthetic neutralizing epitope of porcine epidemic diarrhea virus fused with synthetic B subunit of Escherichia coli heat labile enterotoxin in rice endosperm. Mol Biotechnol. 2007, 35(3): 215~223.
    164. Park S.J., Moon H.J., Luo Y., Kim H.K., Kim E.M., Yang J.S., Song D.S., Kang B.K., Lee C.S., Park B.K. Cloning and further sequence analysis of the ORF3 gene of wild- and attenuated-type porcine epidemic diarrhea viruses. Virus Genes, 2007 Oct 12 [Epub ahead of print].
    165. Park S.J., Song D.S., Ha G.W., Park B.K. Cloning and further sequence analysis of the spike gene of attenuated porcine epidemic diarrhea virus DR13. Virus Genes, 2007, 35(1): 55~64.
    166. Pensaert M.B., Debouck P. A new coronavirus-like particle associated with diarrhea in swine. Arch Virol. 1978, 58(3): 243~247.
    167. Pospischil A., Hess R.G., Bachmann P.A. Light microscopy and ultrahistology of intestinal changes in pigs infected with enzootic diarrhea virus (EVD): Comparison with transmissible gastroenteritis (TGE) virus and porcine rotavirus infections. Zentrabl Veterinarmed (B), 1981, 28: 564~577.
    168. Posthumus W.P., Lenstra J.A., Schaaper W.M. Analysis and simulation of a neutralizing epitope of transmissible gastroenteritis virus. J Virol. 1990, 64(7): 3304~3309.
    169. Reinhard V., Willem L., Willy S., Peter P. Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proc Natl Acad Sci USA, 1988, 85(12): 4526~4529.
    170. Rob H.M., Langeveld P.M., Wim M.M. Slootstra synthetic peptide vaccines: unexpected fulfillment of discarded hope. Biologicals, 2001, 29: 233~236.
    171. Rodak L., Valicek L., Smid B., Nevorankova Z. An ELISA optimized for porcine epidemic diarrhoea virus detection in faeces.Vet Microbiol. 2005, 105(1): 9~17.
    172. Sawicki S.G., Sawicki D.L., Siddell S.G. A contemporary view of coronavirus transcription. J Virol. 2007, 81(1): 20~29.
    173. Scharnagl N.C., Klade C.S. Experimental discovery of T-cell epitopes: combining the best of classical and contemporary approaches. Expert Rev Vaccines, 2007, 6(4): 605~615.
    174. Schmitz A., Tobler K., Suter M., Ackermann M. Prokaryotic expression of porcine epidemic diarrhoea virus ORF3. Adv Exp Med Biol. 1998, 440: 775~780.
    175. Schultze B.H.J., Gross R., Brossmer H.D., Klenk., Herrler G. Hemagglutinating encephalomyelitis virus attaches to N-acetyl-9-O-acetylneuraminic acid-containing receptors on erythrocytes: comparison with bovine coronavirus and influenza C virus. Virus Res. 1990, 16(2): 185~194.
    176. Scott J.K., Smith G.P. Searching for peptide ligands with an epitope library. Science, 1990, 249 (1): 386~390.
    177. Singh M. A novel internal open reading frame product expressed from a polycistronic mRNA of porcine epidemic diarrhoea virus may not contribute to virus attenuation. J Gen Virol. 1999, 80 (8): 1959~1963.
    178. Smith D.B., Johnson K.S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene, 1988, 67(1): 31~40.
    179. Smith G. P. Affinity selection. 2005b [cited 2006 Mar 15]. Available from http://www.biosci.missouri.edu/smithgp/PhageDisplayWebsite/AffinitySelection.doc.
    180. Smith G.P. Filamentous fusion phage: Novel expression vectors that display coloned antigens on the virion surface. Science, 1985, 228 (2): 1315~1317.
    181. Smith G.P. Isolation of crude RF from 7-ml cultures. 2005a [cited 2006 Mar 15]. Available from http://www.biosci.missouri.edu/smithgp/PhageDisplayWebsite/RFminiprep2.doc.
    182. Smothers J.F., Henikoff S., Carter P., Tech S. Phage display. Affinity selection from biologicallibraries. Science, 2002, 298(5593): 621~622.
    183. Sompuram S.R., Kodela V., Ramanathan H., Wescott C., Radcliffe G., Bogen S.A. Synthetic peptides identified from phage-displayed combinatorial libraries as immunodiagnostic assay surrogate quality-control targets. Clinical Chemistry, 2002, 48 (3): 410~420.
    184. Song D.S., Kang B.K., Lee S.S., Yang J.S., Moon H.J., Oh J.S., Ha G.W., Jang Y.S., Park B.K. Use of an internal control in a quantitative RT-PCR assay for quantitation of porcine epidemic diarrhea virus shedding in pigs. J Virol Methods, 2006, 133(1): 27~33.
    185. Song D.S., Kang B.K., Oh J.S., Ha G.W., Yang J.S., Moon H.J., Jang Y.S., Park B.K. Multiplex reverse transcription-PCR for rapid differential detection of porcine epidemic diarrhea virus, transmissible gastroenteritis virus, and porcine group A rotavirus. J Vet Diagn Invest. 2006, 18(3): 278~281
    186. Song D.S., Oh J.S., Kang B.K., Yang J.S., Moon H.J., Yoo H.S., Jang Y.S., Park B.K. Oral efficacy of Vero cell attenuated porcine epidemic diarrhea virus DR13 strain. Res Vet Sci. 2007, 82(1): 134~140.
    187. Song D.S., Yang J.S., Oh J.S., Han J.H. Park B.K. Differentiation of a Vero cell adapted porcine epidemic diarrhea virus from Korean field strains by restriction fragment length polymorphism analysis of ORF 3. Vaccine, 2003, 21(17-18): 1833~1842.
    188. Sorkin M.M., Huang F., Carter R. Interaction of EGF receptor and Grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy. Curr Biol. 2000, 10(21): 1395~1398.
    189. Stiihler A., Wege H., Sidde S.G. Localization of antigenic sites on the surface glycoprotein of mouse hepatitis virus. J Gen Virol. 1991, 72(7):1655~1658.
    190. Stuedli A., Grest P., Schiller I., Pospischil A. Mixed infections in vitro with different Chlamydiaceae strains and a cell culture adapted porcine epidemic diarrhea virus. Vet Microbiol. 2005, 106(3-4): 209~223.
    191. Sueyoshi M., Tsuda T., Yamazaki K., Yoshida L., Nakazawa M., Sato K., Minami T., Washita K., Watanabe M., Suzuki Y., Mari M. An immunohistochemical investigation of porcine epidemic diarrhea. J Comp Pathol. 1995, 113(1): 59~67.
    192. Sui J.H., Li W.H., Murakami A., Tamin A., Matthews L.J., Wong S.K., Moore M.J., Clair Tallarico A.S., Olurinde M., Choe H., Anderson L.J., Bellini W.J., Farzan M., Marasco W.A. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci U S A, 2004, 101(8): 2536~2541.
    193. Sun D.B., Feng, L., Shi H.Y., Chen J.F., Liu S.W., Chen H.Y., Wang Y.F. Spike protein region (aa 636-789) of porcine epidemic diarrhea virus is essential for induction of neutralizing antibodies. Acta Virol. 2007, 51: 149~156.
    194. Takahashi K., Okada K., Ohshima K. An outbreak of swine diarrhea of a new-type associated with coronavirus-like particles in Japan. Jpn J Vet Sci. 1983, 45(6): 829~832.
    195. Tobler K., Ackermann M. PEDV leader sequence and junction sites. Adv Exp Med Biol. 1995, 380:541~542.
    196. Tobler K., Bridgen A., Ackermann M. Sequence analysis of the nucleocapsid protein gene of porcine epidemic diarrhoea virus. Adv Exp Med Biol. 1993, 342: 49~54.
    197. Tresnan D.B., Holmes K.V. Feline aminopeptidase N is a receptor for all group I coronaviruses. Adv Exp Med Biol. 1998, 440: 69~75.
    198. Tresnan D.B., Levis R., Holmes K.V. Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J Virol. 1996, 70 (12): 8669~8674.
    199. Tsai J.C., Zelus B.D., Holmes K.V., Weiss S.R. The N-terminal domain of the murine coronavirus spike glycoprotein determines the ceacam1 receptor specificity of the virus strain. J Virol. 2003, 77(2): 841~850.
    200. Tsche H. Modern methods in protein and nucleic acid research. 1th ed. New York: Walter de Gruger Berlin, 1990, pp: 231.
    201. Utiger A., Rosskopf M., Guscetti F., Ackermann M. Preliminary characterization of a monoclonal antibody specific for a viral 27 kD glycoprotein family synthesized in porcine epidemic diarrhoea virus infected cells. Adv Exp Med Biol. 1993, 342: 197~202.
    202. Utiger A., Tobler K., Bridgen A., Ackermann M. Identification of the membrane protein of porcine epidemic diarrhea virus. Virus Genes, 1995, 10(2): 137~148.
    203. Utiger A., Tobler K., Bridgen A., Suter M., Singh M., Ackermann M. Identification of proteins specified by porcine epidemic diarrhoea virus. Adv Exp Med Biol. 1995, 380: 287~290.
    204. Van der Hoek L., Pyrc K., Jebbink M.F., Vermeulen O.W., Berkhout R.J., Wolthers K.C., Wertheim-Van Dillen P.M., Kaandorp J., Spaargaren J., Berkhout B. Identification of a new human coronavirus. Nat. Med. 2004, 10(4): 337~368.
    205. Van Reeth K., Pensaert M. Prevalence of infections with enzootic respiratory and enteric viruses in feeder pigs entering fattening herds. Vet Rec. 1994, 135(25): 594~595.
    206. Van Reeth K., Pensaert M. Prevalence of infections with enzootic respiratory and enteric viruses in feeder pigs entering fattening herds. Vet Rec. 1994, 135(25): 594~597.
    207. Wang S.X., Chou T.W., Sakhatskyy P.V., Huang S., Lawrence J.M., Cao H., Huang X.Y., Lu S. Identification of two neutralizing regions on the severe acute respiratory syndrome coronavirus spike glycoprotein. J Virol, 2005, 79(3): 1906~1910.
    208. Welling G.W., Weijer W.J., Van der Zee R., Welling-Wester S. Prediction of sequential antigenic regions in proteins. FEBS Lett. 1985, 188 (2): 215.
    209. Witte K.H, Prager D. Der Nachweis von an tikorpern gegen das virus der epizootischen virusdiarrhoe des schweines mit dem immunofluoreszenz-blockadetest (IFBT). Tierarztl Umsch. 1987, 42: 817~820.
    210. Yeager C.L., Ashmun R.A., Williams R.K., Cardellichio C.B., Shapiro L.H., Look A.T., Holmes K.V. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature, 1992, 357 (6377): 420~422.
    211. Yeo S.G., Hernandez M., Krell P.J., Nagy E.E. Cloning and sequence analysis of the spike gene ofporcine epidemic diarrhea virus Chinju99. Virus Genes, 2003, 26(3): 239~246.
    212. Yoo D., Deregt D. A single amino acid change within antigenic domain II of the spike protein of bovine coronavirus confers resistance to virus neutralization. Clin Diagn Lab Immunol. 2001, 8(2): 297~302.
    213. Zhang H., Wang G.W., Li J., Nie Y.C., Shi X.L., Lian G.W., Wang W., Yin Y.L., Zhao Y., Qu X.X., Ding M.X., Deng H.K. Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike glycoprotein capable of inducing neutralizing antibodies. J Virol. 2004, 78(13): 6938~6945.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700