马链球菌兽疫亚种ATCC35246株免疫蛋白组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马链球菌兽疫亚种(Streptococcus equi ssp. zooepidemicus)属于兰氏分群的C群链球菌,是我国猪链球菌病的主要病原。主要引起猪的脑膜炎、败血症、关节炎及突发性死亡,现有灭活疫苗和弱毒活疫苗的免疫效果存在不足;所以,发掘新的免疫原是研制新型亚单位疫苗的当务之急。
     本试验分别提取马链球菌兽疫亚种ATCC35246株的胞外蛋白(extracellular proteins, EP).胞膜相关蛋白(membrane-associated proteins, MAP)和胞壁相关蛋白(cell wall-associated proteins, CWP),采用免疫蛋白组学的方法,以微型定远猪的ATCC35246康复血清作为一抗,辣根过氧化物酶标记的葡萄球菌蛋白A(HRP-SPA)为二抗,鉴定具有免疫原性的蛋白。将重复胶上与之对应的蛋白点进行飞行时间质谱(MALDI-TOF-MS)或串联飞行时间质谱(MALDI-TOF/TOF-MS),并进行肽指纹图谱分析。最后,一共有8个胞外蛋白、11个膜相关蛋白和13个胞壁相关蛋白被成功鉴定出来。BLAST结果(www.sanger.ac.uk)显示所有成功鉴定的蛋白对应核酸序列与马链球菌兽疫亚种具有很高的同源性(≥61%),除AE6(UDP-氮乙酰葡萄糖胺焦磷酸化酶)、AE7(UDP葡萄糖焦磷酸化酶)外的所有鉴定蛋白在马链球菌兽疫亚种中均为第一次报道。
     为了检测这些蛋白对应基因片段在猪源链球菌不同中国分离株中的分布状况,从而进一步确定疫苗候选抗原靶分子提供依据,我们选择了同源性大于等于60%的蛋白,然后根据Sanger中心公布的SEZ序列设计并合成引物、进行PCR检测。
     比较弱毒株ST171和强毒株ATCC35246的结果,我们发现AE4(3-磷酸甘油醛脱氢酶)、AM1(黄素单核苷酸腺苷酰转移酶)、AM8(DNA导向RNA聚合酶α亚单位)和AC11(丙酮酸激酶)这四对引物仅在强毒株中被检测到,这预示这四个蛋白与ATCC35246的毒力因子有关.更让我们感兴趣的是,CY株的PCR检测结果与ATCC35246的相一致。因此,我们有理由相信,这株有自主知识产权的菌株在以后的试验中能逐步替代ATCC35246,成为毒力研究的标准模式强毒株。
Streptococcus equi ssp. zooepidemicus (SEZ) is classified in Lancefield's group C, and it is the main pathogen causing meningitis, septicemia, arthritis and sudden death in swine. Subunit vaccine is preferred in our vaccine development strategies due to its high efficiency and safety, while the killed whole-cell vaccines and the living vaccines both have severe defects. The development of an effective vaccine is vital to circumvent the widespread economic losses in the event of a pandemic. Therefore, the identification of novel immunogens is key to which may become potential vaccine candidates.
     In our research, the extracellular proteins (EP), membrane-associated proteins (MAP) and cell wall-associated proteins (CWP) of ATCC35246 strain were extracted separately. An immunoproteomic approach combining two-dimensional electrophoresis (2-DE), Western blot and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) or tandem time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) has been used to rapidly survey the all proteins of ATCC35246, to recognize new immunogens and direct vaccine selecting research. At last, there are 8 EPs (AE1, AE4-10),11 MAPs (AM1-8, AM10,12,13),13 CWPs (AC1-13) being successfully identified. The BLAST (www.sanger.ac.uk) showed all of these proteins shared high identities with SEZ (≥61%), and none of these proteins had been reported before, except for AE6 and AE7.
     The PCR detection was performed to detect the presence of genes encoding the identified proteins in 5 swine origin group C streptococci (Chinese isolates). We only chose the proteins with high identities (over 61%) to be our objectives, and the primers were designed and synthesized, according to the sequence of SEZ in Sanger database. This procedure would provide additional information for vaccine candidates.
     Comparing avirulent ST171 and virulent ATCC35246, the products of AE4, AM1, AM8 and AC11 were only detected in virulent strain ATCC35246, and they could be the candidates of subunit vaccine. Interestingly the virulent strain CY shared the same results with ATCC35246, so we believe CY will replace ATCC35246 as a new standard strain in future, for it has independent intellectual properties.
引文
[1]Salasia, S. I., Wibawan, I. W., Pasaribu, F. H., Abdulmawjood, A., Lammler, C., Persistent occurrence of a single Streptococcus equi subsp. zooepidemicus clone in the pig and monkey population in Indonesia.J Vet Sci 2004,5,263-265.
    [2]Organization, W. H., Wkly Epidemiol Rec 2005, pp.269-270.
    [3]Causey, R. C., Weber, J. A., Emmans, E. E., Stephenson, L. A., et al., The equine immune response to Streptococcus equi subspecies zooepidemicus during uterine infection. The Veterinary Journal 2006, 172,248-257.
    [4]Feng, Z. G., Hu, J. S., Outbreak of swine streptococcosis in Sichan province and identification of pathogen. Animal Husbandry and Vertinary Medicine Letters 1977,2,7-12.
    [5]何孔旺,陆承平,猪链球菌2型的致病性与毒力因子.中国兽医科技 2000,30,17-18.
    [6]中国农业科学院哈尔滨兽医研究所,家畜传染病学,中国农业出版社,北京 1991.
    [7]陆承平,兽医微生物学,中国农业出版社,北京 2007.
    [8]Timoney, J. F., Mukhtar, M. M., The protective M proteins of the equine group C streptococci. Veterinary Microbiology 1993,37,389-395.
    [9]Jorm, L. R., Love, D. N., Bailey, G D., McKay, G.M., Briscoe, D. A., Genetic structure of populations of beta-haemolytic Lancefield group C streptococci from horses and their association with disease. Res Vet Sci 1994,57,292-299.
    [10]Goetzer, J. W., Thomson, G R., Infectious disease of livestocks, Oxford University Press, Oxford 1994.
    [11]Field, H. I., Buntain, D., Done, J. T., Studies on piglet mortality.I.Streptococcal meningitis and arthritis. Vet Rec 1954,453-455.
    [12]Timoney, J. F., Walker, J., Zhou, M., Ding, J., Cloning and sequence analysis of a protective M-like protein gene from Streptococcus equi subsp. zooepidemicus. Infection and immunity 1995,63, 1440-1445.
    [13]Stattas, J. J., Feder, I., Okwumabua,O., Chengappa, M. M., Streptococcus suis:past and present. Vet Res commun 1997,21,381-407.
    [14]Reams, R. Y., Glickman, L. T., Harrington, D. D., Thacker, H. L., Bowersock, T. L., Streptococcus suis infection in swine:a retrospective study of 256 cases. Part II. Clinical signs, gross and microscopic lesions, and coexisting microorganisms. J Vet Diagn Invest 1994,6,326-334.
    [15]Galina, L., Collins, J. E., Pijoan, C., Porcine Streptococcus suis in Minnesota. J Vet Diagn Invest 1992,4,195-196.
    [16]Robertson, I. D., Blackmore, D. K., Hampson, D. J., Fu, Z. F., A longitudinal study of natural infection of piglets with Streptococcus suis types 1 and 2. Epidemiol Infect 1991,107,119-126.
    [17]范红结,陆承平,唐家琪,马链球菌兽疫亚种类M蛋白的基因克隆、序列分析及其在猪源链球菌的检测.微生物学报 2004,44,617-620.
    [18]Berry, A. M., Paton, J. C., Sequence heterogeneity of PsaA, a 37-kilodalton putative adhesin essential for virulence of Streptococcus pneumoniae. Infection and immunity 1996,64,5255-5262.
    [19]Janulczyk, R., Pallon, J., Bjorck, L., Identification and characterization of a Streptococcus pyogenes ABC transporter with multiple specificity for metal cations. Mol Microbiol 1999,34, 596-606.
    [20]Kolenbrander, P. E., Andersen, R. N., Baker, R. A., Jenkinson, H. F., The adhesion-associated sca operon in Streptococcus gordonii encodes an inducible high-affinity ABC transporter for Mn2+uptake. JBacteriol 1998,180,290-295.
    [21]Caballero, A. R., Lottenberg, R., Johnston, K. H., Cloning, expression, sequence analysis, and characterization of streptokinases secreted by porcine and equine isolates of Streptococcus equisimilis. Infection and immunity 1999,67,6478-6486.
    [22]Boyle, M. D., Lottenberg, R., Plasminogen activation by invasive human pathogens. Thromb Haemost 1997,77,1-10.
    [23]McCoy, H. E., Broder, C. C., Lottenberg, R., Streptokinases produced by pathogenic group C streptococci demonstrate species-specific plasminogen activation. J Infect Dis 1991,164,515-521.
    [24]Benkirane, R., Gottschalk, M. G., Dubreuil, J. D., Identification of a Streptococcus suis 60-kDa heat-shock protein using western blotting. FEMS Microbiol Lett 1997,153,379-385.
    [25]Serhir, B., Higgins, R., Foiry, B., Jacques, M., Detection of immunoglobulin-G-binding proteins in Streptococcus suis. J Gen Microbiol 1993,139,2953-2958.
    [26]Mamo, W., Froman, G., Sundas, A., Wadstrom, T., Binding of fibronectin, fibrinogen and type Ⅱ collagen to streptococci isolated from bovine mastitis. Microb Pathog 1987,2,417-424.
    [27]Jonsson, H., Lindmark, H., Guss, B., A protein G-related cell surface protein in Streptococcus zooepidemicus. Infection and immunity 1995,63,2968-2975.
    [28]Nygren, P. A., Eliasson, M., Abrahmsen, L., Uhlen, M., Pahncrantz, E., Analysis and use of the serum albumin binding domains of streptococcal protein G J Mol Recognit 1988,1,69-74.
    [29]Valentin-Weigand, P., Traore, M. Y., Blobel, H., Chhatwal, G. S., Role of alpha 2-macroglobulin in phagocytosis of group A and C streptococci. FEMS Microbiol Lett 1990,58,321-324.
    [30]Myhre, E. B., Kuusela, P., Binding of human fibronectin to group A, C, and G streptococci. Infection and immunity 1983,40,29-34.
    [31]Lindmark, H., Jacobsson, K., Frykberg, L., Guss, B., Fibronectin-binding protein of Streptococcus equi subsp. zooepidemicus. Infection and immunity 1996,64,3993-3999.
    [32]Hong, K., Identification and characterization of a novel fibronectin-binding protein gene from Streptococcus equi subspecies zooepidemicus strain VTU211. FEMS Immunol Med Microbiol 2005,45, 231-237.
    [33]Jadoun, J., Burstein, E., Hanski, E., Sela, S., Proteins M6 and F1 are required for efficient invasion of group A streptococci into cultured epithelial cells. Adv Exp Med Biol 1997,418,511-515.
    [34]范红结,陆承平,马链球菌兽疫亚种毒力因子.中国人畜共患病学报 2006,3,279-281.
    [35]Zhang, W., Lu, C. P., Immunoproteomics of extracellular proteins of Chinese virulent strains of Streptococcus suis type 2. Proteomics 2007,7,4468-4476.
    [36]范红结,陆承平,表达猪源链球菌类M-MRP融合蛋白基因工程菌的构建及免疫保护试验.农业生物技术学报 2006,14,22-26.
    [1]曾嵘,夏其昌.蛋白质组学研究进展与趋势[J].中国科学院院刊,2002,3:166-169.
    [2]Juri R, Matthias M. What does it mean to identify a protein in proteomics [J]. Trends in Biochemical Sciences,2002,27(2):74.
    [3]Terence C W, Philip J J. Proteome analysis and its impact on the discovery of serological tumor markers [J], Clinica Chimica Acta,2001,313:213.
    [4]Paweletz C, Trock B, Pennanen M, et al. Proteomic patterns of nipple aspirate fluids obtained by SELDI-TOF:potential for new biomarkers to aid in the diagnosis of breast cancer [J]. Dis Marker, 2001,17(4):301.
    [5]Yang Lifu. Technology and Prospects of the Strategies on Proteomics Research [J]. Chinese journal of tropical agriculture,2007,27(2):58-62.
    [6]O'Farrell PH. High resolution two-dimensional electrophoresis of proteins [J]. The Journal of biological chemistry.1975,250(10):4007-4021.
    [7]Bjellqvist B, Ek K, Righetti PG, Gianazza E, Gorg A, Westermeier R, et al. Isoelectric focusing in immobilized pH gradients:principle, methodology and some applications [J]. Journal of biochemical and biophysical methods.1982,6(4):317-339.
    [8]于雁灵.比较蛋白质组定量分析及其在疾病研究中的应用.复旦大学博士论文,2004.
    [9]Li Lingjun, Garden Rebecca W, Sweedler Jonathan V. Single-ceel MALDI:a new tool for direct peptide profiling [J]. Trends in Biotechnology,2000,18(4):151-160.
    [10]Seal f Mark, Westphal 1 Michael S, Smith Lloyd M. Charge reduction electrospray mass spectrometry [J]. Analytical Chemistry.2000,72(1):52-60.
    [11]夏其昌,曾嵘.蛋白质化学与蛋白质组学[M].2004.
    [12]应天翼.痢疾杆菌免疫及温度比较蛋白组学研究.中国人民解放军军事医学科学院博士论文.2005.
    [13]Gypi S P, Rist B, Gerber S A, et al. Quantitative analysis of complex protein mixtures using isotopecoded affinity tags [J]. Nat Biotechnol,1999,17(10):994.
    [14]Wadsworth JT, Somers KD, Stack BC Jr, et al. Identification of patients with head and neck cancer using serum protein profiles [J]. Arch Otolaryngol Head Neck Surg 2004,130(1):98-104.
    [15]Smith HO, Tomb JF, Dougherty BA, Fleischmann RD, Venter JC. Frequency and distribution of DNA uptake signal sequences in the Haemophilus influenzae Rd genome [J]. Science.1995, 28;269(5223):538-540.
    [16]Hanash S. Disease proteomics [J]. Nature,2003,13;422(6928):226-232.
    [17]Chen ZJ, Peng B, Wang SY, et al. Rapid screening of highly efficient vaccine candidates by immunoproteomics [J]. Proteomics,2004,4:3203-3213.
    [18]Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets:procedure and some applications [J]. Proceedings of the National Academy of Sciences of the United States of America.1979,76(9):4350-4360.
    [19]Burnette WN. "Western blotting":electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A [J]. Analytical biochemistry,1981,112(2):195-203.
    [20]Kyhse-Andersen J. Electroblotting of multiple gels:a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose [J]. Journal of biochemical and biophysical methods.1984,10(3-4):203-209.
    [21]王军军,王恒棵,黄留玉.免疫蛋白质组学及其在病原菌研究中的应用[J].生物技术通讯,2005,16(3).
    [22]Johansson KE. Double replica electroblotting:a method to produce two replicas from one gel [J]. Journal of biochemical and biophysical methods.1986,13(4-5):197-203.
    [23]Zeindl-Eberhart E, Jungblut PR, Rabes HM. A new method to assign immunodetected spots in the complex two-dimensional electrophoresis pattern [J]. Electrophoresis.1997,18(5):799-801.
    [24]Jungblut PR, Grabber G, Stofller G. Comprehensive detection of immunorelevant Borrelia garinii an tigens by two-dimensional electrophoresis [J]. Electrophoresis.1999,20:3611.
    [25]Vytvytska O, Nagy E, Bluggel M, et al. Identification of vaccine candidate antigens of Staphylococcus aureus by serological proteome analysis [J]. Proteomics.2002,2:580-590.
    [26]Wang JJ, YingTY, Wang HL, et al. Two-dimensional reference map of Bacillus anthrac is vaccine strain A16R proteins [J]. Proteomics.2005,5:4488-4495.
    [27]Peng XX, Ye XT, Wang SY. Identification of novel immunngenic proteins of Shigella flexneriea byproteomic methodologies. Vaccine [J],2004,22(21-22):2750-2756.
    [28]YingTY, Wang HL, Li MZ, et al. Immunoproteomics of outer menlbrane proteins and extmeellular proteins of Shigella flexneriea 2457T [J]. Proteomics.2005,5:4777-4793.
    [29]Ichikawa J K, Norris A, Bangera MG, et al.Interaction of pseudomonas aeruginosa with epithelial cells:identification of differentially regulated genes by expression microarray analysis of human cDNAs [J]. Proc Natl Acad Sci USA.2000,97 (17):9659-9664.
    [30]Turner G C, Varshavsky A. Detecting and measuring cotranslational protein degradation in vivo [J]. Science.2000,289 (5487),2117-2120.
    [31]Pandey A, Mann M. Proteomics to study genes and genomes [J]. Nature.2000,405 (6788):837-846.
    [32]Cash P. Proteomics of bacterial pathogens [J]. Adv Biochem Eng Biotechnol.2003,83:93-115.
    [33]Jungblut PR, Schaible UE, Mollenkopf HJ, et al. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains:towards functional genomics of microbial pathogens [J]. Mol Microbiol.1999,33 (6):1103-1117.
    [34]Cash P. Proteomics in medical microbiology [J]. Electrophoresis.2000,21(6):1187-1201.
    [35]Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proceedings of the National Academy of Sciences of the USA [J],2000,15;97(17):9390-5.
    [1]Causey, R. C., Weber, J. A., Emmans, E. E., Stephenson, L. A., et al., The equine immune response to Streptococcus equi subspecies zooepidemicus during uterine infection. The Veterinary Journal 2006, 172,248-257.
    [2]Feng, Z. G., Hu, J. S., Outbreak of swine streptococcosis and identification of pathogen. Animal husbandry and vertinary medicine letters 1977,2,7-12.
    [3]Organization, W. H., Wkly Epidemiol Rec 2005, pp.269-270.
    [4]Zhang, W., Lu, C. P., Immunoproteomics of extracellular proteins of Chinese virulent strains of Streptococcus suis type 2. Proteomics 2007,7,4468-4476.
    [5]Trost, M., Wehmhoner, D., Karst, U., Dieterich, G., et al., Comparative proteome analysis of secretory proteins from pathogenic and nonpathogenic Listeria species. Proteomics 2005,5, 1544-1557.
    [6]Pichichero, M. E., Casey, J. R., Acellular pertussis vaccines for adolescents. The Pediatric infectious disease journal 2005,24, S117-126.
    [7]Jonsson, H., Lindmark, H., Guss, B., A protein G-related cell surface protein in Streptococcus zooepidemicus. Infect Immun 1995,63,2968-2975.
    [8]Timoney, J. F., Walker, J., Zhou, M., Ding, J., Cloning and sequence analysis of a protective M-like protein gene from Streptococcus equi subsp. zooepidemicus. Infect Immun 1995,63,1440-1445.
    [9]Lindmark, H., Jacobsson, K., Frykberg, L., Guss, B., Fibronectin-binding protein of Streptococcus equi subsp. zooepidemicus. Infect Immun 1996,64,3993-3999.
    [10]Bumann D, Holland P, Siejak F, Koesling J, al, e., A comparison of Murine and Human Immunoproteomes of Helicobacter pylori Validates the Preclinical Murine Infection Model for Antigen Screening. Infection And Immunity 2002,70,6494-6498.
    [11]Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970,227,680-685.
    [12]Wang, Y., Yang, L., Xu, H., Li, Q., et al., Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum. Proteomics 2005,5,4496-4503.
    [13]Lottenberg, R., Minning-Wenz, D., Boyle, M. D., Capturing host plasmin (ogen):a common mechanism for invasive pathogens. Trends in microbiology 1994,2,20-24.
    [14]Cunningham, M. W., Pathogenesis of group A streptococcal infections. Clinical microbiology reviews 2000,13,470-511.
    [15]Fontaine, M. C., Perez-Casal, J., Song, X. M., Shelford, J., et al., Immunisation of dairy cattle with recombinant Streptococcus uberis GapC or a chimeric CAMP antigen confers protection against heterologous bacterial challenge. Vaccine 2002,20,2278-2286.
    [16]Rosinha, G. M., Myioshi, A., Azevedo, V., Sputter, G. A., Oliveira, S. C., Molecular and immunological characterisation of recombinant Brucella abortus glyceraldehyde-3-phosphate-dehydrogenase, a T-and B-cell reactive protein that induces partial protection when co-administered with an interleukin-12-expressing plasmid in a DNA vaccine formulation. Journal of medical microbiology 2002,51,661-671.
    [17]Perez-Casal, J., Prysliak, T., Detection of antibodies against the Mycoplasma bovis glyceraldehyde-3-phosphate dehydrogenase protein in beef cattle. Microbial Pathogenesis 2007,43, 189-197.
    [18]Ciccarese, S., Tommasi, S., Vonghia, G, Cloning and cDNA sequence of the rat X-chromosome linked phosphoglycerate kinase. Biochemical and biophysical research communications 1989,165, 1337-1344.
    [19]Fischetti, V. A., Pancholi, V., Schneewind, O., Conservation of a hexapeptide sequence in the anchor region of surface proteins from gram-positive cocci. Molecular microbiology 1990,4, 1603-1605.
    [20]Burnham, C.-A. D., Shokoples, S. E., Tyrrell, G. J., Phosphoglycerate kinase inhibits epithelial cell invasion by group B streptococci. Microbial Pathogenesis 2005,38,189-200.
    [21]Hughes, M. J., Moore, J. C., Lane, J. D., Wilson, R., et al., Identification of major outer surface proteins of Streptococcus agalactiae. Infect Immun 2002,70,1254-1259.
    [22]Kim, J.-H., Yoo, S.-J., Oh, D.-K., Kweon, Y.-G, et al., Selection of a Streptococcus equi mutant and optimization of culture conditions for the production of high molecular weight hyaluronic acid. Enzyme and Microbial Technology 1996,19,440-445.
    [23]Nevskaya, N., Tishchenko, S., Volchkov, S., Kljashtorny, V., et al., New Insights into the Interaction of Ribosomal Protein L1 with RNA. Journal of Molecular Biology 2006,355, 747-759.
    [24]Williams, J. N., Skipp, P. J., Humphries, H. E., Christodoulides, M., et al., Proteomic analysis of outer membranes and vesicles from wild-type serogroup B Neisseria meningitidis and a lipopolysaccharide-deficient mutant. Infect Immun 2007,75,1364-1372.
    [25]Lynch, D. J., Fountain, T. L., Mazurkiewicz, J. E., Banas, J. A., Glucan-binding proteins are essential for shaping Streptococcus mutans biofilm architecture. FEMS microbiology letters 2007,268, 158-165.
    [26]Mattos-Graner, R. O., Porter, K. A., Smith, D. J., Hosogi, Y., Duncan, M. J., Functional analysis of glucan binding protein B from Streptococcus mutans. Journal of bacteriology 2006,188,3813-3825.
    [27]Perkins, H. R., The bacterial autolysins, Chapman and Hall, London 1980.
    [28]Yamaguchi, H., Furuhata, K., Fukushima, T., Yamamoto, H., Sekiguchi, J., Characterization of a new Bacillus subtilis peptidoglycan hydrolase gene, yvcE (named cwlO), and the enzymatic properties of its encoded protein. Journal of Bioscience and Bioengineering 2004,98,174-181.
    [29]Smith, D. J., King, W. F., Barnes, L. A., Peacock, Z., Taubman, M. A., Immunogenicity and protective immunity induced by synthetic peptides associated with putative immunodominant regions of Streptococcus mutans glucan-binding protein B. Infect Immun 2003,71,1179-1184.
    [30]Locke, I. C., Cox, S. F., Carpenter, B. G., Purification of a streptococcal deoxyribonuclease by affinity chromatography based on a DNA-cellulose matrix. Journal of Chromatography A 1997,788, 75-80.
    [31]Patil, N. S., Deshmukh, S. S., Shankar, V., Extracellular nuclease from a thermophile, Streptomyces thermonitrificans:production, purification and partial characterization of-double strand preferential-deoxyribonuclease activity. Process Biochemistry 2005,40,1271-1278.
    [32]Sumby, P., Barbian, K. D., Gardner, D. J., Whitney, A. R., et al., Extracellular deoxyribonuclease made by group A Streptococcus assists pathogenesis by enhancing evasion of the innate immune response. PNAS 2005,102,1679-1684.
    [33]Tiwari, R., Artiushin, S., Timoney, J. F., P9, a temperate bacteriophage of Streptococcus equi. International Congress Series 2006,1289,165-168.
    [34]Loo, C. Y, Mitrakul, K., Voss, I. B., Hughes, C. V., Ganeshkumar, N., Involvement of an inducible fructose phosphotransferase operon in Streptococcus gordonii biofilm formation. Journal of bacteriology 2003,185,6241-6254.
    [35]Bapteste, E., Moreira, D., Philippe, H., Rampant horizontal gene transfer and phospho-donor change in the evolution of the phosphofructokinase. Gene 2003,318,185-191.
    [1]Feng, Z. G., Hu, J. S., Outbreak of swine streptococcosis in Sichan province and identification of pathogen. Animal Husbandry and Vertinary Medicine Letters 1977,2,7-12.
    [2]Jonsson, H., Lindmark, H., Guss, B., A protein G-related cell surface protein in Streptococcus zooepidemicus. Infect Immun 1995,63,2968-2975.
    [3]Timoney, J. F., Walker, J., Zhou, M., Ding, J., Cloning and sequence analysis of a protective M-like protein gene from Streptococcus equi subsp. zooepidemicus. Infect Immun 1995,63,1440-1445.
    [4]Lindmark, H., Jacobsson, K., Frykberg, L., Guss, B., Fibronectin-binding protein of Streptococcus equi subsp. zooepidemicus. Infect Immun 1996,64,3993-3999.
    [5]Rodriguez-Ortega, M. J., Norais, N., Bensi, G., Liberatori, S., et al., Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome. Nat Biotech 2006,24,191-197.
    [6]Zuobi-Hasona, K., Crowley, P. J., Hasona, A., Bleiweis, A. S., Brady, L. J., Solubilization of cellular membrane proteins from Streptococcus mutans for two-dimensional gel electrophoresis. Electrophoresis 2005,26,1200-1205.
    [7]LaemmLi, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970,227,680-685.
    [8]Pamela M. Donoghue, C. A. M. N. M. O. D. S. R. P. M. J. D.,2006, pp.6400-6404.
    [9]Wang, Y., Yang, L., Xu, H., Li, Q., et al., Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum. Proteomics 2005, 5,4496-4503.
    [10]Liao, X., Ying, T., Wang, H., Wang, J., et al., A two-dimensional proteome map of Shigella flexneri. Electrophoresis 2003,24,2864-2882.
    [11]Schomburg, D., Schomburg, I., Chang, A., FMN Adenylyltransferase, Springer Berlin Heidelberg, Heidelberg 2007.
    [12]Clarebout, G., Villers, C., Leclercq, R., Macrolide resistance gene mreA of Streptococcus agalactiae encodes a flavokinase. Antimicrobial agents and chemotherapy 2001,45,2280-2286.
    [13]Miura, N., Kaneko, S., Hosoya, S., Furuchi, T., et al., Overexpression of L-glutamine:D-fructose-6-phosphate amidotransferase provides resistance to methylmercury in Saccharomyces cerevisiae. FEBS letters 1999,458,215-218.
    [14]Domain, F., Bina, X. R., Levy, S. B., Transketolase A, an enzyme in central metabolism, derepresses the marRAB multiple antibiotic resistance operon of Escherichia coli by interaction with MarR. Molecular microbiology 2007,66,383-394.
    [15]Chitlaru, T., Gat,O., Grosfeld, H., Inbar, I., et al., Identification of in vivo-expressed immunogenic proteins by serological proteome analysis of the Bacillus anthracis secretome. Infection and immunity 2007,75,2841-2852.
    [16]Stolz, B., Huber, M., Markovic-Housley, Z., Erni, B., The mannose transporter of Escherichia coli. Structure and function of the IIABMan subunit. The Journal of biological chemistry 1993,268, 27094-27099.
    [17]Vadyvaloo, V., Snoep, J. L., Hastings, J. W., Rautenbach, M., Physiological implications of class Ⅱa bacteriocin resistance in Listeria monocytogenes strains. Microbiology (Reading, England) 2004, 150,335-340.
    [18]Lun, S., Willson, P. J., Putative mannose-specific phosphotransferase system component ⅡD represses expression of suilysin in serotype 2 Streptococcus suis. Veterinary Microbiology 2005,105, 169-180.
    [19]Asanuma, N., Yoshii, T., Hino, T., Molecular characteristics of phosphoenolpyruvate:mannose phosphotransferase system in Streptococcus bovis. Current microbiology 2004,49,4-9.
    [20]Shelburne, S. A.,3rd, Fang, H., Okorafor, N., Sumby, P., et al., MalE of group A Streptococcus participates in the rapid transport of maltotriose and longer maltodextrins. Journal of bacteriology 2007, 189,2610-2617.
    [21]Schafer, K., Magnusson, U., Scheffel, F., Schiefner, A., et al., X-ray structures of the maltose-maltodextrin-binding protein of the thermoacidophilic bacterium Alicyclobacillus acidocaldarius provide insight into acid stability of proteins. Journal of molecular biology 2004,335, 261-274.
    [22]Shelburne, S. A.,3rd, Sumby, P., Sitkiewicz, I., Okorafor, N., et al., Maltodextrin utilization plays a key role in the ability of group A Streptococcus to colonize the oropharynx. Infection and immunity 2006,74,4605-4614.
    [23]Lestrate, P., Dricot, A., Delrue, R. M., Lambert, C., et al., Attenuated signature-tagged mutagenesis mutants of Brucella melitensis identified during the acute phase of infection in mice. Infection and immunity 2003,71,7053-7060.
    [24]Segal, R., Ron, E. Z., Regulation and organization of the groE and dnaK operons in Eubacteria. FEMS microbiology letters 1996,138,1-10.
    [25]Hennequin, C., Porcheray, F., Waligora-Dupriet, A.-J., Collignon, A., et al., GroEL (Hsp60) of Clostridium difficile is involved in cell adherence. Microbiology (Reading, England) 2001,147,87-96.
    [26]Tsugawa, H., Ito, H., Ohshima, M., Okawa, Y., Cell adherence-promoted activity of Plesiomonas shigelloides groEL. Journal of medical microbiology 2007,56,23-29.
    [27]Buchmeier, N. A., Heffron, F., Induction of Salmonella stress proteins upon infection of macrophages. Science 1990,248,730-732.
    [28]Gahan, C. G. M., O'Mahony, J., Hill, C., Characterization of the groESL Operon in Listeria monocytogenes:Utilization of Two Reporter Systems (gfp and hly) for Evaluating In Vivo Expression. Infect. Immun.2001,69,3924-3932.
    [29]Maria, S.-C., Luca, B., Maurizio, C., Roberto, R., et al., Identification of immunoreactive proteins of Chlamydia trachomatis by Western blot analysis of a two-dimensional electrophoresis map with patient sera. Electrophoresis 1999,20,2269-2279.
    [30]Wu, Z., Zhang, W., Lu, C., Comparative proteome analysis of secreted proteins of Streptococcus suis serotype 9 isolates from diseased and healthy pigs. Microbial pathogenesis 2008.
    [31]Zhang, W., Lu, C. P., Immunoproteomics of extracellular proteins of Chinese virulent strains of Streptococcus suis type 2. Proteomics 2007,7,4468-4476.
    [32]Oberholzer, A. E., Schneider, P., Baumann, U., Erni, B., Crystal structure of the nucleotide-binding subunit DhaL of the Escherichia coli dihydroxyacetone kinase. Journal of molecular biology 2006,359, 539-545.
    [33]Howlett, D. R., Simmons, D. L., Dingwall, C., Christie, G, In search of an enzyme:the beta-secretase of Alzheimer's disease is an aspartic proteinase. Trends in neurosciences 2000,23, 565-570.
    [34]Takeuchi, F., Watanabe, S., Baba, T., Yuzawa, H., et al., Whole-genome sequencing of staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. Journal of bacteriology 2005,187,7292-7308.
    [35]Shibata, T., Hishida, T., Kubota, Y., Han, Y.-W, et al., Functional overlap between RecA and MgsA (RarA) in the rescue of stalled replication forks in Escherichia coli. Genes to Cells 2005,10, 181-191.
    [36]Fadda, D., Santona, A., D'Ulisse, V., Ghelardini, P., et al., Streptococcus pneumoniae DivIVA: localization and interactions in a MinCD-free context. Journal of bacteriology 2007,189,1288-1298.
    [37]Chen ZJ, Peng B, Wang SY, et al., Rapaid screening of highly eficient vaccine candidates by immunoproteomics. Proteomics 2004,4,3203.
    [1]Feng, Z. G., Hu, J. S., Outbreak of swine streptococcosis in Sichan province and identification of pathogen. Animal Husbandry and Vertinary Medicine Letters 1977,2,7-12.
    [2]Jonsson, H., Lindmark, H., Guss, B., A protein G-related cell surface protein in Streptococcus zooepidemicus. Infect Immun 1995,63,2968-2975.
    [3]Timoney, J. F., Walker, J., Zhou, M., Ding, J., Cloning and sequence analysis of a protective M-like protein gene from Streptococcus equi subsp. zooepidemicus. Infect Immun 1995,63,1440-1445.
    [4]Lindmark, H., Jacobsson, K., Frykberg, L., Guss, B., Fibronectin-binding protein of Streptococcus equi subsp. zooepidemicus. Infect Immun 1996,64,3993-3999.
    [5]Rodriguez-Ortega, M. J., Norais, N., Bensi, G., Liberatori, S., et al., Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome. Nat Biotech 2006, 24,191-197.
    [6]Vogel, G., Nicolet, J., Martig, J., Tschudi, P., Meylan, M., Pneumonia in calves:characterization of the bacterial spectrum and the resistance patterns to antimicrobial drugs. Schweiz Arch Tierheilkd 2001,143, 341-350.
    [7]Siegel, J. L., Hurst, S. F., Liberman, E. S., Coleman, S. E., Bleiweis, A. S., Mutanolysin-induced spheroplasts of Streptococcus mutants are true protoplasts. Infection and immunity 1981,31,808-815.
    [8]Winterhoff, N., Goethe, R., Gruening, P., Rohde, M., et al., Identification and characterization of two temperature-induced surface-associated proteins of Streptococcus suis with high homologies to members of the Arginine Deiminase system of Streptococcus pyogenes. JBacteriol 2002,184,6768-6776.
    [9]Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970,227,680-685.
    [10]Pamela M. Donoghue, C. A. M. N. M. O. D. S. R. P. M. J. D.,2006, pp.6400-6404.
    [11]Wang, Y., Yang, L., Xu, H., Li, Q., et al., Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum. Proteomics 2005,5,4496-4503.
    [12]Yeo, K. J., Kwak, S.-N., Kim, H. J., Cheong, C., et al., Expression and characterization of the integral membrane domain of bacterial histidine kinase SCO3062 for structural studies. Biochemical and Biophysical Research Communications 2008,376,409-413.
    [13]Stephenson, K., Hoch, J. A., Developing inhibitors to selectively target two-component and phosphorelay signal transduction systems of pathogenic microorganisms. Curr Med Chem 2004,11,765-773.
    [14]Khorchid, A., Ikura, M., Bacterial histidine kinase as signal sensor and transducer. The International Journal of Biochemistry & Cell Biology 2006,38,307-312.
    [15]Li, N., Chu, X., Wu, L., Liu, X., Li, D., Functional studies of rat hydroxymethylbilane synthase. Bioorganic Chemistry 2008,36,241-251.
    [16]A, A. E., Brazhnikov, E., Garber, M., Zheltonosova, J., et al., Three-dimensional structure of the ribosomal translocase:elongation factor G from Thermus thermophilus. EMBO J1994,13,3669-3677.
    [17]Haas, G., Karaali, G., Ebermayer, K., Metzger, W. G., et al., Immunoproteomics of Helicobacter pylori infection and relation to gastric disease. Proteomics 2002,2,313-324.
    [18]Ying, T., Wang, H., Li, M., Wang, J., et al., Immunoproteomics of outer membrane proteins and extracellular proteins of Shigella flexneri 2a 2457T. Proteomics 2005,5,4777-4793.
    [19]Cole, J. N., Ramirez, R. D., Currie, B. J., Cordwell, S. J., et al., Surface analyses and immune reactivities of major cell wall-associated proteins of group a streptococcus. Infection and immunity 2005,73,3137-3146.
    [20]Pancholi, V., Multifunctional alpha-enolase:its role in diseases. Cell Mol Life Sci 2001,58,902-920.
    [21]Wistedt, A. C., Ringdahl, U., Muller-Esterl, W., Sjobring, U., Identification of a plasminogen-binding motif in PAM, a bacterial surface protein. Molecular microbiology 1995,18,569-578.
    [22]Esgleas, M., Li, Y, Hancock, M. A., Harel, J., et al., Isolation and characterization of alpha-enolase, a novel fibronectin-binding protein from Streptococcus suis. Microbiology (Reading, England) 2008,154, 2668-2679.
    [23]Ge, J., Catt, D. M., Gregory, R. L., Streptococcus mutans surface alpha-enolase binds salivary mucin MG2 and human plasminogen. Infection and immunity 2004,72,6748-6752.
    [24]Pancholi, V., Fischetti, V. A., alpha-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. The Journal of biological chemistry 1998,273,14503-14515.
    [1]Maass, M., Dalhoff, K., Comparison of sample preparation methods for detection of Chlamydia pneumoniae in bronchoalveolar lavage fluid by PCR. Journal of clinical microbiology 1994,32,2616-2619.
    [2]Sambrook, J., Fritsch, E. F., Maniatis, T., Molecular cloning:a laboratory manual, Cold Spring Harbor Laboratory Press 1989.
    [3]Mao, Y., Fan, H., Lu, C., Immunoproteomic assay of extracellular proteins in Streptococcus equi ssp. zooepidemicus. FEMS Microbiol Lett 2008,286,103-109.
    [4]Schomburg, D., Schomburg, I., Chang, A., FMN Adenylyltransferase, Springer Berlin Heidelberg, Heidelberg 2007.
    [5]Clarebout, G, Villers, C., Leclercq, R., Macrolide resistance gene mreA of Streptococcus agalactiae encodes a flavokinase. Antimicrobial agents and chemotherapy 2001,45,2280-2286.
    [6]Schafer, K., Magnusson, U., Scheffel, F., Schiefner, A., et al., X-ray structures of the maltose-maltodextrin-binding protein of the thermoacidophilic bacterium Alicyclobacillus acidocaldarius provide insight into acid stability of proteins. Journal of molecular biology 2004,335,261-274.
    [7]Shelburne, S. A.,3rd, Sumby, P., Sitkiewicz, I., Okorafor, N., et al., Maltodextrin utilization plays a key role in the ability of group A Streptococcus to colonize the oropharynx. Infection and immunity 2006,74, 4605-4614.
    [8]Lestrate, P., Dricot, A., Delrue, R. M., Lambert, C., et al., Attenuated signature-tagged mutagenesis mutants of Brucella melitensis identified during the acute phase of infection in mice. Infection and immunity 2003,71,7053-7060.
    [9]Hennequin, C., Porcheray, F., Waligora-Dupriet, A.-J., Collignon, A., et al., GroEL (Hsp60) of Clostridium difficile is involved in cell adherence. Microbiology (Reading, England) 2001,147,87-96.
    [10]Buchmeier, N. A., Heffron, F., Induction of Salmonella stress proteins upon infection of macrophages. Science 1990,248,730-732.
    [11]Gahan, C. G M., O'Mahony, J., Hill, C., Characterization of the groESL Operon in Listeria monocytogenes:Utilization of Two Reporter Systems (gfp and hly) for Evaluating In Vivo Expression. Infect. Immun.2001,69,3924-3932.
    [12]Maria, S.-C., Luca, B., Maurizio, C., Roberto, R., et al., Identification of immunoreactive proteins of Chlamydia trachomatis by Western blot analysis of a two-dimensional electrophoresis map with patient sera. Electrophoresis 1999,20,2269-2279.
    [13]Wu, Z., Zhang, W., Lu, C., Comparative proteome analysis of secreted proteins of Streptococcus suis serotype 9 isolates from diseased and healthy pigs. Microbial pathogenesis 2008.
    [14]Zhang, W., Lu, C. P., Immunoproteomics of extracellular proteins of Chinese virulent strains of Streptococcus suis type 2. Proteomics 2007,7,4468-4476.
    [15]Pancholi, V., Multifunctional alpha-enolase:its role in diseases. Cell Mol Life Sci 2001,58,902-920.
    [16]Esgleas, M., Li, Y., Hancock, M. A., Harel, J., et al., Isolation and characterization of alpha-enolase, a novel fibronectin-binding protein from Streptococcus suis. Microbiology (Reading, England) 2008,154, 2668-2679.
    [17]Ge, J., Catt, D. M., Gregory, R. L., Streptococcus mutans surface alpha-enolase binds salivary mucin MG2 and human plasminogen. Infection and immunity 2004,72,6748-6752.
    [18]Pancholi, V., Fischetti, V. A., alpha-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. The Journal of biological chemistry 1998,273,14503-14515.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700