预聚芳酰胺的合成及自组装结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子自身的化学结构以及分子之间的聚集态是决定材料的性能与功能的内因。自然界中蛋白质通过改变氨基酸的种类与序列(化学结构),以及链间多级自组装(聚集态)可以实现无数功能。本论文受此启发,以合成预聚酰胺作为研究对象,通过控制缩聚反应设计预聚酰胺的分子量与几何形状,通过后处理条件调控预聚酰胺的自组装结构。包括以下两部分内容。
     Ⅰ:以已内酰胺和对氨基苯甲酸作为原料,通过熔融和溶液两步缩聚,获得一系列尼龙6(PA6)和聚对苯酰胺(PBA)的硬-软-硬三嵌段共聚物(PBA-PA6-PBA),并利用宽角X射线散射(WAXS)、差示扫描量热法(DSC)和傅立叶变换红外光谱(FT-IR)研究其内部两组分的聚集态。体系中软段PA6的分子量为1247,1868和3150g/mol,硬段PBA的体积分数范围为29%~60%,样品的退火处理温度为180和230℃。结果发现一方面软段部分受到硬段的强烈限制,PA6仅在PBA体积分数较低的样品中存在α晶,当硬段体积分数φPBA>42.8%无法结晶;在两组分的化学键连接处过渡区存在类γ晶的亚稳相,其含量随着硬段体积分数增加而增加。另一方面PBA部分的结晶完整性也受到一定的影响,但经过230℃退火之后,PBA部分的结晶度基本不受PA6长度的影响,而仅仅与其自身的聚合度有关。
     Ⅱ:通过不对称水解得减对称反应中心并继续缩合,得到一系列的旋转对称或非旋转对称的三臂星形分子,并利用光学显微镜(OM)、透射电子显微镜(TEM)、宽角/小角X射线散射(WAXS/SAXS)和紫外圆二色光谱(UV-CD)等初步研究了该体系中C3对称分子(P7C3Na3)的水相多级自组装结构。P7C3Na3分子中含有7个酰胺键连接的苯环,外围为3个羧酸钠基团,在热水中溶解并于室温下熟化后形成横向尺寸约10nm的纤维状结构且不随浓度改变。纳米纤维之间由于静电力的远程作用自发平行排列形成微米纤维束,呈正交有序,微米纤维纵向尺寸超过1mm。WAXS结果暗示纳米纤维内部可能存在5/1螺旋结构,可镜像翻转UV-CD信号的出现暗示在一定区域内单一手性对映体过量。该体系的原位升温和原位脱水SAXS测试,进一步证实了纳米纤维之间的正交有序排列,并且该有序是由离子静电相斥与范德华相吸作用平衡所致,通过升温或脱水作用改变体系中Na离子的浓度将得到不同的纤维平衡间距,甚至导致有序破坏。
     本论文的工作证明,通过“自下而上”的方法,从化学合成与材料制备出发,合成聚酰胺可以模仿蛋白质的聚集态并有望实现其功能。
The properties and functions of materials are decided inherently by chemistry and aggregation of molecules. In nature, proteins can perform numerous functions through altering the kind and sequence of amino acids intra-strand, and tuning the self-assembling inter-strand, Inspired by nature, synthesized oligoamides were researched in this thesis. The chemical structures include molecular weight and geometry of oligoamides which were designed through synthetic method. Their aggregations or self-assembling hehaviors were controlled through post treatment and characterized by microscope, X-ray scattering and so on. There are mainly two parts in this thesis.
     Ⅰ:A series of rod-coil-rod were synthesized by two-step polycondensation with polycaprolactam (PA6) as the flexible block and. poly(p-benzamide)(PBA) as the rod. The aggregations of both components were tested by wide angle X-ray scattering (WAXS), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR) and so on. The molecular weights of PA6block are1247,1868and3150g/mol, and the volume fraction of PBA block (φPBA) is between29%and60%. The samples were annealed at180and230℃respectively before measurements, then frustrated structures of both components were studied. For PA6, a quasi-γ mesomorphic order was found in the transition-region nearby the PBA domain which is more favored with the increase of the PBA content owing to stretching from the PBA rod block and different crosssection areas of the rod and coil chains. The crystal of PA6(α phase) formed only in samples with φPBA≤42.8%. The crystalline perfection of PBA was influenced by PA6, while the degree of crystallinity of PBA is only determined by the length of PBA block.
     Ⅱ:A series of three-arm molecules were obtained through condensation reaction. The topological symmetry of some molecules was reduced using anisomerous reaction centre. The self-assemble of C3-symmetry molecule (P7C3Na3) in water was studied with optical microscope (OM), transmission electron microscopy (TEM), wide/small angle X-ray scattering (WAXS/SAXS) and ultraviolet circular dichroism (UV-CD). Nano fibrils with width about10nm were found after dissolving the P7C3Na3in hot water and aging at room temperature. Without any external action, the nanofibrils further parallel arranged to form microfibers whose length exceeds millimeters. The inter-fibril ordering along the direction perpendicular to the fiber axis is determined as a face-centered orthorhombic lattice. Inside the nanofibril. building units P7C3Na3stack with arms perpendicular to the fibril axis with5/1helix which is supported by the supramolecular chirality in this achiral molecular system. Additionally, the function-combining capacity of this ionic nanofibril was also proved according to the abnormal positive behavior of the negative staining agent. In-situ SAXS during heating and drying process was performed. The results provided more evidence to ensure the inter-fibril orthorhombic ordering. The ordering was disappeard after drying due to the broken of balance between electrostatic force and van der Waals force.
     The natural protein and synthetic polyamide has a similar amide-linkage structure. This work gave examples that, through a "bottom-up" approach, synthetic polyamide can mimic the structures of protein and finally achieve its functions.
引文
[1]Ruzette A V, Leibler L. Block copolymers in tomorrow's plastics [J]. Nature Materials, 2005,4:19-31.
    [2]Barlow J W, Paul D R. Polymer blends and alloys-a review of selected considerations [J]. Polymer Engineering & Science,1981,21(15):985-996.
    [3]Emile O, Le Floch A, Vollrath F. Biopolymers:Shape memory in spider draglines [J]. Nature,2006,440:621.
    [4]Shao Z Z, Vollrath F. Materials:Surprising strength of silkworm silk [J]. Nature,2002, 418:741.
    [5]Liu Y, Shao Z Z, Fritz V. Relationships between supercontraction and mechanical properties of spider silk [J]. Nature Material,2005,4(12):901-905.
    [6]Jin H J, Kaplan D L. Mechanism of silk processing in insects and spiders [J]. Nature 2003, 424(28):1057-1061.
    [7]Tzaphlidou M. Bone architecture:collagen structure and calcium/phosphorus maps [J]. Journal of Biological Physics.2008,34:39-49.
    [8]Umbreit J. Methemoglobin—it's not just blue:a concise review [J]. American Journal of Hematology.2007,82:134-144.
    [9]Roy G, Sarma B K, Phadnis P P, Mugesh G. Selenium-containing enzymes in mammals: Chemical perspectives [J]. Journal of Chemical science.2005,117:287-303.
    [10]Mark JE. Polymer data handbook [M]. New York:Oxford University Press,1999.
    [11]Kijak A M, Perdue R K, Cox J A. Modification of electrodes with nanostructured films containing dirhodium-substituted polyoxometalates [J]. Journal of Solid State Eletrochem. 2004,8:376-380.
    [12]Prakash M J, Zou Y, Hong S, et al. Metal-Organic Polyhedron Based on a CuⅡ Paddle-Wheel Secondary Building Unit at the Truncated Octahedron Corners [J]. Inorganic Chemistry.2009,48:1281-1283.
    [13]Zou Y, Park M, Hong S, et al. A designed metal-organic framework based on a metal-organic polyhedron [J]. Chemcial Communications.2008,47:2340-2342.
    [14]Song X, Zou Y, Liu X, et al. A two-fold interpenetrated (3,6)-connected metal-organic framework with rutile topology showing a large solvent cavity [J]. New Journal of Chemistry.2010,34:2396-2399.
    [15]Ogate N, Hosoda Y. Synthesis of hydrophilic polyamide by active polycondensation [J]. Journal of Polymer Science:Polymer Letter Edition.1974,12(6):355-358.
    [16]Morgan P W, Kwolek S L. Interfacial polycondensation. Ⅱ. Fundamentals of polymer formation at liquid interfaces [J]. Journal of Polymer Science.1959,40:299-327.
    [17]Kispert R C, Foote S R, Griskey R G. Effect of acid acceptor concentration on the interfacial polycondensation of nylon 610 [J]. Journal of Applied Polymer Science.1968, 12:137-141.
    [18]Yamazaki N, Matsumoto M, Higashi F. Studies on reactions of the N-phosphonium salts of pyridines. ⅩⅣ. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts [J]. Journal of Polymer Science.1975, 13:1373-1380.
    [19]Higashi F, Ogata S I, Aoki Y. High-molecular-weight poly(p-phenyleneterephthalamide) by the direct polycondensation reaction with triphenyl phosphite [J]. Journal of Polymer Science:Polymer Chemistry Edition.1982,20:2081-2087.
    [20]Kwolek S L, Morgan P W, Schaefgen J R, et al. Synthesis, Anisotropic Solutions, and Fibers of Poly(1,4-benzamide) [J]. Macromolecules.1977,10:1390-1396.
    [21]Abbel Robert, Frey H, Schollmeyer D, et al. Soluble oligoaramide precursors-a novel class of building blocks for rod-coil architectures [J]. Chemistry-A European Journal. 2005,11:2170-2176.
    [22]Konig H M, Abbel R, Schollmeyer D, et al. Solid-Phase Synthesis of Oligo(p-benzamide) Foldamers [J]. Organic Letter.2006,8(9):1819-1822.
    [23]Klos j, Wurm F, Konig H M, et al. Automated large-scale synthesis of supramolecular oligo(p-benzamide) block copolymers [J]. Macromolecules.2007,40:7827-7833.
    [24]Konig H M, Kilbinger A F M. An improved rapid synthesis of oligo(p-benzamide) block copolymers [J]. Macromolecular Rapid Communications.2008,29:1721-1725.
    [25]Seyler H, Kilbinger A F M. Linear Organo-Soluble Poly(p-benzamide) [J]. Macromolecules.2009,42:9141-9146.
    [26]Weissbach H, Pestka S. Molecular Mechanism of Protein Biosynthesis [M]. Academic Press:New York,1977.
    [27]Bennek E. Mechanism of Protein Synthesis, Structure-Function Relations, Control Mechanism, and Evolutionary Aspects [M]. Springer-Verlag:New York,1985.
    [28]Kornberg A. Biologic Synthesis of Deoxyribonucleic Acid [J]. Science.1960,131: 1503-1508.
    [29]Travers A. RNA polymerase specificity and the control of growth [J]. Nature,1976,263: 641-646.
    [30]Lenz R W, Handlovits C E, Smith H A. Phenylene sulfide polymers. Ⅲ. The synthesis of linear polyphenylene sulfide [J]. Journal of Polymer Science.1962,58:351-367.
    [31]Yokozawa T, Asai T, Sugi R, et al. Chain-growth polycondensation for nonbiological polyamides of defined architecture [J]. Journal of Ameciacan Chemical Society.2000, 122:8313-8314.
    [32]Yokozawa T, Muroya D, Sugi R, et al. Convenient method of chain-growth polycondensation for well-defined aromatic polyamides [J]. Macromolecular Rapid Communications.2005,26:979-981.
    [33]Dykes G M. Dendrimer:a review of their appeal and applications [J]. Journal of Chemical Technology and Biotechnology.2001,76:903-918.
    [34]King A S H, Twyman L J. Heterogeneous and solid supported dendrimer catalysts [J]. Journal of the Chemical Society. Perkin Trans,2002,1:2209-2218.
    [35]Jin Y J, Luo Y J, Li G P, et al. Application of photoluminescent CdS/PAMAM nanocomposites in fingerprint detection [J]. Forensic Science International.2008,179: 34-38.
    [36]Twyman L J, Beezer A E, Esfand R, et al. The synthesis of water soluble dendrimers, and their application as possible drug delivery systems [J]. Tetrahedron Letters.1999,40: 1743-1746.
    [37]Eichman J D, Bielinska A U, Kukowaka-Latallo J F, et al. The use of PAMAM dendrimers in the efficient transfer of genetic material into cells [J]. Pharmaceutical Science & Technology Today.2000,3:232-245.
    [38]Navarro G, Maiwald G, Haase R, et al. Low generation PAMAM dendrimer and CpG free plasmids allow targeted and extended transgene expression in tumors after systemic delivery [J]. Journal of Controlled Release.2010,146:99-105.
    [39]Flory P.J. Molecular Size Distribution in Three Dimensional Polymers. I. Gelation [J]. Journal of Ameciacan Chemical Society.1941,63:3083-3090.
    [40]Buhleier E W, WehnerW, Vogtle F."Cascade"and"Nonskid-chain-like"Syntheses of Molecular Cavity Topologies [J]. Synthesis,1978,1978(2):155-158.
    [41]Hawker C J, Frechet J M J. Preparation of polymers with controlled molecular architecture.A new convergent approach to dendritic macromolecules [J]. Journal of Ameciacan Chemical Society.1990,112(21):7638-7647.
    [42]Newkome G R, Yao Z Q, Baker G R, et al.Micelles. Part 1. Cascade molecules:a new approach to micelles. A [27]-arborol [J]. The Journal of Organic Chemistry.1985,50: 2003-2004.
    [43]Tomalia D A, Baker H, Dewald J R, et al. A New Class of Polymers:Starburst-Dendritic Macromolecules [J]. Polymer Journal.1985,17:117-132.
    [44]Rannard S P, Davis N J, Herbert I. Synthesis of water soluble hyperbranched polyurethanes using selective activation of AB2 aonomers [J]. Macromolecules.2004,37: 9418-9430.
    [45]Yamakawa Y, Ueda M, Takeuchi K, et al. One-pot synthesis of dendritic polyamide [J]. Journal of Polymer Science:Polymer Chemistry,37:3638-3645.
    [46]Okaniwa M, Takeuchi K, Asai M, et al. One-Pot Synthesis of Dendritic Poly(amide-urea)s via Curtius Rearrangement.2. Synthesis and Characterization of Dendritic Poly(amide-urea)s [J]. Macromolecules,2002,35(16):6232-6238.
    [47]Washio I, Shibasaki Y, Ueda M. Facile synthesis of polyamide dendrimers from unprotected AB2 building blocks [J]. Organic Letters,2003,5(22):4159-4161.\
    [48]Okazaki M, Washio I, Shibasaki Y, et al. Rapid synthesis of polyamide dendrimers from unprotected AB2 building blocks [J]. Journal of Ameciacan Chemical Society.2003,125: 8120-8121.
    [49]Washio 1, Shibasaki Y, Ueda M. Facile synthesis of polyamide dendrimers from unprotected AB2 building blocks:dumbbell-shaped dendrimer, star-shaped dendrimer, and dendrimer with a carboxylic acid at the core [J]. Macromolecules.2005,38: 2237-2246.
    [50]Washio I, Shibasaki Y, Ueda M. Facile synthesis of amine-terminated aromatic polyamide dendrimers via a divergent method [J]-Organic Letters.2007,9(7): 1363-1366.
    [53]Ito Y, Washio I, Ueda M, Facile synthesis of a tadpole-shaped dendrimer based on N-alkylated oligo(p-benzamide) [J]. Macromolecules.2008,41:2778-2784.
    [52]Endo K, Ito Y, Higashihara T, Ueda M. Synthesis of a novel water-soluble polyamide dendrimer based on a facile convergent method [J]. European Polymer Journal.2009,45: 1994-2001.
    [53]Schnobrich J K, Lebel O, Cychosz K A, et al. Linker-directed vertex desymmetrization for the production of coordination polymers with high porosity [J]. Journal of Ameciacan Chemical Society.2010,132:13941-13948.
    [54]Fu P, Wang M, Liu M, et al. Preparation and characterization of star-shaped nylon 6 with high flow ability [J]. Journal of Polymer Research.2011,18:651-657.
    [55]Raquel G A, Ona I, and Rosa M O. Synthesis of chiral cyclobutane containing C3-symmetric peptide dendrimers [J]. Organic Letters.2010,12(14):3148-3151.
    [56]Kristine K T, Corinne A A, and Seth M C. Photochemical activation of a metal-organic framework to reveal functionality[J]. Angewandte Chemie International Edition.2010,49: 9730-9733.
    [57]Ibarra I A, Lin X, Yang S. et al. Structures and H2 adsorption properties of porous scandium metal-organic frameworks [J]. Chemistry-A European Journal.2010,16: 13671-13679.
    [58]Dey C, Das R, Saha B K, et al. Design and in situ synthesis of a Cu-based porous framework featuring isolated double chain magnetic character[J]. Chemical Communications.2011,47:11008-11010.
    [59]Mohideen, M H, Xiao B, Wheatley P S, et al. Protecting group and switchable pore-discriminating adsorption properties of a hydrophilic-hydrophobic metal-organic framework [J]. Nature Chemistry,2011,3(4):304-310.
    [60]Masuda M, Jonkheijm P, Sijbesma R P, et al. Photoinitiated polymerization of columnar stacks of self-assembled trialkyl-1,3,5-benzenetricarboxamide derivatives [J]. Journal of Ameciacan Chemical Society.2003,125:15935-15940.
    [61]Roosma J, Leclere P, Anja R A, et al. Supramolecular materials from benzene-1,3,5-tricarboxamide-based nanorods [J]. Journal of Ameciacan Chemical Society.2008,130:1120-1121.
    [62]Wilson A J, Gestel J van, Sijbesma R P, et al. Amplification of chirality in benzene tricarboxamide helical supramolecular polymers [J]. Chemical Communications.2006,42: 4404-4406.
    [63]Chen H M P, Katsis D, Chen S H. Deterministic synthesis and optical properties of glassy chiral-nematic liquid crystals [J]. Chemistry of Materials.2003,15:2534-2542.
    [64]Botta A, Candia F de, Palumbo R. Glass transition in aliphatic polyamides [J]. Journal of Applied Polymer science.1985,30:1669-1677.
    [65]Gianchandani J, Spruiell J E, Clark E S. Polymorphism and orientation development in melt spinning, drawing, and annealing of nylon-6 filaments [J]. Journal of Applied Polymer science.1982,27:3527-3551.
    [66]Kinoshita Y. An investigation of the structures of polyamide series [J]. Die Makromolekulare Chernie.1959,33:1-20.
    [67]Murthy N S. Hydrogen bonding, mobility, and structural transitions in aliphatic polyamides [J]. Journal of Polymer Science:Part B:Polymer Physics.2006,44: 1763-1782.
    [68]Bunn C W, Garner E V. The Crystal Structures of Two Polyamides (Nylons') [J]. Proceedings of the Royal Society of London:A.1947,189:39-68.
    [69]Holmes D R, Bunn C W, Smith D J. The crystal structure of polycaproamide:Nylon 6 [J]. Journal of Polymer Science.1955,17:159-177.
    [70]Malta V, Cojazzi G, Fichera A, et al. A re-examination of the crystal structure and molecular packing of a-nylon 6. European Polymer Journal.1979,15:765-770.
    [71]Ramesh C, Gowd E B. High-temperature X-ray diffraction studies on the crystalline transitions in the a-and y-forms of nylon-6 [J]. Macromolecules.2001,34:3308-3313,
    [72]Murthy N S, Curran S A, Aharoni S M, Minor H. Premelting crystalline relaxations and phase transitions in nylon 6 and 6,6 [J]. Macromolecules.1991,24:3215-3220.
    [73]Auriemma F, Petraccone V, Parravicini L, Corradini P. Mesomorphic Form (β) of Nylon 6 [J]. Macromolecules.1997,30:7554-7559.
    [74]Leon S, Aleman C, Munoz-Guerra S. Structure of the Extended Crystal Forms of Nylon-6 [J]. Macromolecules.2000,33:5754-5756.
    [75]Avramova N, Fakirov S. The β-structure of nylon-6 determined by reflection high energy electron diffraction [J]. Polymer Communication.1984,25:27-29.
    [76]Sikorski P. Atkins E D T. The Three-Dimensional Structure of Monodisperse 5-Amide Nylon 6 Crystals in the λ-Phase [J]. Macromolecules.2001,34:4788-4794.
    [77]Miyasaka K, Makishima K. Transition of nylon 6 γ-phase crystals by stretching in the chain direction [J].Journal of Polymer Science Part A-1:Polymer Chemistry.1967,5(12): 3017-3027.
    [78]Miyasaka K, Ishikawa K, Effects of temperature and water on the γ→α crystalline transition of nylon 6 caused by stretching in the chain direction [J], Journal of Polymer Science Part A-2:Polymer Physics.1968,6(7):1317-1329.
    [79]Hiramatsu N, Hirakawa S. Melting and Transformation Behavior of γ Form Nylon 6 under High Pressure [J]. Polymer Journal.1982,14(3):165-171.
    [80]Murthy N S, Aharoni S M, Szollosi A B. Stability of the γ form and the development of the a form in nylon 6 [J]. Journal of Polymer Science:Polymer Physics Edition.1985,23: 2549-2565,
    [81]Loo L S, Cohen R E, Gleason K K. Chain Mobility in the Amorphous Region of Nylon 6 Observed under Active Uniaxial Deformation [J]. Science.2000,288:116-119.
    [82]Correale S T, Murthy N S. Secondary crystallization and premelting endo- and exotherms in oriented polymers [J]. Journal of Applied Polymer Science.2006,101(1):447-454.
    [83]Gogolewski S, Gasiorek M, Czerniawska K, Pennnings A. Annealing of melt-crystallized nylon 6 [J]. Colloid & Polymer Science.1982,260(9):859-863.
    [84]Gurato G, Fischera A, Grandi F Z, et al. Crystallinity and polymorphism of 6-polyamide [J]. Die Makromolekulare Chemie.1974,175:953-975.
    [85]Oriani L A D G, Simal A L. Structure of heat-treated nylon 6 fibers. Ⅰ. Application of the Arrhenius equation [J]. Journal of Application Polymer Science.1992,46:1973-1985.
    [86]Brill R. Behavior of polyamides on heating [J]. Journal Fur Praktishe Chemie.1942,161: 49-64.
    [87]Radusch H J, Stolp M, Androsch R. Structure and temperature-induced structural changes of various polyamides [J]. Polymer,1994,35(16):3568-3571.
    [88]Biangardi H J. Brill transition of polyamide 6.12 [J]. Journal of Macromolecular Science: Physics.1990,29:139-153.
    [89]Jones N A, Atkins E D T, Hill M J. Comparison of Structures and Behavior on Heating of Solution-Grown, Chain-Folded Lamellar Crystals of 31 Even-Even Nylons [J]. Macromolecules.2000,33:2642-2650.
    [90]Jones N A, Cooper S J, Atkins E D T, et al. Temperature-induced changes in chain-folded lamellar crystals of aliphatic polyamides. Investigation of nylons 2 6,2 8,2 10, and 2 12 [J] Journal of Polymer Science Part B:Polymer Physics.1997,35:675-688.
    [91]Yang X, Tan S, Li G, Zhou E. Dependence of the Brill Transition on the Crystal Size of Nylon 1010 [J]. Macromolecules.2001,34:5936-5942.
    [92]Ramesh C. Crystalline Transitions in Nylon 12 [J]. Macromolecules.1999,32: 5704-5706.
    [93]Li L B, Koch M H J, de Jeu W H. Crystalline Structure and Morphology in Nylon-12:A Small-and Wide-Angle X-ray Scattering Study [J]. Macromolecules.2003,36: 1626-1632.
    [94]Yang X, Tan S, Li G, Zhou E. Dependence of the Brill Transition on the Crystal Size of Nylon 10 10 [J]. Macromolecules.2001,34:5936-5942.
    [95]Starkweather J H W. Deconvolution of the excess heat capacity of the Brill transition in nylon 66 [J]. Macromolecules.1989,22:2000-2003.
    [96]Murthy N S, Curran S A, Aharoni S M, Minor H. Premelting crystalline relaxations and phase transitions in nylon 6 and 6,6 [J]. Macromolecules.1991,24(11):3215-3220.
    [97]Lacks D J, Rutledge G C. Thermal Expansion and Temperature Dependence of Elastic Moduli of Aromatic Polyamides [J]. Macromolecules.1994,27:7197-7204.
    [98]Tadokoro H. Strucyure of crystalline polymers [M]. John Wiley&Sons. New York,1979.
    [99]Ii T, Tashiro K, Kobayashi M, et al. X-ray study on lattice thermal expansion of fully extended aromatic polyamide fibers [J]. Macromolecules.1986,19(6):1772-1775.
    [100]Reinitzer F. Contributions to the knowledge of cholesterol [J]. Liquid Crystals.1989,5: 7-18.
    [101]张树范,胡汉杰.刚性链芳族聚酰胺的合成及其液晶纺丝.高分子通讯,1979,4:250-256.
    [102]Krigbaum W R, Preston J, Ciferri A, Zhang S F. Nematogenic block copolymers of rigid and flexible aromatic units. I. Synthesis and characterization [J]. Journal of Polymer Science:Part A:Polymer Chemistry.1987,25:653-667.
    [103]Krigbaum W R, Shufan Z, Preston J, et al. Nematogenic aromatic block copolymers of rigid and flexible units. II. Phase equilibria [J]. Journal of Polymer Science:Part B: Polymer Physics.1987,25:1043-1055.
    [104]Cavalleri P, Ciferri A, Dell'Erba C, et al. Tailored rigid-flexible block copolymers.3. Fate of the flexible block within the mesophase [J]. Macromolecules.1997,30:3513-3518.
    [105]Cavalleri P, Ciferri A, Dell'Erba C, Gabellini A, Novi M. Tailored rigid-flexible block copolymers,4. Synthesis and properties of diblocks of poly(p-benzamide) and poly(m-benzamide) [J]. Macromolecular Chemistry and Physics.1998,199:2087-2094.
    [106]Fischer H, Berger W, Scheller D. Synthesis and characterization of copolyamides with rigid and flexible segments [J]. Acta Polymerica.1994,45:88-92.
    [107]Helgee B, Flodin P. Preparation and properties of block copolyamide fibres [J]. Polymer, 1992,33:3616-3620.
    [108]de Ruijter C, Jager W F, Groenewold J, Picken S J. Synthesis and characterization of rod-coil poly(amide-block-aramid) alternating block copolymers [J]. Macromolecules. 2006,39:3824-3829.
    [109]de Ruijter C, Jager W F, Li L B, Picken S J, Lyotropic rod-coil poly(amide-block-aramid) alternating block copolymers:phase behavior and structure [J]. Macromolecules.2006,39: 4411-4417.
    [110]Picken S J, Aerts J, Visser R, et al. Structure and rheology of aramid solutions:x-ray scattering measurements [J]. Macromolecules.1990,23:3849-3854.
    [111]Laschat S, Baro A, Steinke N, et al. Discotic Liquid Crystals:From Tailor-Made Synthesis to Plastic Electronics [J]. Angewandte Chemie International Edition.2007,46: 4832-4887.
    [112]Sergeyev S, PisulaW. Geerts Y H. Discotic liquid crystals:a new generation of organic semiconductors [J]. Chemical Society Reviews.2007,36:1902-1929.
    [113]Wu J S, Pisula W, Mullen K. Graphenes as potentialmaterial for electronics [J]. Chemical Reviews.2007,107:718-747.
    [114]Chandrasekhar S, Sadashiva B K, Suresh K A A. Liquid crystals of disc-like molecules [J]. Pramana,1977,9:471-480,
    [115]Kato T, Mizoshita N, Kishimoto K. Functional liquid-crystalline assemblies: self-organized soft materials [J]. Angewandte Chemie International Edition.2006,45: 38-68.
    [116]Bushey M L, Nguyen T Q, Zhang W, et al. Using hydrogen bonds to direct the assembly of crowded aromatics [J]. Angewandte Chemie International Edition.2004,43: 5446-5453.
    [117]Brunsveld L, Schenning A P H J, Broeren M A C, et al. Chiral amplification in columns of self-assembled N,N',N"-tris((S)-3,7-dimethyloctyl)benzene-1,3,5-tricarboxamide in dilute solution [J]. Chemistry Letters.2000,29:292-293.
    [118]Paraschiv I, Giesbers M, van Lagen B, et al. H-bond-stabilized tiphenylene-based columnar discotic liquid crystals [J]. Chemistry Materials.2006,18:968-974.
    [119]Ishi-i T, Kuwahara R, Takata A, et al. An enantiomeric nanoscale architecture obtained from a pseudoenantiomeric aggregate:covalent fixation of helical chirality formed in self-assembled discotic triazine triamides by chiral amplification [J]. Chemistry-A European Journal.2010,16:13671-13679.
    [120]Barbera J, Garces A C. Sugar-coated discotic liquid crystals [J]. Advanced Materials. 2001,13:175-180.
    [121]Gearba R I, Lehmann M, Levin J, et al. Tailoring discotic mesophases:columnar order enforced with hydrogen bonds [J]. Advanced Materials,2003,15:1614-1618.
    [122]Beginn U, Lattermann G. Liquid crystalline primary benzamides [J]. Molecular Crystals & Liquid Crystals.1994,241:215-219.
    [123]Kleppinger R, Lillya C P, Yang C, Discotic liquid crystals through molecular self-assembly [J]. Journal of the American Chemical Society.1997,119:4097-4102.
    [124]Abbel R, Schleuss T W, Frey H, Kilbinger A F M. Rod-length dependent aggregation in a series of oligo(p-benzamide)-block-poly(ethylene glycol) rod-coil copolymers [J]. Macromolecular Chemistry and Physics.2005,206:2067-2074.
    [125]Konig H M, Gorelik T, Kolb U, Kilbinger A F M. Supramolecular PEG-co-oligo(p-benzamide)s prepared on a peptide synthesizer [J]. Journal of the American Chemical Society.2007,129:704-708.
    [126]Schleuss T W, Abbel R, Gross M5 et al. Hockey-Puck Micelles from Oligo(p-benzamide)-b-PEG Rod-Coil Block Copolymers [J]. Angewandte Chemie International Edition.2006; 45:2969-2975.
    [127]Bohle A, Brunklaus G, Hansen M R, et al. Hydrogen-bonded aggregates of oligoaramide-poly(ethylene glycol) block copolymers [J]. Macromolecules.2010,43: 4978-4985.
    [128]Seyler H, Kilbinger A F M. Hairy aramide rod-coil copolymers [J]. Macromolecules. 2010,43:5659-5664.
    [129]Van Gorp J J, Vekemans J A J M, Meijer E W. C3-symmetrical supramolecular architectures:fibers and organic gels from discotic trisamides and trisureas [J]. Journal of the American Chemical Society.2002,124:14759-14769.
    [130]Hirschberg J H K K, Brunsveld L, Ramzi A, et al. Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs [J]. Nature.2000,407:167-170.
    [131]Xu X N, Wang L, Li Z T. Reverse vesicles formed by hydrogen bonded arylamide-derived triammonium cyclophanes and hexaammonium capsule [J]. Chemical Communications.2009,45:6634-6636.
    [132]Helsel A J, Brown A L, Yamato K, et al. Highly conducting transmembrane pores formed by aromatic oligoamide macrocycles [J]. Journal of the American Chemical Society.2008, 130:15784-15785.
    [133]Sanford A R. Yuan L H, Feng W, et al. Cyclic aromatic oligoamides as highly selective receptors for the guanidinium son [J], Chemical Communications.2005,41:4720-4722,
    [134]Yamato K, Yuan L H, Feng W, et al. Crescent oligoamides as hosts: conformation-dependent binding specificity [J]. Organic Biomolecular Chemistry.2009, 7:3643-3647.
    [135]Yang Y, Feng W, Hu J, et al. Strong Aggregation and Directional Assembly of Aromatic Oligoamide Macrocycles [J]. Journal of the American Chemical Society.2011,133: 18590-18593.
    [136]Goedert M, Spillantini M G, A century of alzheimer's disease [J]. Science.2006,314: 777-781.
    [137]Roberson E D, Mucke L.100 years and counting:prospects for defeating Alzheimer's disease [J]. Science.2006,314:781-784.
    [138]Teplow D B, Nakayama C, Leung P C, et al. Structure-function relationships in the transposition protein B of bacteriophage Mu. The Journal of Biological Chemistry.1988. 263:10851-10857.
    [139]Mankar S, Anoop A, Sen S, et al. Nanomaterials:amyloids reflect their brighter side [J]. Nano Reviews.2011,2:6032-6043.
    [140]Holmes T C, de Lacalle S, Su X, et al. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds [J]. Proceedings of the National Academy of Sciences of the United States of America.2000,97:6728-6733.
    [141]Orive G, Hernandez R M, Rodriguez Gascon A, et al. Drug delivery in biotechnology: present and future [J]. Current Opinion in Biotechnology.2003,14:659-664.
    [142]Reches M, Gazit E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science.2003,300:625-627.
    [1]Armarego W L F, Chai C L L. Purification of laboratory chemicals. Oxford: Butterworth-Heinemann,2003. pp.104.
    [2]Marsden H R, Kros A. Polymer-peptide block copolymers-An overview and assessment of synthesis methods [J]. Macromolecular Bioscience.2009,9:939-951.
    [3]复旦大学高分子科学系高分子科学研究所,高分子实验技术,上海:复旦大学出版社,1996年,第2页。
    [4]Hashimoto T, Tanaka H, Hasegawa H. Self-consistent field theory of surfaces with terminally attached chains [J]. Macromolecules.1989,22:965-973.
    [5]Schaefgen J R, Foldi V S, Logullo F M, et al. Viscosity-molecular weight relationshios in stiff-chain aromatic polyamides [J]. Polymeric Preprints.1976,17:69-74.
    [6]Masuda M, Jonkheijm P, Sijbesma R P, et al. Photoinitiated polymerization of columnar stacks of self-assembled trialkyl-1,3,5-benzenetricarboxamide derivatives [J]. Journal of Ameciacan Chemical Society.2003,125:15935-15940.
    [7]Roosma J, Leclere P, Anja R A, et al. Supramolecular materials from benzene-1,3,5-tricarboxamide-based nanorods [J]. Journal of Ameciacan Chemical Society.2008,130:1120-1121.
    [8]Wilson A J, Gestel J van, Sijbesma R P, et al. Amplification of chirality in benzene tricarboxamide helical supramolecular polymers [J]. Chemical Communications.2006,42: 4404-4406.
    [9]Dimick S M, Powell S C, McMahon S A, et al. On the meaning of affinity:cluster glycoside effects and concanavalin A [J]. Journal of Ameciacan Chemical Society.1999, 121:10286-10296.
    [10]Haridas V, Sharma Y K, Naik S. Multi-tier dendrimers with an aromatic core [J]. European Journal of Organic Chemistry.2009,2009:1570-1577.
    [11]Wallace J U, Chen S H. Simplified scheme for deterministic synthesis of chiral-nematic glassy liquid crystals [J]. Industrial & engineering chemistry research.2006,45: 4494.4499.
    [1]Ruzette A V, Leibler L. Block copolymers in tomorrow's plastics [J]. Nat Mater.2005, 4(1):19-31.
    [2]Rabani G, Luftmann H, Kraft A. Synthesis and characterization of two shape-memory polymers containing short aramid hard segments and poly(ε-caprolactone) soft segments [J]. Polymer 2006,47(12):4251-60.
    [3]http://www.dorlastan.com/.
    [4]Liu Y, Shao ZZ, Fritz V. Relationships between supercontraction and mechanical properties of spider silk [J]. Nat Mater 2005,4(12):901-905.
    [5]Jin H J, Kaplan D L. Mechanism of silk processing in insects and spiders [J]. Nature 2003, 424(28):1057-1061.
    [6]Konig H M, Gorelik T, Kolb U, Kilbinger A F M. Supramolecular PEG-co-oligo(p-benzamide)s prepared on a peptide synthesizer [J]. Journal of the American Chemical Society.2007,129(3):704-708.
    [7]Arun A, Gaymans R J. Segmented block copolymers with monodisperse aramide end-segments [J]. Macromolecular Chemistry and Physics.2008,209(8):854-863.
    [8]Lin C L, Tung P H, Chang F C. Synthesis of rod-coil diblock copolymers by ATRP and their honeycomb morphologies formed by the 'breath figures' method [J]. Polymer 2005, 46(22):9304-9313.
    [9]Leibler L. Theory of microphase separation in block copolymers [J]. Macromolecules. 1980,13(6):1602-1617.
    [10]Olsen B D, Segalman R A. Phase transitions in asymmetric rod-coil block copolymers [J]. Macromolecules 2006,39(20):7078-7083.
    [11]Pryamitsyn V, Ganesan V. Self-assembly of rod-coil block copolymers [J]. Journal of Chemical Physics.2004,120(12):5824-8538.
    [12]Lee M, Cho B K, Zin W C. Supramolecular structures from rod-coil block copolymers [J].Chemical Reviews.2001,101(12):3869-3892.
    [13]Liu X B, Zhao Y F, Chen E Q, et al. Lamella-to-lamella transition and effect of coil-stretching on crystallization in a rod-coil diblock copolymer containing poly(∈-caprolactone) [J]. Macromolecules.2008,41(14):5223-5229.
    [14]Muthukumar M, Ober C K, Thomas E L. Competing interactions and levels of ordering in self-organizing polymeric materials [J]. Science.1997,277:1225-1232.
    [15]Tenneti KK, Chen X, Li CY, et al. Perforated layer structures in liquid crystalline rod-Coil block copolymers [J]. Journal of the American Chemical Society.2005,127(44): 15481-15490.
    [16]Li L B, Lambreva D, de Jeu W H. Lamellar ordering and crystallization in a symmetric block copolymer [J]. Journal of Macromolecular Science:Physics.2005,43(1):59-70.
    [17]de Ruijter C, Jager WF, Groenewold J, Picken SJ. Synthesis and characterization of rod-coil poly(amide-block-aramid) alternating block copolymers [J]. Macromolecules. 2006,39(11):3824-3829.
    [18]de Ruijter C, Mendes E, Boerstoel H, Picken S J. Orientational order and mechanical properties of poly(amide-block-aramid) alternating block copolymer films and fibers [J]. Polymer.2006,47(26):8517-8526.
    [19]Matheson J R R, Flory P J. Statistical thermodynamics of mixtures of semirigid macromolecules:chains with rodlike sequences at fixed locations [J]. Macromolecules. 1981,14(4):954-960.
    [20]Murthy N S. Hydrogen bonding, mobility, and structural transitions in aliphatic polyamides [J]. Journal of Polymer Science Part B:Polymer Physics.2006,44(13): 1763-1782.
    [21]Arimoto H, Ishibashi M, Hirai M. Chatani Y. Crystal structure of the γ-form of nylon 6 [J]. Journal of Polymer Science Part A:General Papers.1965,3(1):317-326.
    [22]Rotter G, Ishida H. FTIR separation of nylon-6 chain conformations. Clarification of the mesomorphous and y-crystalline phases [J]. Journal of Polymer Science Part B:Polymer Physics.1992,30(5):489-495。
    [23]Auriemma F, Petraccone V, Parravicini L, Corradini P. Mesomorphic Form (β) of Nylon 6 [J]. Macromolecules.1997,30(24):7554-7559.
    [24]Aharoni S M. N-nylons:their synthesis, structure and properties. New York:John Wiley & Sons Ltd; 1997 (chapter 2.6).
    [25]Takahashi Y, Ozaki Y, Takase M, Krigbaum W R. Crystal structure of poly(p-benzamide) [J]. Journal of Polymer Science Part B:Polymer Physics.1992,31(9):1135-1143.
    [26]Li J J, Huang Y J, Cong Y H, et al. Frustrated structures of polycaprolactam and poly(p-benzamide) in their rod-coil-rod triblock copolymers [J]. Polymer,2010,51: 232-239.
    [27]Xu L, Li J J, Wang D L, et al. Structure of polyamide 6 and poly (p-benzamide) in their rod-coil-rod triblock copolymers investigated with in situ wide angle X-ray diffraction [J]. polymer.2011,52:1197-1205.
    [28]Mark J E. Polymer data handbook. New York:Oxford University Press; 1999.
    [29]Bao H, Rybnikar F, Saha P, et al. Polymerization, morphology, and crystal structure of poly(p-benzamide) [J]. Journal of Macromolecular Science:Physics.2001. B40(5): 869-911.
    [30]Rhee S, White J L. Crystal structure, morphology, orientation, and mechanical properties of biaxially oriented polyamide 6 films [J]. Polymer.2002,43(22):5903-5914.
    [31]Murthy N S, Curran S A, Aharoni S M, Minor H. Premelting crystalline relaxations and phase transitions in nylon 6 and 6,6 [J]. Macromolecules.1991,24(11):3215-3220.\
    [32]Vasanthan N, Murthy N S, Bray R G. Investigation of brill transition in nylon 6 and nylon 6,6 by infrared spectroscopy [J]. Macromolecules 1998,31(23):8433-8435.
    [33]de Ruijter C, Jager W F, Li L B, Picken S J. Lyotropic Rod-Coil Poly(amide-block-aramid) Alternating Block Copolymers:Phase Behavior and Structure [J]. Macromolecules.2006,39(13):4411-4417.
    [34]Cavalleri P, Ciferri A, Dell'Erba C, et al. Tailored eigid-flexible block copolymers.3. Fate of the flexible block within the mesophase [J]. Macromolecules.1997,30(12): 3513-3518.
    [35]de Gennes P G. Scaling concepts in polymer physics. Ithaca:Cornell University Press; 1979 (part A-I).
    [36]Psarski M, Pracella M, Galeski A. Crystal phase and crystallinity of polyamide 6/functionalized polyolefin blends [J]. Polymer.2000,41(13):4923-4932.
    [1]Shirude P S, Gillies E R, Ladame S, et al. Macrocyclic and helical oligoamides as a new class of G-quadruplex ligands [J]. Journal of the American Chemical Society.2007,129: 11890-11891.
    [2]Baptiste B, Douat-Casassus C, Laxmi-Reddy K, et al. Solid phase synthesis of aromatic oligoamides:application to helical water-soluble foldamers [J]. the Journal of Organic Chemistry.2010,75:7175-7185.
    [3]Eenst J T, Becerril J, Park H S, et al. Design and application of an a-helix-mimetic scaffold based on an oligoamide-foldamer strategy:antagonism of the bak BH3/Bcl-xL complex [J]. Angewandte Chemie.2003,115:553-557.
    [4]Rochet J C, Lansbury P T. Amyloid fibrillogenesis:themes and variations [J]. Current Opinion in Structural Biology.2000,10:60-68.
    [5]Jimenez J L, Nettleton E J, Bouchard M, et al. The protofilament structure of insulin amyloid fibrils [J]. Proceedings of the National Academy of Sciences.2002,99: 9196-9201.
    [6]Gilead S, Gazit E. Self-organization of short peptide fragments:from amyloid fibrils to nanoscale supramolecular assemblies [J]. Supramolecular Chemistry.2005,17:87-92.
    [7]Hamley I W. Peptide Fibrillization [J]. Angewandte Chemie International Edition.2007, 46:8128-8147.
    [8]Reches M, Gazit E. Casting metal nanowires within discrete self-assembled peptide nanotubes [J]. Science 2003,300:625-627.
    [9]Scheibel T, Parthasarathy R, Sawicki G, Lin X M, et al. Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition [J]. Proceedings of the National Academy of Sciences.2003,100(8):4527-4532.
    [10]Woolf-son D N, Mahmoud Z N. More than just bare scaffolds:towards multi-component and decorated fibrous biomaterials [J]. Chemical Society Reviews.2010,39:3464-3479.
    [11]Konig H M, Gorelik T, Kolb U, Kilbinger A F M. Supramolecular PEG-co-oligo(p-benzamide)s prepared on a peptide synthesizer [J]. Journal of the American Chemical Society.2007,129:704-708.
    [12]Park C, Lee J, Kim C. Functional supramolecular assemblies derived from dendritic building blocks [J]. Chemical Communications.2011,47:12042-12056.
    [13]Yang Y, Feng W, Hu J, et al. Strong aggregation and directional assembly of aromatic oligoamide macrocycles [J]. Journal of the American Chemical Society.2011,133: 18590-18593,
    [14]van Gorp J J, Vekemans J A J M, Meijer E W. C3-symmetrical supramolecular architectures:fibers and organic gels from discotic trisamides and trisureas [J]. Journal of the American Chemical Society.2002,124:14759-14769.
    [15]Gong B. Hollow crescents, helices, and macrocycles from enforced folding and folding-assisted macrocyclization [J]. Accounts of Chemical Research.2008,41: 1376-1386.
    [16]Carrell C J, Carrell H L, Erlebacher J, et al. Structural aspects of metal ion carboxylate interactions [J]. Journal of the American Chemical Society.1988,110:8651-8656.
    [17]Langer R, Tirrell D A. Designing materials for biology and medicine [J]. Nature.2004, 428:487-492.
    [18]Channon K, Macphee C E. Possibilities for 'smart' materials exploiting the self-assembly of polypeptides into fibrils [J]. Soft Matter.2008,4:647-652.
    [19]Ostrov N, Gazit E. Genetic engineering of biomolecular scaffolds for the fabrication of organic and metallic nanowires [J]. Angewandte Chemie International Edition.2010,49: 3018-3021.
    [20]Sotiropoulou S, Sierra-Sastre Y, Mark S S, Batt C A. Biotemplated nanostructured materials [J]. Chemistry of Materials.2008,20:821-834.
    [21]Abecassis B, Testard F. Zemb T. Gold nanoparticle synthesis in worm-like catanionic micelles:microstructure conservation and temperature induced recovery [J]. Soft Matter. 2009,5:974-978.
    [22]Cui H, Muraoka T, Cheetham A G, Stupp S I. Self-assembly of giant peptide nanobelts [J]. Nano Letters.2009,9:945-951.
    [23]Ren C, Maurizot V, Zhao H, et al. Five-fold-symmetric macrocyclic aromatic pentamers: high-affinity cation recognition, ion-pair-induced columnar stacking, and nanofibriliation [J]. Journal of the American Chemical Society.2011,133:13930-13933.
    [24]Nam K T, Kim D W, Yoo P J, et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes [J]. Science 2006,312:885-888.
    [25]Lai S K, Wang Y Y, Wirtz D, Hanes J. Micro-and macrorheology of mucus [J]. Advanced Drug Delivery Reviews.2009,61:86-100.
    [26]Olympus Microscopy Resource Center, Polarized Light Micros-copy. http://www.olympusmicro.com/primer/techniques/polar-ized/firstorderplate.html
    [27]Warner S B, On the radial structure of Kevlar [J]. Macromolecules.1983,16:1546-1548.
    [28]Zang L, Che Y, Moore J S. One-dimensional self-assembly of planar π-conjugated molecules:adaptable building blocks for organic nanodevices [J]. Accounts of Chemical Research.2008,41:1596-1608.
    [29]Kumar S. Self-organization of disc-like molecules:chemical aspects [J]. Chemical Society Reviews.2006,35:83-109.
    [30]Pisula W, Tomovic Z, Hamaoui B E, et al. Control of the homeotropic order of discotic hexa-peri-hexabenzocoronenes [J]. Advanced Functional Materials.2005,15:893-904.
    [31]Hall C E. Electron densitometry of stained virus particles [J]. The Journal of Biophysical and Biochemical Cytology.1955,1,1-12.
    [32]Mateos-Timoneda M A, Crego-Calama M, Reinhoudt D N. Supramolecular chirality of self-assembled systems in solution [J]. Chemical Society Reviews.2004,33:363-372.
    [33]Simons W W. The sadtler handbook of infrared spectra [M]. Philadelphia, Sadtler Research Laboratories edition:1978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700