一种轮履复合式森林巡防机器人平台的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国国民经济的迅猛发展,从生态保护与林业生产安全的角度出发,亟需严格控制森林火灾、盗砍盗伐、非法狩猎等现象的发生。针对我国幅员辽阔,仅靠人力难以实现全面巡防与排查的现状,提出一种采用轮履复合驱动方式的森林巡防机器人平台,其具较小的外廓尺寸、较强的机动性与通过性,可较好地适应森林环境;此外,还搭载有可升降摄像机、GPS等传感器,可将所处环境场景与自身位置通过无线通讯实时上传至远程控制端,从而代替人力进行实地森林巡防与火灾监控,既可将巡山人员从恶劣环境中解放出来,也提高了火灾监控与安全巡防的效率。
     针对森林环境的复杂性,围绕机动性、通过性、作业能力这三个要素,进行森林巡防机器人的研究,包括机器人的机械系统设计、电控系统设计、实验性能测试三部分。
     首先,对典型的森林地貌与常见障碍进行分析,得出机器人机械系统的设计约束,采用轮履复合驱动方式取得移动速度与越障能力的均衡;以全天候作业能力为目标,进行一体化平台腔体设计;为扩大相机监控范围,采用基于多级电动推杆的升降机构设计;在Solidworks三维模型的基础上开展虚拟样机分析,对前述设计进行校验与修正。
     其次,针对机器人功能要求,设计基于异步串行总线的双层控制系统,并采用ATMEGA128作为中央控制器。进行直流电机驱动器的设计研究,并展开无线通讯模块、图像处理模块、GPS模块、超声探测模块等外围功能模块的集成研究。此外,控制系统是开放可扩展的,根据具体需要可进行功能模块的添加与移除。
     最后,进行机器人机电系统集成并完成联调,在森林环境下对机器人系统进行性能测试,包括机动性能测试(最大速度、爬坡能力、转向半径等)、通过性测试(越障能力)、作业能力测试等,从而完成移动机器人的综合性能验证。
With the rapid development of national economy in China, forest fire, illegal logging, illegal hunting and other phenomena need strict control from the aspect of ecological conservation and forestry production security. Because of the vast territory of China, comprehensive patrol and investigation can be hardly achieved by human strength only. Considering the current situation, a wheel-track-driven robot for forest patrol is proposed in this paper. It has many advantages such as:small outside contouring dimension, strong mobility and passing ability, good adaptability to forest environment, etc. Besides, it's equipped with camera, GPS and other sensors, which realizes real time uploading of its current position and environment information to remote control terminal by wireless control. Therefore, human can be substituted in forest patrol and fire monitor, which not only frees forest rangers from harsh environment, but also improves efficiency of fire monitoring and security patrol.
     Due to the complexity of forest environment, the research of forest patrol robot includes mechanical system design, electrical control design and experimental performance testing, focusing on three essential factors:mobility, passing ability and working ability.
     Firstly, typical forest landscape and common barriers are analyzed so that design constrains of robot mechanical system can be acquired. Wheel-track-driven mode is adopted to balance both speed and obstacle detouring ability. Integration platform cavity is designed targeted for whole-day working ability. In addition, elevating mechanism is designed based on multi-motorized faders to expand the surveillance scope of cameras. Virtual prototype is analyzed based on Solidworks 3D model so that all of the design mentioned above can be verified and modified.
     Secondly, aimed at the functional requirements of robots, double control system is designed based on asynchronous serial bus and ATMEGA128 is used as central controller as well. DC motor driver is designed. Meanwhile, The integration research of the wireless communication module, image processing module, GPS module, ultrasonic detection module and other peripheral functional modules is carried out. Moreover, the control system is open and expandable so that functional modules can be added and moved according to specific needs.
     Finally, the mechanical system and electrical system are integrated and tested. In order to verify the comprehensive performance of the mobile robot, the performance testing of robot system is carried out under forest circumstance, which includes mobility testing (maximum speed, climbing ability, turning radius, etc.), passing testing (obstacle detouring ability), working ability testing, etc.
引文
[1]姜树海,陆怀民.林业机器人研究动态.森林工程,1998,(03)
    [2]孙艳青.日本研制的林业机器人.机器人技术与应用,1997,(05)
    [3]Bulanon,D.M, T.Kataoka, Y.Ota, and T.Hiroma. A Machine Vision system for the Apple Harvesting Robot. Agricultural Engineering International:the CIGR Journal of Scientific Research and Development. Manuscript PM 01 006.No1.Ⅲ.
    [4]Nobutaka Ito.Agricultural Robots in Japan.IEEE International workshop Intelligent Robots and Systems.1990,249-253
    [5]M.Monta, N.Kondo, K.C.King. End-Effectors for Tomato Harvesting Robot. Agriculture Intelligent Review.1998,12:11-25
    [6]E.J.VAN HENTEN, J.HEMMING An Autonomous Robot for Harvesting Cucumbers in Greenhouse. Automobile Robots,2002,(13):241-258
    [7]孔庆华.机器人技术在林业与木工机械上的应用.林业机械与木工设备,2001(7)29:30-31
    [8]陆怀民,刘晋浩.林木球果采集机器人.东北林业大学学报,2001,32(6):52-58
    [9]陆怀民.林木伐根清理机器人设计与试验,农业工程学报2002年06期18卷:169-171
    [10]Meystel A.. Autonomous mobile robots vehicles with cognitive control [M]. World Scientific Publishing Co. Pte. Ltd.,1991
    [11]Hart A P, Nilsson N J, Raphael B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans.Systems Science and Cybern[C],1968.4
    [12]Automatika,"Products,"2006.[Online].Available:http://automatika.com/products. htm
    [13]Brooks R,Angle C. PackBot:a complete system solution from the inno-vators at iRobot[EB/OL].http:packbot.com/products/default.asp,2003-07-15/2003-08-24
    [14]Mcandrew D R, Manggolds A, Deguire D. Tactical mobile search and rescue mission modules[A]. Proceedings of the SPIE International Con-ference on Unmanned Ground Vehicle Technology Ⅱ [C]. Bellingham:The International Society for Optical Engineering,2000.274-282
    [15]YAMAUCHIB. Packbot:a wersatile platform for military robotics[C]//Unmanned Ground Vehicle Technology Ⅵ.Proceedings of SPIE,2004(5422):228-237
    [16]PAUL J L, NICHOLAS F, TORRIEM R, etal Chaos an intelligent ultra-mobile SUGV: combining the mobility of wheel tracks and legs[C]. Proceedings of SPIE,2005(5804):427-438
    [17]FRANCOISM. DOMINIC E. Multi-modal locomotion robotic platform using leg-track-wheel articulations[J].Autonomous Robots,2005(18):137-156
    [18]GRUARNIERIM, DEBENEST P, INOH T, eta.l Development of helios VII:an arm-equipped tracked vehicle foesearch an search and rescure operations[C]. Proceedings of2004 IEEE/RSJ International Conference on intelligentRobots and Systems, Sendai Japan,2004:39-45
    [19]王挺,王超越,赵忆文.多机构复合智能移动机器人的研制[J].机器人,2004,26(4):289-294
    [20]段星光,黄强,李科杰.小型轮履腿复合式机器人设计及运动特性分析[J].机械工程学报,2005,41(8):108-113
    [21]韩广,王田苗,梁建宏,赵建昌.一种有效爬越楼梯的模块化可重组履带结构.机器人.2004,9(2):45-47
    [22]Hiroshi Kimura. Three-dimensional Adaptive Dynamic Walking of a Quadruped-rolling motion feedback to CPGs controlling pitching motion, Proc. of IEEE Robotics and Automation (ICRA2002), Washington D.C.2002.5:2228-2233
    [23]Yasuhiro Fukuoka. Adaptive Dynamic Walking of a Quadruped Robot'Tekken'on Irregular Terrain Using a Neural System Model, Proc. of IEEE Robotics and Automation (ICRA2003).2003:2037-2042
    [24]Johan Ingvast, A two dimensional bidirectional ground interaction model, In Int. Conf, on Climbing and Walking Robots, Paris. France, September 2002
    [25]Johan Ingvast and Jan Wikander. A passive load-sensitive revolute transmission, In Int. Conf. on Climbing and Walking Robots, Paris, France, September 2002
    [26]S. Hirose et al. "Titan Ⅲ, a quadruped walking vehicle-its structure and basic Characteristics" 2nd Int. Symp. Robotics Research.1985:325-331
    [27]张秀丽,郑浩峻,段广洪.动物运动控制机理及对机器人控制的启示.机器人技术与应用.2002(5):24-26
    [28]张秀丽,郑浩峻,陈恳,段广洪.机器人仿生学研究综述.机器人.2002(2):188-192
    [29]孙杏初,张之伟.四足步行运行机构及步态参数对行走稳定性影响分析[j].北京航空航天大学学报.1993:18-25
    [30]高峰,陈秉聪,杨红旗.研究四足步行机步态稳定性的临界状态法[j].机械工程学报.1992:28-33
    [31]陈立新.足步行机器人步态及运动稳定性分析.现代机械,1995:28-31
    [32]陈学东,郭鸿勋,渡边桂吾.四足机器人爬行步态的正运动学分析.机械工程学报,2003:8-12
    [33]王新杰,李培根,陈学东.四足步行机器人动力学模型及脚力分配的研究.华中科技 大学学报.2005,33(12):12-15
    [34]王新杰,李培根,陈学东.四足步行机器人关节位姿和稳定性研究.中国机械工程.2005,16(17):1561-1567
    [35]黄真,孔令富,方跃法.并联机器人机构学理论及控制.机械工业出版社.1996:29-35
    [36]陈东良.仿生机器蟹两栖步行机理与控制方法研究.哈尔滨工程大学博士学位论文.2006:49-50
    [37]苏军.多足步行机器人步态规划及控制的研究.华中科技大学硕士论文.2004:15-17
    [38]柳洪义,闻邦椿,H.斯欧格.轮腿结合步态稳定裕度的研究.东北大学学报,1994:51-55
    [39]俄晋武,干东英.六足步行机横向行走最佳步态及运动特性初探.机器人,1982(5):45-49
    [40]徐跌群,万隆军,四足步行机器人稳定性步态分析,制造业自动化,机器人技术专栏,2001:5-7
    [41]付宜利,徐贺,王树国,马玉林,顾晓宇.沙地环境移动机器人驱动轮的发展概况综述[J].机器人技术与应用,2004,Vo1.4:22-29
    [42]陈秉聪.车辆行走机构形态学及仿生减粘脱土理论[M].北京:机械工业出版社,2001
    [43]YimM, DuffD Q RoufasK D. PloyBot:a modular reconfigurable robot[A]. Proceedings of the International Conference on Robotics and Automation[C]. Piscataway, USA:IEEE2000. 514-520
    [44]王田苗,邹丹,陈殿生.可重构履带机器人的机构设计与控制方法实现[J].北京航空航天大学学报,2005,(07)
    [45]李航,孙厚芳,林青松.两轮移动机器人控制系统研究.机床与液压,2006,(12):46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700