三种纳米材料和离子液体修饰的电化学生物传感器的制备与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学生物传感器是一类以生物材料(生物分子、细胞、组织、器官等)作为生物敏感元件,以电极作为换能器,以电化学信号(如电流、阻抗、电容等)作为检测信号的分析装置。它具有操作简便、制作简单、分析快速等优点。本文以高导电率的碳离子液体电极(carbon ionic liquid electrode,CILE)为基体电极,结合纳米材料的特殊性质,制备了三种新型的电化学生物传感器;分别研究了肌红蛋白(myoglobin,Mb)和血红蛋白(hemoglobin,Hb)在两种不同金属纳米粒子修饰电极上的直接电化学和电催化行为;制备了一种基于V_2O_5纳米带-多壁碳纳米管(MWCNTs)-壳聚糖(chitosan,CTS)复合膜修饰碳离子液体电极的电化学DNA生物传感器。本论文共分三个部分:
     I.使用离子液体1-乙基-3-甲基咪唑四氟硼酸盐(1-ethyl-3-methylimidazolium tetrafluoroborat,EMIMBF4)修饰碳糊电极为基体电极,使用循环伏安法将Co纳米粒子同位电沉积于电极表面,进一步涂布Mb和Nafion制得Nafion/Mb/Co/CILE;研究了肌红蛋白在该电极上的直接电化学行为,同时考察了Nafion/Mb/Co/CILE对H_2O_2和TCA的电化学催化研究。实验结果表明,Co纳米粒子已成功的修饰在CILE表面,Co纳米粒子的存在能够极大地提高Mb的电化学和电催化活性。
     II.以离子液体1-乙基-3-甲基咪唑乙基磺酸盐(1-ethyl-3-methylimidazolium ethylsulphate,EMIMEtOSO3)修饰电极为基体电极,利用恒电位电沉积法制备了金纳米粒子修饰电极,并使用SEM等方法对制备的电极进行了表征;而且研究了Hb在Nafion/Hb/Au/CILE上的直接电化学行为;同时对TCA在Nafion/Hb/Au/CILE上电化学催化还原进行了研究。
     III.构建了一种基于V_2O_5纳米带-多壁碳纳米管(MWCNTs)-壳聚糖(chitosan,CTS)复合膜修饰CILE的DNA生物传感器。将离子液体N-己基吡啶六氟磷酸盐(N-hexylpyridinium hexafluorophosphate,HPPF6)代替石蜡作为粘合剂与石墨粉一起混合制得CILE。首先将单链DNA(ssDNA)探针固定在CTS-V_2O_5-MWCNTs/CILE上,然后与目标ssDNA序列杂交,接着使用亚甲基蓝(methylene blue,MB)为指示剂、微分脉冲伏安法(differential pulse voltammetry,DPV)来检测杂交反应的发生。实验结果表明,V_2O_5纳米带与MWCNTs之间的协同效应使ssDNA探针的负载量大大增加,从而间接地提高了电化学响应信号。并且这种传感器对单碱基和三碱基错配序列具有良好的识别能力。使用这种DNA生物传感器对猪肉样品中的耶尔森菌(Yersinia enterocolitica)DNA序列的环介导等温扩增(loop-mediated isothermal amplification,LAMP)产物进行了检测,具有良好的灵敏度和选择性。
Electrochemistry biosensor is a kind of analytical devices with many advantages such as convenient, simply, cheap and fast, which employ biomaterials (such as biomolecules, cells, tissue and organs) as the identification module, electrodes as the transducer and electrochemistry responses (such as current, impedance and capacitance) as the detection signal. In this paper, three kinds of novel biosensors combined the nanomaterials and ionic liquids were fabricated. Direct electrochemistry and electrocatalysis of myoglobin (Mb) and hemoglobin (Hb) was studied on two kinds of metal nanoparticles modified carbon ionic liquid electrode (CILE). Moreover a novel electrochemiscal DNA biosensor was prepared based on V_2O_5 nanobelts-multiwalled carbon nanotubes (MWCNTs)-chitosan (CTS) composite modified CILE. The main contributions are summrized as below:
     I. The electrochemical deposition of Co nanoparticles on CILE was described and further used as the platform to construct a Mb electrochemical biosensor. CILE was prepared by mixing a certain ratio of carbon powder, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) and liquid paraffin together. A layer of Co nanoparticles was deposited on the surface of CILE with the average diameter of 300 nm after the cyclic voltammetic scan in the CoCl2 solution. Mb molecules were further cast on the surface of Co/CILE and immobilized with Nafion film and the formed Co/CILE was used as a new basal electrode for the investigation on the direct electrochemistry of protein. The Mb electrochemical biosensor showed good electrocatalytic activity to the reduction of hydrogen peroxide (H_2O_2) and trichloroacetic acid (TCA).
     II. A carbon ionic liquid electrode (CILE) was fabricated by using ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate (EMIMEtOSO_3) as modifier and further gold nanoparticles were in situ electrodeposited on the surface of CILE. The fabricated Au/CILE was used as a new platform for the immobilization of Hb with the help of a Nafion film. Electrochemical experimental results indicated that direct electron transfer of Hb was realized on the surface of Au/CILE with a pair of well-defined quasi-reversible redox peaks appeared. The fabricated Nafion/Hb/Au/CILE showed excellent electrocatalytic activity to the reduction of trichloroacetic acid (TCA). The proposed electrode showed good stability and reproducibility, and it had the potential application as a new third-generation electrochemical biosensor.
     III. A new electrochemical DNA biosensor was fabricated by using a V_2O_5 nanobelts (nano-V_2O_5), multiwalled carbon nanotubes (MWCNTs) and chitosan (CTS) nanocomposite materials modified carbon ionic liquid electrode (CILE) as the working electrode. The CILE was prepared by using N-hexylpyridinium hexafluorophosphate (HPPF6) as the binder with the graphite powder. The CTS-V_2O_5-MWCNTs/CILE was used as the basal electrode for the immobilization of the single-stranded DNA (ssDNA) probe. After the hybridization with the target ssDNA sequence, the electrochemical indicator of methylene blue (MB) was used to monitor the hybridization reaction. Experimental data indicated that the synergistic effect of nano-V_2O_5 and MWCNTs increased the amounts of ssDNA adsorbed on the electrode surface and resulted in the corresponding increase of the electrochemical responses. This DNA biosensor combined the advantages such as the biocompatibility of V_2O_5 nanobelt, the excellent electron transfer ability of MWCNTs, the good film-forming ability of CTS and the high conductivity of CILE. The DNA biosensor showed good stability and discrimination ability to the one-base and three-base mismatched ssDNA sequence. The loop-mediated isothermal amplification (LAMP) product of Yersinia enterocolitica gene sequence in pork meat was detected by the proposed method with satisfactory result, suggesting that the CTS-V_2O_5-MWCNTs/CILE had the potential for the sensitive detection of specific gene sequence.
引文
[1] Rosseti R., Brus L. E., Luminescence and photophysics of cadmium sulfide semiconductor clusters: the nature of the emitting electronic state [J]. J. Phys. Chem., 1986, 80: 3393-3399
    [2] Barbara P. F., Walsh P. K., Brus L. E., Picosecond kinetic and vibrationally resolved spectroscopic studies of intramolecular excited-state hydrogen atom transfer [J]. J. Phys. Chem. 1989, 93: 29-34
    [3] Cavieehi R. E., Sidsbee R. H., Coulomb suppression of tunneling rate from small metal particles [J]. Phys. Rev. Lett., 1984, 52: 1453-1456
    [4] Ball P., Garwin L., Science at the atomic scale [J]. Nature, 1992, 355: 762-766
    [5]张立德,牟季美,纳米结构自组装和分子自组装体系[J].物理,1992,21:22-26
    [6] Legget A.L., Chakravarty S., Dorsey A. T., et. al, Dynamics of the dissipative two-state system [J]. Rev. Mod. Phys., 1957, 59: 1-85
    [7] Chu G., Liu W., Yang T., et. al, Properties of nanocrystalline copper prepared by vacuum-warm-compaction method [J]. Trans. Nonferrous Met. Soc. China, 2009, 19: 394-398
    [8]王广厚,韩民,纳米微晶材料的结构和性质[J],物理学进展,1990,10:248-289
    [9] Liu Z. P., Peng S., Xie Q., et. al, Large-scale synthesis of ultralong Bi2S3 nanoribbons via a solvothermal process [J]. Adv. Mater., 2003, 15: 936-940
    [10] Fu Q., Li H., Shi X., et. al, Microstructure and growth mechanism of SiC whiskers on carbon/carbon composites prepared by CVD [J]. Mater. Lett., 2005, 59: 2593-2597
    [11] Liu X. H., Zhu C. C., Liu W. H., et. al, Large-area carbon nanotubes film synthesized for field emission display by special CVD equipment and the field emission properties [J]. Mater. Chem. Phys., 2005, 93: 473-477
    [12]苏品书,超微粒子材料技术[M].复汉出版社,1989
    [13] Hahn H., Averback R. S., The production of nanocrystalline powders by magnetron sputtering [J]. J. Appl. Phys. 1990, 67: 1113-1117
    [14] Shen J. Y., Li Z. Y., Yan Q. J., Chen Y., Reactions of bivalent-metal ions with borohydride in aqueous-solution for the preparation of ultrafine amorphous alloy particles [J]. J. Phys. Chem., 1993, 97: 8504-8511
    [15]张宗涛,赵斌,胡黎明,石庆红,袁留锁,化学还原法制备纳米级Ag粉高分子保护机理研究[J].化学学报,l996,54:379-384
    [16] Fievet M., Fievet-Vincent F., Lagier J., et. al, Controlled nucleation and growth of micrometre-size copper particles prepared by the polyol process [J]. J. Mater. Chem. 1993, 9: 627-632
    [17] Foos E. E., Stroud R. M., Beny A. D., Synthesis of nanocrystalline bsmuth in reverse micelles [J]. J. Am. Chem. Soc., 2000, 122: 7114-7115
    [18] Jiang X., Xie Y., Lu J., et. al, Oleate vesicle template route to silver nanowires [J]. J. Mater. Chem., 2001, 11: 1775-1781
    [19] Jiang X., Xie Y., Lu J., et. al, Simultaneous in situ formation of ZnS nanowires in a liquid crystal template byγ-irradiation [J]. Chem. Mater., 2001, 13: 1213-1218
    [20] Qian Y. T., Chen Q. W., Chen Z. Y., et. al, Preparation of ultrafine powders of TiO2 by hydrothermal H2O2 oxidation starting from metallic Ti [J]. J. Mater. Chem., 1993, 3: 203-208
    [21]许斌生,曹丽云,黄剑锋,等,微波水热法合成硅酸钇纳米晶[J].人工晶体学报,2009,38:1329-1332
    [22] Wei Z., Qian X. F., Zhang Y. B., et. al, Organic modified mesoporous MCM-41 through solvothermal process as drug delivery system [J]. Mater. Res. Bull., 2005, 40: 755-772
    [23] Bernard C. Dauzet G., Mathieu F., et. al, Optimization of the hydrothermal synthesis of La0.7Sr0.3MnO3+δusing an original optimal experimental design [J]. Mater. Lett., 2005, 59: 2615-2620
    [24] Xie Y., Qian Y. T., Wang W. Z., et. al, A benzene-thermal synthetic route to nanocrystalline GaN [J]. Science, 1996, 272: 1926-1827
    [25] Li W. Z.., Xie S. S., Qian L. X., Large-scale synthesis of aligned carbon nanotubes [J]. Science, 1996, 274: 1701-1703
    [26] Li Y. D., Liao H. W., Qian Y. T., A Solvothermal elemental reaction to ZnSe nanocrystalline [J]. Inorg. Chem., 1998, 37: 2844-2845
    [27]洪广言,李红云,热分解法制备希土氧化物超微粉末[J].无机化学学报,1991,7:241-243
    [28] Kuo J., Bourell D. L., Structural evolution during calcination of sol-gel synthesized alumina and alumina-8 vol% zirconia composite [J]. J. Mater. Sci., 1997, 32: 2687-2692
    [29] Gimeno Y., Creus A. H., Gonzalez S., et. al, Preparation of 100-160-nm-sized branched palladium islands with enhanced electrocatalytic properties on HOPG[J]. Chem. Mater., 2001, 13(5): 1857-1864
    [30] Xu L., Li F. L., Dong S. J., Attempts to modify an electrode with a conducting platimum cluster compound [J]. Electroanalysis, 1995, 7(8): 734-737
    [31] Li F. L., Zhang B. L., Wang E. K., et. al, In situ scanning tunneling microscopy studies of nanometer size palladium particles on highly oriented pyrolytic graphite[J]. J. Electroanal. Chem., 1997, 422(1-2): 27-33
    [32] Liu J., Cheng L., Song Y. H., et. al, Simple preparation method of multiplayer polymer films containing Pd nanoparticles[J]. Langmuir, 2001, 17(22): 6747-6750
    [33] Shen Y., Liu J. Y., Wu A. G., et. al, Preparation of Pt nanoparticles assembled in multilayer films [J]. Chem. Lett., 2002, 31(5): 550-551
    [34] Sun W., Li X. Q., Zhai Z. Q., et al., Direct electrochemistry of hemoglobin on a single-walled carbon nanotubes modified carbon ionic liquid electrode and its elelctrocatalysis [J]. Electroanalysis, 2008, 20: 2649-2654
    [35] Hang L., Tian D. B., Zhu J. J., Third generation biosensor based on myoglobin-TiO2/MWCNTs modified glassy carbon electrode [J]. Chin. Chem. Lett., 2008, 19: 965-968.
    [36] Lin Y., Lu F., Tu Y., et. al, Glucose biosensors based on carbon nanotube nanoelectrode ensembles[J]. Nano Lett., 2004, 4(2): 191-195
    [37] Wang J., Deo R. P., Poulin P., et. al, Carbon nanotube fiber microelectrodes[J]. J. Am. Chem. Soc., 2003, 125(48): 14706-14707
    [38] Wang J., Musameh M., Carbon nanotube/Teflon composite electrochemical sensors and biosensors[J]. Anal. Chem., 2003, 75(9): 2075-2079
    [39] Cai C. X., Chen J., Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode[J]. Anal. Biochem., 2004, 325(2): 285-292
    [40] Wang S. Q., Chen J., Lin X. Q., Amperometric biosensor for hydrogen peroxide based on electrodeposited sub-micrometer gold modified glassy carbon electrode[J]. Chin. J. Chem., 2004, 22(4): 360-364.
    [41] Zhao J. G., Henkens R. W., Stonehuerner J., et. al, Direct electron transfer at horseradish peroxidase-colloidal gold modified electrodes[J]. J. Electroanal. Chem., 1992, 327(1-2): 109-119
    [42] Chen J., Lin X. Q., Chen Z. H., et. al, Amperometric microbiosensor array for choline and acetylcholine based on a glassy carbon electrode modified by platinum-black particles and a cocrosslinked enzyme system[J]. Anal. Lett., 2001, 34(4): 491-501
    [43] Michael J. N., Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes [J]. J. Am. Chem. Soc., 1996, 118(5): 1154-1157
    [44] Lvov Y., Munge B., Giraldo Q., et. al, Films of manganese oxide nanoparticles with polycations or myoglobin form alternate-layer adsorption[J]. Langmuir, 2000, 16(23): 8850-8857
    [45] Jia J., Wang B., Wu A., et. al, A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gel network[J]. Anal. Chem., 2002, 74(9): 2217-2223
    [46] Cao D. F., Hu N. F., Direct electron transfer between hemoglobin and pyrolytic graphiteelectrodes enhanced by Fe3O4 nanoparticles in their layer-by-layer self-assembly films[J]. Biophy. Chem. 2006, 121: 209-217
    [47] Wang J, Liu G, Merko?i A., Electrochemical coding technology for simultaneous detection of multiple DNA targets [J]. J. Am. Chem. Soc., 2003, 125 (11): 3214 -3215
    [48] Wang J., Nanoparticle-based electrochemical DNA detection [J]. Anal. Chim. Acta, 2003, 500 (3): 247-257
    [49]常竹,祝宁宁,赵琨,樊浩,何品刚,方禹之,聚苯胺纳米线修饰的DNA电化学传感器的研究[J].化学学报,2007,65:135-139
    [50] Zhang W., Yang T., Huang D. M., Jiao K., Li G. C., Synergistic effects of nano-ZnO/multi-walled carbon nanotubes/chitosan nanocomposite membrane for the sensitive detection of sequence-specific of PAT gene and PCR amplification of NOS gene [J]. J. Membrane Sci., 2008, 325: 245-251
    [51] Davis J. H., Fox P.A., From curiosities to commodities: ionie liquids begin the transition [J]. Chem. Commun. (Cambridge, United Kingdom), 2003, 11: 1209-1212
    [52]李汝雄,离子液体的合成及应用[M].北京:化学化工出版社,2004:10
    [53] Sugden S., Wilkins H., Fused metals and salts [J]. J. Am. Chem. Soc., 1927: 1291-1298
    [54] Hurley F. H., Wier T., Electrodeposition of metal from fuse quaternary ammonium salts [J]. J. Electrochem. Soc., 1951, 98: 203-206
    [55] Wilkes J. S., Zaworotko M. J.,Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids [J]. J. Chem. Soc., Chem. Commun., 1992: 965-967
    [56] Robinson J., Osteryoung R. A., An electrochemical and spectroscopic study of some aromatic hydrocarbons in the room temperature molten salt system aluminum chloride-n-butylpyridinium chloride [J]. J. Am. Chem. Soc., 1979, 101: 323-327
    [57]孙伟,高瑞芳,焦奎,离子液体在分析化学中的应用进展[J].分析化学,2007,(12):1813-1819
    [58] Endres F., Ionic liquids: Solvents for the electrodeposition of metals and semiconductors [J]. ChemPhysChem., 2002, 3(2): 144-154
    [59] Buzzeo M. C., Evans R. G., Compton R. G., Non-haloaluminate room-temperature ionic liquids in electrochemistry-a review [J]. ChemPhysChem., 2004, 5: 1106-1120
    [60] Sun W., Wang D. D., Gao R. F., et. al, Direct electrochemistry and electrocatalysis of hemoglobin in sodium alginate film on a BMIMPF6 modified carbon paste electrode[J]. Electrochem. Commun., 2007, 9: 1159-1164
    [61] Sun W., Gao R. F., Jiao K., Electrochemistry and electrocatalysis of a Nafion/Nano-CaCO3/Hb film modified carbon ionic liquid electrode using BMIMPF6 as binder[J]. Electroanalysis, 2007,19(13): 1368-1374
    [62] Sun W., Gao R. F., Jiao K., Electrochemistry and electrocatalysis of hemoglobin in Nafion/nano-CaCO3 film on a new ionic liquid BPPF6 modified carbon paste electrode[J]. J. Phys. Chem. B., 2007, 111: 4560-4567
    [63] Maleki N., Safavi A., Tajabadi F., High-performance carbon composite electrode based on an ionic liquid as a binder[J]. Anal. Chem., 2006, 78: 3820-3826
    [64] Maleki N., Safavi A., Farjami E., et. al, Palladium nanoparticle decorated carbon ionic liquid electrode for highly efficient electrocatalytic oxidation and determination of hydrazine[J]. Anal. Chim. Acta., 2008, 611: 151-155
    [65] Shangguan X. D., Zhang H. F., Zheng J. B., Direct electrochemistry of glucose oxidase based on its direct immobilization on carbon ionic liquid electrode and glucose sensing[J]. Electrochem. Commun., 2008, 10: 1140-1143
    [66] Yu P., Lin Y. Q., Xiang L., et. al, Molecular films of water-miscible ionic liquids formed on glassy carbon electrodes: characterization and electrochemical applications[J]. Langmuir, 2005, 21(20): 9000-9006
    [67] Zhang Y., Zheng J. B., Comparative investigation on electrochemical behavior of hydroquinone at carbon ionic liquid electrode, ionic liquide modified carbon paste electrode and carbon paste electrode[J]. Electrochim. Acta, 2007, 52: 7210-7216
    [68] Liu Y., Wang M. J., Li J., et. al, Highly active horseradish peroxidase immobilized in 1-butyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquid based sol-gel host materials[J]. Chem. Commun., 2005, 13: 1778-1780
    [69]王欢,叶小鹤,陈黎明,等,离子液体中间硝基苯酚在玻碳电极上的电化学还原行为研究[J].高等学校化学学报,2005,26(2):326-329
    [70]杨家振,金一,潘伟,在室温离子液体BPBF4中FeCl3电化学性质的研究[J].化学学报,2004,62(20):2035-2039
    [71]杨家振,金一,曹英华,等,室温离子液体电化学稳定性的研究[J].高等学校化学学报,2004,25(9):1733-1735
    [72] Wang S. F., Chen T., Zhang Z. L., et. al, Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids[J]. Langmuir, 2005, 21: 9260-9266
    [73] Buzzeo M. C., Hardacre C., Compton R. G., Use of room temperature ionic liquids in gas sensor design[J]. Anal. Chem., 2004, 76(15): 4583-4588
    [74] Wang R., Hoyano S., Ohsaka T., O2 gas sensor using supported hydrophobic room-temperature ionic liquid membrane-coated electrode[J]. Chem. Lett., 2004, 33(1): 6-9
    [75] Wang R., Okajima T., Kitamura F., A novel amperometric O2 gas sensor based on supported room-temperature ionic liquid porous polyethylene membrane-coated electrodes[J]. Electroananlysis, 2004, 16: 66-72
    [76] Zhao Y., Zhan D., Ma H., et. al, Direct proteins electrochemistry based on ionic liquid mediated carbon nanotube modified glassy carbon electrode [J]. Front Biosci., 2005, 10(1): 326-334
    [77] Li C. M., Zeng J. F., Zhan D. P., et. al, Electrochemical detection of nitric oxide on a SWCNT/RTIL composite gel microelectrode [J]. Electroanalysis, 2006, 18 (7): 713-716
    [78] Sheng L. Q., Zheng J. B., Shangguan X. D., et. al, Direct electrochemistry and electrocatalysis of heme-proteins immobilized in porous carbon nanofiber/room-temperature ionic liquid composite film [J]. Electrochim. Acta, 2010, 55: 3185-3191
    [79] Xaio C., Chu X., Wu B., et. al, Polymerized ionic liquid-wrapped carbon nanotubes: The promising composites for direct electrochemistry and biosensing of redox protein [J]. Talanta, 2010, 80: 1719-1724
    [80] Rahimi P., Rafiee-Pour H., Ghourchian H., et. al, Ionic-liquid/NH2-MWCNTs as a highly sensitive nano-composite for catalase direct electrochemistry [J]. Biosens. Bioelectron., 2010, 25: 1301-1306
    [81] Wei S., Zhai Z. Q., Wang D. D., et. al, Electrochemistry of hemoglobin entrapped in a Nafion/nano-ZnO film on carbon ionic liquid electrode [J]. Bioelectrochemistry, 2009: 295-300
    [82] Sun W., Li Y. Z., Duan Y. Y., et. al, Direct electrochemistry of guanosine on multi-walled carbon nanotubes modified carbon ionic liquid electrode [J]. Electrochim. Acta, 2009, 54, 74: 4105-4110
    [83] Xu H., Xiong H., Zeng Q., et. al, Direct electrochemistry and electrocatalysis of heme proteins immobilized in single-wall carbon nanotubes-surfactant films in room temperature ionic liquids [J]. Electrochem. Commun., 2009, 11: 286-289
    [1] Guo C. X., Hu F. P., Li C. M., Shen P. K., Direct electrochemistry of hemoglobin on carbonized titania nanotubes and its application in a sensitive reagentless hydrogen peroxide [J]. Biosens. Bioelectron., 2008, 24: 819-824
    [2] Lu Q., Li C. M., One-step co-electropolymerized conducting polymer–protein composite film for direct electrochemistry-based biosensors [J]. Biosens. Bioelectron., 2008, 24: 767-772
    [3] Bicelli P. B., Bozzini, B., Mele, C., D’Urzo, L., A review of nanostructural aspects of metal electrodeposition [J]. Int. J. Electrochem. Sci., 2008, 3: 356-408
    [4] Li M. F., Zhao G. H., Geng R., Hu H. K., Facile electrocatalytic redox of hemoglobin by flower-like gold nanoparticles on boron-doped diamond surface [J]. Bioelectrochemistry, 2009, 74: 217
    [5] Guo X., Zheng D., Hu N. F., Enhancement of Au nanoparticles formed by in situ electrodeposition on direct electrochemistry ofmyoglobin loaded into layer-by-layer films of chitosan and silica nanoparticles [J]. J. Phys. Chem. B, 2008, 112: 15513-15520
    [6] Buzzeo M. C., Hardace C., Compton R. G., Use of room temperature ionic liquids in gas sensor design [J]. Anal. Chem. 2004, 76: 4583-4588
    [7] Li Z., Liu H., Liu Y., et. al, Electrochemical deposition of silver in room-temperature ionic liquids and its surface-enhanced raman scattering effect [J]. Langmuir, 2004, 20: 10260-10267
    [8] Yu P., Lin Y. Q., Xiang L., et. al, Molecular films of water-miscible ionic liquids formed on glassy carbon electrodes: characterization and electrochemical applications [J]. Langmuir, 2005, 21: 9000-9006
    [9] Buzzeo M. C., Evans R. G., Compton R. C., Non-haloaluminate room-temperature ionic liquids in electrochemistry - a review [J]. ChemPhysChem., 2004, 5: 1106-1120
    [10] Zhao F., Wu X., Wang M. K., et. al, Electrochemical and bioelectrochemistry properties of room-temperature ionic liquids and carbon composite materials [J]. Anal. Chem., 2004, 76: 4960-4967
    [11] Sun W., Wang D. D., Gao R. F., et. al, Direct electrochemistry and electrocatalysis of hemoglobin in sodium alginate film on a BMIMPF6 modified carbon paste electrode [J]. Electrochem. commun., 2007, 9(5): 1159-1164
    [12] Liu H. T., He P., Li Z. Y., et. al, An ionic liquid-type carbon paste electrode and its polyoxometalate-modified properties [J]. Electrochem. Commun., 2005, 7: 1357-1363
    [13] Safavi A., Maleki N., Tajabadi F., et. al, High electrocatalytic effect of palladium nanoparticle arrays electrodeposited on carbon ionic liquid electrode [J]. Electrochem. Commun., 2007, 9:1963-1968
    [14] Maleki N., Safavi A., Farjami E., et. al, Palladium nanoparticle decorated carbon ionic liquid electrode for highly efficient electrocatalytic oxidation and determination of hydrazine [J]. Anal. Chim. Acta, 2008, 611(2): 151-155
    [15] Chen Q. S., Sun S. G., Yan J. W., et. al, Electrochemical preparation and structural characterization of Co thin films and their anomalous IR properties [J]. Langmuir, 2006, 22: 10575-10583
    [16] Musameh M., Wang J., Sensitive and stable amperometric measurements at ionic liquid–carbon paste microelectrodes [J]. Anal. Chim. Acta, 2008, 606: 45-49
    [17] Maleki N., Safavi A., Sedaghati F., et. al, Efficient electrocatalysis of l-cysteine oxidation at carbon ionic liquid electrode [J]. Anal. Biochem., 2007, 369(2): 149-153
    [18] Gómez E., Marín M., Sanz, F., et. al, Nano- and micrometric approaches to cobalt electrodeposition on carbon substrates [J]. J. Electroanal. Chem., 1997, 422: 139-147
    [19] Floate S., Hyde M., Compton R. G., Electrochemical and AFM studies of the electrodeposition of cobalt on glassy carbon: an analysis of the effect of ultrasound [J]. J. Electroanal. Chem., 2002, 523: 49-63
    [20] Laviron E., Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry [J]. J. Electrroanal. Chem., 1974, 52: 355-359
    [21] Laviron E., General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems [J]. J. Electroanal. Chem., 1979, 101: 19-28
    [22] Kamin R. A., Willson G. S., Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer [J]. Anal. Chem., 1980, 52: 1198-1205
    [23] Liu A. H., Wei M. D., Honma I., et. al, Direct electrochemistry of myoglobin in titanate nanotubes film [J]. Anal. Chem., 2005, 77: 8068-8074
    [24] Zhao G. C., Yiu Z. Z., Zhang L., et. al, Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2 [J]. Electrochem. Commun., 2005, 7: 256-260
    [25] Zhao X. J., Mai Z. B., Kang X. H., et. al, Clay-chitosan-gold nanoparticle nanohybrid: Preparation and application for assembly and direct electrochemistry of myoglobin [J]. Electrochim. Acta, 2008, 53: 4732-4739
    [26] Wang S. F., Chen T., Zhang Z. L., et. al, Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids [J]. Langmuir, 2005, 21: 9260-9266
    [1] Armstrong F. A., Hill H. A. O., Walton N. J., Direct electrochemistry of redox proteins [J]. Acc. Chem. Res., 1988, 21: 407-413
    [2] Guto P. M., Rusling J. F., Myoglobin retains iron heme and near-native conformation in DDAB films prepared from pH 5 to 7 dispersions [J]. Electrochem. Commun., 2006, 8(3): 455-459
    [3] Sun W., Wang D. D., Gao R. F., et. al, Direct electrochemistry and electrocatalysis of hemoglobin in sodium alginate film on a BMIMPF6 modified carbon paste electrode[J]. Electrochem. Commun., 2007, 9: 1159-1164
    [4] Zhang H., Hu N. F., Assembly of myoglobin layer-by-layer films with poly (propyleneimine)dendrimer-stabilized gold nanoparticles and its application inelectrochemical biosensing [J]. Biosens. Bioelectron., 2007, 23: 393–399
    [5] Maleki N., Safavi A., Tajabadi F., High-performance carbon composite electrode based on an ionic liquid as a binder[J]. Anal. Chem., 2006, 78: 3820-3826
    [6] Wei D., Ivaska A., Applications of ionic liquids in electrochemical sensors [J]. Anal. Chim. Acta, 2008, 607(2): 126-135
    [7] Xiong H. Y., Chen T., Zhang X. H., et. al, High performance and stability of a hemoglobin-biosensor based on an ionic liquid as nonaqueous media for hydrogen peroxide monitoring [J]. Electrochem. Commun., 2007, 9: 2671-2675
    [8] Liu H. T., He P., Li Z. Y., et. al, An ionic liquid-type carbon paste electrode and its polyoxometalate-modified properties[J]. Electrochem. Commun., 2005, 7(12): 1357-1363
    [9] Xiong H., Chen T., Zhang X., et. al, Electrochemical property and analysis application of biosensors in miscible nonaqueous media—Room-temperature ionic liquid [J]. Electrochem. Commun., 2007, 9: 1648-1654
    [10] Safavi A., Maleki N., Tajabadi F., et. al, High electrocatalytic effect of palladium nanoparticle arrays electrodeposited on carbon ionic liquid electrode [J]. Electrochem. Commun., 2007, 9: 1963-1968
    [11] Maleki N., Safavi A., Farjami E., et. al, Palladium nanoparticle decorated carbon ionic liquid electrode for highly efficient electrocatalytic oxidation and determination of hydrazine[J]. Anal. Chim. Acta., 2008, 611: 151-155
    [12] Sun W., Li X. Q., Wang Y., et. al, Direct electrochemistry of myoglobin immobilized on multi-walled carbon nanotubes modified carbon ionic liquid electrode [J]. Bioelectrochemistry, 2009, 75: 170-175
    [13] Sun W., Gao R. F., Jiao K., Electrochemistry and electrocatalysis of hemoglobin inNafion/nano-CaCO3 film on a new ionic liquid BPPF6 modified carbon paste electrode[J]. J. Phys. Chem. B., 2007, 111: 4560-4567
    [14] Sun W., Wang D. D., Li G. C., et. al, Direct electron transfer of hemoglobin in a CdS nanorods and Nafion composite film on carbon ionic liquid electrode [J]. Electrochim. Acta, 2008, 53: 8217-8221
    [15] Lei C. X., Hu S. Q., Shen G. L., et. al, Immobilization of horseradish peroxidase to a nano-Au monolayer modified chitosan-entrapped carbon paste electrode for the detection of hydrogen peroxide [J]. Talanta, 2003, 59: 981-986
    [16] Yang M. H., Qu F. L., Li Y. G., et. al, Direct electrochemistry of hemoglobin in gold nanowire array [J]. Biosens. Bioelectron., 2007, 23 (3): 414-420
    [17] Zhang Y. F., Yan R., Zhao F.Q., et. al, Polyvinyl alcohol-ionic liquid composition for promoting the direct electron transfer and electrocatalysis of hemoglobin [J]. Colloids Surf. B: Biointerfaces, 2009, 71: 288-292
    [18] Hong J., Dai Z., Amperometric biosensor for hydrogen peroxide and nitrite based on hemoglobin immobilized on one-dimensional gold nanoparticle [J]. Sens. Actuators B, 2009, 140: 222-226
    [19] Hicks J. F., Zamborini F. P., Osisek A. J., et. al, The Dynamics of Electron Self-Exchange between Nanoparticles [J]. J. Am. Chem. Soc. 2001, 123: 7048-7053
    [20] Mauritz K. A., Moore R. B., State of understanding of nafion [J]. Chem. Rev., 2004, 104: 4535-4586
    [21] Ding C. F., Zhao F., Ren R., et al, An electrochemical biosensor forα-fetoprotein based on carbon paste electrode constructed of room temperature ionic liquid and gold nanoparticles [J]. Talanta, 2009, 78: 1148-1154
    [22] Bard A. J., Faulkner L. R., Electrochemical Methods, 2nd ed. [M]. Wiley, New York, 2001: 213
    [23] Laviron E, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems [J]. J. Electroanal. Chem., 1979, 101: 19-28
    [24] Wang S. F., Chen T., Zhang Z. L., et. al, Direct electrochemistr and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids[J]. Langmuir, 2005, 21, 9260-9266
    [25] Piggot T. A., Norris R. W., The treatment of tattoos with trichloracetic acid: experience with 670 patients [J]. Br. J. Plast. Surg., 1988, 41: 112-117
    [26] Bhat H. K., Kanz M. F., Campbell G. A., et. al, Ninety day toxicity study of chloroacetic acids in rats [J]. Fund. Appl. Toxicol., 1991, 17: 240-253
    [27] Ma X., Liu X. J., Xiao H., et. al, Direct electrochemistry and electrocatalysis of hemoglobin in poly-3-hydroxybutyrate membrane [J]. Biosens. Bioelectron., 2005, 20: 1836-1842
    [28] Nassar A. E. F., Bottitt J. M., Stuart J. D., et. al, Catalytic reduction of organohalide pollutants by myoglobin in a biomembrane-like surfactant film [J]. J. Am. Chem. Soc., 1995, 117: 10986-10993
    [29] Ma H. Y, Hu N. F, Rusling J. F., Electroactive myoglobin films grown layer-by-layer with poly(styrenesulfonate) on pyrolytic graphite electrides[J]. Langmuir, 2000, 16: 4969-4975
    [30] Kamin R. A., Wilson G. S., Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer [J]. Anal. Chem., 1980, 52: 1198-1205
    [1] Teles F. R. R., Fonseca L.P ., Trends in DNA biosensors [J]. Talanta, 2008, 77: 606-623
    [2] Millan K. M., Mikkelsen S. K., Sequence-selective biosensor for DNA based on electroactive hybridization indicators [J]. Anal.Chem., 1993, 65(17): 2317-2323
    [3] Wang J., Cai.X., Rivas G., et. al, DNA electrochemical biosensor for the detection of short DNA sequences related to the human immunodefeciency virus [J]. Anal. Chem., 1996, 68(15): 2629-2634
    [4] Jiang C., Yang T., Jiao K., et. al, A DNA electrochemical sensor with poly-l-lysine/single-walled carbon nanotubes films and its application for the highly sensitive EIS detection of PAT gene fragment and PCR amplification of NOS gene [J]. Electrochim. Acta, 2008, 53: 2917-2924
    [5] Wang J., Nanoparticle-based electrochemical DNA detection [J]. Anal. Chim. Acta, 2003, 500 (3): 247-257
    [6] Selvaraju T., Das J., Jo K., et. al, Nanocatalyst-based assay using DNA-conjugated Au nanoparticles for electrochemical DNA detection [J]. Langmuir, 2008, 24: 9883-9888
    [7] Ghanbari K., Bathaie S. ., Mousavi M. F., Electrochemically fabricated polypyrrole nanofiber-modified electrode as a new electrochemical DNA biosensor [J]. Biosens. Bioelectron., 2008, 23: 1825-1831.
    [8] Bottone E. J., Yersinia enterocolitica: overview and epidemiologic correlates [J]. Microbes. Infect., 1999, 1: 323-333.
    [9] Fredriksson-Ahomaa M., Korte T., Korkeala H., Transmission of Yersinia enterocolitica 4/O:3 to pets via contaminated pork [J]. Lett. Appl. Microbiol., 2001, 32: 375-378
    [10] Kechagia N., Nicolaou C., Ioannidou V., et. al, Detection of chromosomal and plasmid-encoded virulence determinants in Yersinia enterocolitica and other Yersiniaspp. isolated from food animals in Greece [J]. Int. J. Food Microbiol., 2007, 118: 326-331
    [11] Kot B., Trafny E.A., Jakubczak A., Analysis of native microflora and selection of strains antagonistic to human pathogens on fresh produce [J]. J. Food Prot., 2007, 64: 1110-1115
    [12] Nagamine K., Hase T., Notomi T., Accelerated reaction by loop-mediated isothermal amplification using loop primers [J]. Mole. Cell. Probes, 2002, 16: 223-229
    [13] Notomi T., Okayama H., Masubuchi H., et. al, Loop-mediated isothermal amplification reaction of DNA [J]. Nucleic Acids Res., 2000, 28: e63
    [14] Ahmed M. U., Saito M., Hossain M., et. al, Electrochemical genosensor for the rapid detection of GMO using loop-mediated isothermal amplification [J]. Analyst, 2009, 134: 966-972
    [15] Tangkuaram T., Ponchio C., Kangkasomboon T., et. al, Design and development of a highlystable hydrogen peroxide biosensor on screen printed carbon electrode based on horseradish peroxidase bound with gold nanoparticles in the matrix of chitosan [J]. Biosens. Bioelectron., 2007, 22: 2071-2078
    [16] Tkac J., Whittaker J. W., Ruzgas T., The use of single walled carbon nanotubes dispersed in a chitosan matrix for preparation of a galactose biosensor [J]. Biosens. Bioelectron., 2007, 22: 1820-1824
    [17] Xu C., Cai H., Xu Q., et. al, Characterization of single-stranded DNA on chitosanmodified electrode and its application to the sequence-specific DNA detection [J]. Fresenius J. Anal. Chem., 2001, 369: 428-432
    [18] Liu Y., Wang M., Zhao F., et. al, The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix [J]. Biosens. Bioelectron., 2005, 21: 984-988
    [19] Sun W., Li X. Q., Zhai Z. Q., et. al, Direct electrochemistry of hemeoglobin on a single-walled carbon nanotubes modified carbon ionic liquid electrode and its electrocatalysis [J]. Electroanalysis, 2008, 20: 2649-2654
    [20] Baughman R. H., Zakhidov A. A., Heer W. A., Carbon nanotubes - the route toward applications [J]. Science, 2002, 297: 787–792
    [21] Zhu N. N., Chang Z., He P. G., et. al, Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes [J]. Anal. Chim. Acta, 2005, 545: 21-26
    [22] Cai H., Cao X., Jiang Y., Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection [J]. Anal. Bioanal. Chem., 2003, 375: 287-293
    [23] Jin A., Chen W., Zhu Q., et. al, Electrical and electrochemical characterization of poly (ethylene oxide)/V2O5 xerogel electrochromic films [J]. Solid State Ionics, 2008, 179: 1256–1262
    [24] Khudaish E. A., Al-Hinai A. T., The catalytic activity of vanadium pentoxide film modified electrode on the electrochemical oxidation of hydrogen sulfide in alkaline solutions [J]. J. Electroanal. Chem., 2008, 587: 108–114
    [25] Dhayal Raj A., Pazhanivel T., Suresh Kumar P., et. al, Self assembled V2O5 nanorods for gas sensors [J]. Curr. Appl. Phys., 2009, 10: 531-537
    [26] Zhang J., Zou H., Qing Q.,et. al, Effect of chemical oxidation on the structure of single-walled carbon nanotubes [J]. . Phys. Chem. B, 2003, 107: 3217-3218
    [27] Li G. C., Pang S. P., Li J., et. al, Environmentally friendly chemical route to vanadium oxide single-crystalline nanobelts as a cathode material for lithium-ion batteries [J]. J. Phys. Chem. B, 2006, 110: 9383-9386
    [28] Li J., Liu Q., Liu Y., et. al, DNA biosensor based on chitosan film doped with carbon nanotubes [J]. Anal. Biochem., 2005, 346: 107–114
    [29] Bard A. J., Faulkner L. R., Electrochemical Methods, 2nd ed. [M]. Wiley, New York, 2001: 213

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700