Cu掺杂ZnO薄膜的制备及光学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是一种Ⅱ-Ⅵ族直接带隙宽带半导体,室温禁带宽度约为3.37eV,激子束缚能高达60meV。在大气条件下,ZnO具有六方纤锌矿结构。作为新一代的宽带半导体材料,ZnO具有优异的光学、电学及压电特性,在发光二极管、光探测器、电致荧光器件、透明导电薄膜、表面声波器等诸多领域有着广泛的应用。
     本文采用射频磁控溅射方法在玻璃和硅(100)衬底上制备了不同氧分压的Cu掺杂ZnO(ZnO:Cu)薄膜。利用X射线衍射(XRD)、原子力显微镜(AFM)和光致荧光发光(PL)等表征技术,研究了衬底和氧分压对ZnO:Cu薄膜的结晶性能和光学特性的影响。从而为ZnO薄膜的应用提供一些实验数据和理论基础。主要研究结果如下:
     1、在研究Si衬底,氧分压对ZnO:Cu薄膜结构特性的影响中发现:随着氧分压的增加,薄膜的(002)衍射峰先增强后减弱,表明氧分压可以影响ZnO:Cu薄膜的结晶取向。并且薄膜的压应力随着氧分压的增加,先增加后减小。
     2、通过紫外分光光度计对样品室温光致发光特性的研究,我们观察到一个紫光峰、两个蓝光峰和一个绿光峰。分析表明,峰位在401nm的紫光峰与表面带隙有关;峰位在449nm和484nm的蓝光发光峰可能与电子从Zni到价带顶之间的跃迁和电子从Zn_i到V_(Zn)之间的跃迁有关;峰位在530nm附近的绿光峰可能与氧空位有关。
     3、对比研究了在玻璃沉底和硅衬底上氧分压对ZnO:Cu薄膜的结晶性能和光学特性的影响。结果显示薄膜沉积在Si衬底上比玻璃衬底上有更好c轴择优取向,两种衬底上沉积的薄膜有相同的氧分压c轴结晶规律,且在氧氩比为10:10时,薄膜c轴取向同时达到最好。通过对光致发光的研究表明,在低氧环境时玻璃衬底较容易制得好的发光薄膜,可在富氧环境时Si衬底上制得的薄膜发光性能较好。
Zinc oxide (ZnO) is an importantⅡ-Ⅵdirect band gap semiconductor material, which has band gap of 3.37eV at room temperature (RT), and the exciton binding energy as high as 60meV. Usually ZnO has hexahedron wurtzite structure at the air condition. It has been investigated extensively due to its distinguished performance in electrical, optical and piezoelectric properties making suitable for many applications such as light emitting diodes, photodetectors, electroluminescence, transparent conductive film, surface acoustic waves device and so on.
     Cu-doped ZnO (ZnO:Cu) films are prepared on glass and Si(100) substrates at different oxygen partial pressures by radio frequency reactive magnetron sputtering technique. The effect of various substrate and oxygen partial pressures on the crystalline and optical properties of ZnO:Cu thin films were investigated by the X-ray diffraction(XRD), atomic force microscopy(AFM) and fluorescence spectro- photometer. In this way some experimental data and the theoretical basis are provided for the application of ZnO films. The results are summarized as follows:
     1、The influence of oxygen partial pressure on the micro-structural property of ZnO:Cu films have been studied on Si substrates. The results indicated that the intensity of (002) diffraction peak first increased and then decreased With the oxygen partial pressure increased, which indicated that oxygen partial pressure can influence crystallization orientation of ZnO:Cu films. And with increasing oxygen partial pressure, the compressive stress of the films increased first and then decreased.
     2、The photoluminescence (PL) of the samples were measured at room temperature. A violet peak, two blue peaks and a green peak were observed from the PL spectra of the four samples. The analysis of PL spectra showed that the green emission peak (530nm) originated from electron transition from deep donor level by the oxygen vacancies to valence band; two blue emission peaks (449nm and 484nm) were assigned to the electron transition from both the interstitial Zn levels to valence band and the energy levels of interstitial Zn to Zn vacancies; and the violet emission peak (401nm) relate interface traps existing at the grains boundaries.
     3、The effect of oxygen partial pressures on the crystalline and optical properties of ZnO:Cu thin films which prepared on glass and Si(100) substrates were Comparatively investigated. The results indicated that films deposited on Si substrates have a better c-axis preferred orientation than glass substrate. The films deposited on the various substrates have the same crystal law with increasing of oxygen partial pressure,and as the ratio of oxygen and argon is increased to 10:10, the c-axis growth orientation of films achieve the best at the same time. Study on photoluminescence have shown that films prepared on the glass substrate have better light-emitting in poor oxygen environment, whereas films prepared on the Si substrate have better PL properties than on the glass substrate in rich oxygen environment.
引文
[1]吕建国. ZnO半导体光电材料的制备及其性能的研究[博士]:浙江大学; 2005.
    [2] Tang Z K, Wong G K L, Yu P, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films[J]. Appl. Phys. Lett., 1998, 72(25): 3270-3272.
    [3] Service R F. Will UV Lasers Beat the Blues?[J]. Science, 1997, 276(5314): 895.
    [4] Ozgur U, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices[J]. J. Appl. Phys., 2005, 98(4): 041301-041103.
    [5]孙利杰. ZnO薄膜的掺杂和光电性质研究[博士]:中国科学技术大学; 2010.
    [6] Kim H, Gilmore C M, Horwitz J S, et al. Transparent conducting aluminum- doped zinc oxide thin films for organic light-emitting devices[J]. Appl. Phys. Lett., 2000, 76(3): 259-261.
    [7]叶志镇,张银珠,徐伟中,等. ZnO薄膜p型掺杂的研究进展[J].无机材料学报, 2003, 15(01): 11-18.
    [8] Nunes P, Fortunato E, and Martins R. Influence of the annealing conditions on the properties of ZnO thin films[J]. Inter. J. Inorganic Mat., 2001, 3(8): 1125-1128.
    [9] Hu J, and Gordon R G. Atmospheric pressure chemical vapor deposition of gallium doped zinc oxide thin films from diethyl zinc, water, and triethyl gallium[J]. J. Appl. Phys., 1992, 72(11): 5381-5392.
    [10] Look D C, Reynolds D C, Sizelove J R, et al. Electrical properties of bulk ZnO[J]. Solid State Commun., 1998, 105(6): 399-401.
    [11] Yu P, Tang Z K, Wong G K L, et al. Room-temperature gain spectra and lasing in microcrystalline ZnO thin films[J]. J. Cryst. Growth, 1998, 184-185: 601-604.
    [12] Bagnall D M, Chen Y F, Shen M Y, et al. Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assistedMBE[J]. J. Cryst. Growth, 1998, 184-185: 605-609.
    [13] Look D C, Hemsky J W, and Sizelove J R. Residual Native Shallow Donor in ZnO[J]. Phys. Rev. Lett., 1999, 82(12): 2552-2555.
    [14] Tomlins G W, Routbort J L, and Mason T O. Zinc self-diffusion, electrical properties, and defect structure of undoped, single crystal zinc oxide[J]. J. Appl. Phys., 2000, 87(1): 117-123.
    [15] Oba F, Nishitani S R, Isotani S, et al. Energetics of native defects in ZnO[J]. J. Appl. Phys., 2001, 90(2): 824-828.
    [16] Van de Walle C G. Hydrogen as a Cause of Doping in Zinc Oxide[J]. Phys. Rev. Lett., 2000, 85(5): 1012.
    [17] Hofmann D M, Hofstaetter A, Leiter F, et al. Hydrogen: A Relevant Shallow Donor in Zinc Oxide[J]. Phys. Rev. Lett., 2002, 88(4): 045504.
    [18] Look D C, and Claflin B. P-type doping and devices based on ZnO[J]. phys. stat. solidi (b), 2004, 241(3): 624-630.
    [19] Tsukazaki A, Ohtomo A, Onuma T, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO[J]. Nature Mater., 2005, 4(1): 42-46.
    [20] Tsukazaki A, Kubota M, Ohtomo A, et al. Blue Light-Emitting Diode Based on ZnO[J]. Jpn. J. Appl. Phys., 2005, 44(21): L643-L645.
    [21] Albrecht J D, Ruden P P, Limpijumnong S, et al. High field electron transport properties of bulk ZnO[J]. J. Appl. Phys., 1999, 86(12): 6864-6867.
    [22] Ohtomo A, and Tsukazaki A. Pulsed laser deposition of thin films and superlattices based on ZnO[J]. Semicond. Sci. Technol., 2005, 20(4): 51-512.
    [23] Ip K, Overberg M E, Heo Y W, et al. Hydrogen incorporation and diffusivity in plasma-exposed bulk ZnO[J]. Appl. Phys. Lett., 2003, 82(3): 385-387.
    [24] Myong S Y, and Lim K S. Highly stable and textured hydrogenated ZnO thin films[J]. Appl. Phys. Lett., 2003, 82(18): 3026-3028.
    [25] Puchert M K, Hartmann A, Lamb R N, et al. Highly resistive sputtered ZnO films implanted with copper[J]. J. Mater. Res., 1996, 11(10): 2463-2469.
    [26] Fukumura T, Jin Z, Ohtomo A, et al. An oxide-diluted magnetic semi- conductor: Mn-doped ZnO[J]. Appl. Phys. Lett., 1999, 75(21): 3366-3368.
    [27] Jung S W, An S J, Yi G-C, et al. Ferromagnetic properties of Zn1-xMnxO epitaxial thin films[J]. Appl. Phys. Lett., 2002, 80(24): 4561-4563.
    [28] Wakano T, Fujimura N, Morinaga Y, et al. Magnetic and magneto-transport properties of ZnO:Ni films[J]. Physica E, 2001, 10(1-3): 260-264.
    [29] Buchholz D B, Chang R P H, Song J H, et al. Room-temperature ferro- magnetism in Cu-doped ZnO thin films[J]. Appl. Phys. Lett., 2005, 87(8): 082504-082503.
    [30] TAN G, WU J, and WU X. Sensitivity to Combustible Gas for ZnO Thin Films[J]. J. Mater. Sci. Technol., 1997, 13(4): 302-305.
    [31] Takahashi Y, Kanamori M, Kondoh A, et al. Photoconductivity of Ultrathin Zinc Oxide Films[J]. Jpn. J. Appl. Phys., 1994, 33(12A): 6611-6615.
    [32] Zhang D H, and Brodie D E. Photoresponse of polycrystalline ZnO films deposited by r.f. bias sputtering[J]. Thin Solid Films, 1995, 261(1-2): 334-339.
    [33] Fabricius H, Skettrup T, and Bisgaard P. Ultraviolet detectors in thin sputtered ZnO films[J]. Appl. Opt., 1986, 25(16): 2764-2767.
    [34] Liu Y, Gorla C, Liang S, et al. Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD[J]. J. Elec. Mater., 2000, 29(1): 69-74.
    [35] Liang S, Sheng H, Liu Y, et al. ZnO Schottky ultraviolet photodetectors[J]. J. Cryst. Growth, 2001, 225(2-4): 110-113.
    [36]康昌鹤,唐省吾.《气、湿敏感器件及其应用》,科学出版社,合肥:(1988).
    [37]孙柏, PLD技术制备ZnO薄膜及其结构和发光性质研究[博士]:中国科学技术大学; 2007.
    [38] Rayleigh. On waves propagated along the plane surface of an elastic solid[J]. Proc. Lond. Math. Soc., 1885, 17: 4-11.
    [39] Love A E H, Cambridge University Press, 1911.
    [40] Nakahata H, Higaki K, Hachigo A, et al. High Frequency Surface Acoustic Wave Filter Using ZnO/Diamond/Si Structure[J]. Jpn. J. Appl. Phys., 1994, 33(1A): 324-328.
    [41] Schwegmann S, Seitsonen A P, Dietrich H, et al. The adsorption of atomic nitrogen on Ru(0001): geometry and energetics[J]. Chem. Phys. Lett., 1997, 264(6): 680-686.
    [42] Chen Y, Bagnall D M, Koh H-j, et al. Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization[J]. J. Appl. Phys., 1998, 84(7): 3912-3918.
    [43] Muth J F, Kolbas R M, Sharma A K, et al. Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition[J]. J. Appl. Phys., 1999, 85(11): 7884-7887.
    [44] Lee C, Lim K, and Song J. Highly textured ZnO thin films doped with indium prepared by the pyrosol method[J]. Solar Energy Materials and Solar Cells, 1996, 43(1): 37-45.
    [45] Van Heerden J L, and Swanepoel R. XRD analysis of ZnO thin films prepared by spray pyrolysis[J]. Thin Solid Films, 1997, 299(1-2): 72-77.
    [46] Gómez H, Maldonado A, Asomoza R, et al. Characterization of indium-doped zinc oxide films deposited by pyrolytic spray with different indium compounds as dopants[J]. Thin Solid Films, 1997, 293(1-2): 117-123.
    [47] Shih W C, and Wu M S. Growth of ZnO films on GaAs substrates with a SiO2 buffer layer by RF planar magnetron sputtering for surface acoustic wave applications[J]. J. Cryst. Growth, 1994, 137(3-4): 319-325.
    [48] Hwang D K, Bang K H, Jeong M C, et al. Effects of RF power variation on properties of ZnO thin films and electrical properties of p-n homojunction[J]. J. Cryst. Growth, 2003, 254(3-4): 449-455.
    [49] Ko H J, Chen Y F, Zhu Z, et al. Effects of a low-temperature buffer layer on structural properties of ZnO epilayers grown on (1 1 1)CaF_2 by two-step MBE[J]. J. Cryst. Growth, 2000, 208(1-4): 389-394.
    [50] Ohtomo A, Tamura K, Saikusa K, et al. Single crystalline ZnO films grown on lattice-matched ScAlMgO_4(0001) substrates[J]. Appl. Phys. Lett., 1999, 75(17): 2635-2637.
    [51] Fons P, Iwata K, Niki S, et al. Growth of high-quality epitaxial ZnO films onα-Al_2O_3[J]. J. Cryst. Growth, 1999, 201-202: 627-632.
    [52] Fons P, Iwata K, Yamada A, et al. Uniaxial locked epitaxy of ZnO on the a face of sapphire[J]. Appl. Phys. Lett., 2000, 77(12): 1801-1803.
    [53] Chen Y, Ko H J, Hong S K, et al. Layer-by-layer growth of ZnO epilayer onAl_2O_3(0001) by using a MgO buffer layer[J]. Appl. Phys. Lett., 2000, 76(5): 559-561.
    [54] Chen Y, Ko H j, Hong S k, et al. Two-dimensional growth of ZnO films on sapphire(0 0 0 1) with buffer layers[J]. J. Cryst. Growth, 2000, 214-215: 87-91.
    [55] Ramamoorthy K, Sanjeeviraja C, Jayachandran M, et al. Development of a novel high optical quality ZnO thin films by PLD for III-V opto-electronic devices[J]. Curr. Appl. Phys., 2006, 6(1): 103-108.
    [56] Miyamoto K, Sano M, Kato H, et al. Effects of ZnO/MgO Double Buffer Layers on Structural Quality and Electron Mobility of ZnO Epitaxial Films Grown on c-Plane Sapphire[J]. Jpn. J. Appl. Phys., 2002, 41(11A): L1203-L1205.
    [57] Ohnishi T, Ohtomo A, Kawasaki M, et al. Determination of surface polarity of c-axis oriented ZnO films by coaxial impact-collision ion scattering spectroscopy[J]. Appl. Phys. Lett., 1998, 72(7): 824-826.
    [58] Hong S K, Hanada T, Chen Y, et al. Control of polarity of heteroepitaxial ZnO films by interface engineering[J]. Appl. Surf. Sci., 2002, 190(1-4): 491-497.
    [59] Ohkubo I, Ohtomo A, Ohnishi T, et al. In-plane and polar orientations of ZnO thin films grown on atomically flat sapphire[J]. Surf. Sci., 1999, 443(1-2): L1043-L1048.
    [60] Hong S K, Hanada T, Ko H J, et al. Control of crystal polarity in a wurtzite crystal: ZnO films grown by plasma-assisted molecular-beam epitaxy on GaN[J]. Phys. Rev. B, 2002, 65(11): 115331.
    [61] Van de Pol F C M. [J]. Ceram bull, 1990, 69: 1959.
    [62] Mollwo E, Müller G, and Wagner P. Energetische lage des Cu-akzeptorniveaus in ZnO-Einkristallen[J]. Solid State Commun., 1973, 13(8): 1283-1287.
    [63] Kanai Y. Admittance Spectroscopy of ZnO Crystals Containing Ag[J]. Jpn. J. Appl. Phys., 1991, 30(Part 1, No. 9A): 2021-2022
    [64] Kanai Y. Admittance Spectroscopy of ZnO Crystals[J]. Jpn. J. Appl. Phys., 1990, 29(Part 1, No. 8): 1426-1430
    [65] Park C H, Zhang S B, and Wei S-H. Origin of p-type doping difficulty in ZnO: The impurity perspective[J]. Phys. Rev. B, 2002, 66(7): 073202.
    [66] Ogata K, Koike K, Tanite T, et al. ZnO and ZnMgO growth on a-plane sapphire by molecular beam epitaxy[J]. J. Cryst. Growth, 2003, 251(1-4): 623-627.
    [67] Shan F K, Kim B I, Liu G X, et al. Blueshift of near band edge emission in Mg doped ZnO thin films and aging[J]. J. Appl. Phys., 2004, 95(9): 4772-4776.
    [68] Santana G, Morales-Acevedo A, Vigil O, et al. Structural and optical properties of (ZnO)_x(CdO)_(1-x) thin films obtained by spray pyrolysis[J]. Thin Solid Films, 2000, 373(1-2): 235-238.
    [69] He J H, Lao C S, Chen L J, et al. Large-Scale Ni-Doped ZnO Nanowire Arrays and Electrical and Optical Properties[J]. J. Am. Chem. Soc., 2005, 127(47): 16376-16377.
    [70] Antony J, Pendyala S, Sharma A, et al. Room temperature ferromagnetic and ultraviolet optical properties of Co-doped ZnO nanocluster films[J]. J. Appl. Phys., 2005, 97(10): 10D307-303.
    [71] Zhou X, Ge S, Yao D, et al. Effect of thermal treatment on room-temperature ferromagnetism in Co-doped ZnO powders[J]. Physica B, 2008, 403(18): 3336-3339.
    [72] Cho Y M, Choo W K, Kim H, et al. Effects of rapid thermal annealing on the ferromagnetic properties of sputtered Zn_(1-x)(Co_(0.5)Fe_(0.5))_xO thin films[J]. Appl. Phys. Lett., 2002, 80(18): 3358-3360.
    [73] Ye L H, Freeman A J, and Delley B. Half-metallic ferromagnetism in Cu-doped ZnO: Density functional calculations[J]. Phys. Rev. B, 2006, 73(3): 033203.
    [74] Chakraborti D, Narayan J, and Prater J T. Room temperature ferromagnetism in Zn_(1-x)Cu_xO thin films[J]. Appl. Phys. Lett., 2007, 90(6): 062504-062503.
    [75] Hou D L, Ye X J, Meng H J, et al. Magnetic properties of n-type Cu-doped ZnO thin films[J]. Appl. Phys. Lett., 2007, 90(14): 142502-142503.
    [76] Coey J M D. Dilute magnetic oxides[J]. Current Opinion in Solid State and Materials Science, 2006, 10(2): 83-92.
    [77] Gong H, Wang Y, Yan Z, et al. The effect of deposition conditions on structure properties of radio frequency reactive sputtered polycrystalline ZnO films[J]. Mater. Sci. Semicon. Pro., 2002, 5(1): 31-34.
    [78] Lin S S, Huang J L, and Lii D F. The effects of r.f. power and substrate temperature on the properties of ZnO films[J]. Surf. Coat. Techn., 2004, 176(2): 173-181.
    [1]潘晓燕,稀磁半导体氧化物的结构和磁性能研究[博士后]:华东师范大学; 2006.
    [2] Liang S, Gorla C, Emanetoglu N, et al. Epitaxial growth of (1120) ZnO on (0112) Al2O3 by metalorganic chemical vapor deposition Al2O3 by metalorganic chemical vapor deposition[J]. J. Elec. Materials, 1998, 27(11): L72-L76.
    [3] Liu Y, Gorla C, Liang S, et al. Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD[J]. J. Elec. Mater., 2000, 29(1): 69-74.
    [4] Hahn B, and et al. MOCVD layer growth of ZnO using DMZn and tertiary butanol[J]. Semicon. Sci. Technol., 1998, 13(7): 788.
    [5] Gorla C R, Emanetoglu N W, Liang S, et al. Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (011-bar 2) sapphire by metalorganic chemical vapor deposition[J]. J. Appl. Phys., 1999, 85(5): 2595-2602.
    [6] Ye J, Gu S, Zhu S, et al. The growth and annealing of single crystalline ZnO films by low-pressure MOCVD[J]. J. Cryst. Growth, 2002, 243(1): 151-156.
    [7]吴自勤,王兵.《薄膜生长》,科学出版社,合肥:(2001).
    [8]黄春辉,李富友,黄岩谊.《光电功能超薄膜》,北京大学出版社,北京:(2001).
    [9]李琳,单德芳.《膜技术基本原理》,清华大学出版社,北京:(1999).
    [10]郑伟涛,《薄膜材料与薄膜技术》,化学工业出版社,北京:(2004).
    [11] Sanon G, Rup R, and Mansingh A. Growth and characterization of tin oxide films prepared by chemical vapour deposition[J]. Thin Solid Films, 1989, 190(2): 287-301.
    [12] Cebulla R, Wendt R, and Ellmer K. Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical film properties[J]. J. Appl. Phys., 1998, 83(2): 1087-1095.
    [1] Ryu M K, Lee S H, Jang M S, et al. Postgrowth annealing effect on structural and optical properties of ZnO films grown on GaAs substrates by the radio frequency magnetron sputtering technique[J]. J. Appl. Phys., 2002, 92(1): 154-158.
    [2]朋兴平,兰伟,谭永胜,等. Cu掺杂氧化锌薄膜的发光特性研究[J].物理学报, 2004, 53(08): 2705-2709.
    [3] Ma Q B, Ye Z Z, He H P, et al. Influence of annealing temperature on the properties of transparent conductive and near-infrared reflective ZnO:Ga films[J]. Scripta Materialia, 2008, 58(1): 21-24.
    [4] Kim H, Gilmore C M, Horwitz J S, et al. Transparent conducting aluminum- doped zinc oxide thin films for organic light-emitting devices[J]. Appl. Phys. Lett., 2000, 76(3): 259-261.
    [5] Hou D L, Ye X J, Zhao X Y, et al. Room-temperature ferromagnetism in n-type Cu-doped ZnO thin films[J]. J. Appl. Phys., 2007, 102(3): 033905-033903.
    [6] Hong R, Qi H, Huang J, et al. Influence of oxygen partial pressure on the structure and photoluminescence of direct current reactive magnetron sputtering ZnO thin films[J]. Thin Solid Films, 2005, 473(1): 58-62.
    [7] Sanon G, Rup R, and Mansingh A. Growth and characterization of tin oxide films prepared by chemical vapour deposition[J]. Thin Solid Films, 1989, 190(2): 287-301.
    [8] Tang I T, Wang Y C, Hwang W C, et al. Investigation of piezoelectric ZnO film deposited on diamond like carbon coated onto Si substrate under different sputtering conditions[J]. J. Cryst. Growth, 2003, 252(1-3): 190-198.
    [9] Wang Y G, Lau S P, Lee H W, et al. Comprehensive study of ZnO films prepared by filtered cathodic vacuum arc at room temperature[J]. J. Appl. Phys., 2003, 94(3): 1597-1604.
    [10] Cebulla R, Wendt R, and Ellmer K. Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: Relationshipsbetween plasma parameters and structural and electrical film properties[J]. J. Appl. Phys., 1998, 83(2): 1087-1095.
    [11] Ozgur U, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices[J]. J. Appl. Phys., 2005, 98(4): 041301-041103.
    [12] Wang C, Chen Z, Hu H, et al. Effect of the oxygen pressure on the microstructure and optical properties of ZnO films prepared by laser molecular beam epitaxy[J]. Physica B, 2009, 404(21): 4075-4082.
    [13] Ding J J, Chen H X, and Ma S Y. Structural and photoluminescence properties of Al-doped ZnO films deposited on Si substrate[J]. Physica E, 2010, 42(6): 1861-1864.
    [14] Prabakar K, Kim C, and Lee C. UV, violet and blue-green luminescence from RF sputter deposited ZnO:Al thin films[J]. Cryst. Res. Technol., 2005, 40(12): 1150-1154.
    [15] Xu P S, Sun Y M, Shi C S, et al. The electronic structure and spectral properties of ZnO and its defects[J]. Nucl. Instrum. Methods Phys. Res. B, 2003, 199: 286-290.
    [16] Kang H S, Kang J S, Kim J W, et al. Annealing effect on the property of ultraviolet and green emissions of ZnO thin films[J]. J. Appl. Phys., 2004, 95(3): 1246-1250.
    [17] Xue H, Chen Y, Xu X L, et al. X-ray diffraction spectroscopy and X-ray photoelectron spectroscopy studies of Cu-doped ZnO films[J]. Physica E, 2009, 41(5): 788-791.
    [18] Peng X, Xu J, Zang H, et al. Structural and PL properties of Cu-doped ZnO films[J]. J. Lumin., 2008, 128(3): 297-300.
    [1]马全宝,叶志镇,何海平,等.氧分压对直流磁控溅射制备ZnO:Ga透明导电薄膜特性的影响[J].无机材料学报,2007,22(6):113-116.
    [2]徐小丽,马书懿,陈彦,等.氧分压对磁控溅射制备ZnO薄膜的结构及光学特性的影响[J].发光学报,2007,28(5): 730-735.
    [3] Tang I-Tseng, Wang Y C, Hwang W C, et al. Investigation of piezoelectric ZnO film deposited on diamond like carbon coated onto Si substrate under different sputtering conditions [J]. J. Crystal Growth, 2003, 252(3): 190-198.
    [4]徐彭寿,孙玉明,施朝淑,等. ZnO及其缺陷电子结构对光谱特性的影响[J].红外与毫米波学报,2002,21:91-96.
    [5]郑丁葳,倪晟,曲盛薇,等.不同氧分压下直流反应溅射ZnO薄膜的结构和光学特性[J].光学学报,2007,27(4):739-743.
    [6]朋兴平,兰伟,谭永胜,等. Cu掺杂氧化锌薄膜的发光特性研究[J].物理学报,2004,53(8):2705-2709.
    [7] Vanheusden K, Seager C H, Warren W L, et al. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors [J]. Appl. Phys. Lett., 1996, 68(3): 403-405.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700