醇/盐双水相体系中手性物质识别及包结作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用一种全新、环保、易于操作的生物提取分离技术——含手性识别剂的醇/盐双水相体系对扁桃酸(MA)、α-环己基扁桃酸(CHMA)对映体进行了手性识别研究。主要内容如下:
     首先,对环糊精类手性识别剂在醇/盐体系中手性识别能力进行了筛选研究。分别考查了环糊精类手性识别剂β-环糊精(β-CD)、羟丙基-β-环糊精(HP-β-CD)、羟丙基-α-环糊精(HP-α-CD)、磺化-β-环糊精(S-β-CD)、水溶性-β-环糊精聚合物(β-CDP)在乙醇/硫酸铵、乙醇/磷酸氢二钾、异丙醇/硫酸铵、异丙醇/磷酸氢二钾、正丙醇/硫酸铵、正丙醇/磷酸氢二钾体系中的手性识别效果。研究结果显示:在考察的几种环糊精类手性识别剂中只有β-CD,HP-β-CD对CHMA对映体有比较强的手性识别能力、S-β-CD对MA对映体有一定的手性识别能力。β-CD和HP-β-CD只有在乙醇/硫酸铵体系中对CHMA对映体才有比较强的手性识别能力,S-β-CD也只有在乙醇/硫酸铵体系中才对MA对映体表现出明显的手性识别能力。
     其次,考查了羟丙基-β-环糊精在乙醇/硫酸铵双水相体系中对α-环己基扁桃酸对映体的手性识别影响因素。分别考查了HP-p-CD浓度、CHMA浓度、乙醇和硫酸铵质量分数、体系温度和pH值等因素对CHMA对映体分配比(D)和分离因子(α)的影响。结果显示:体系中HP-β-CD浓度、乙醇质量分数、温度和pH值等因素对对映体的分离度影响较大;在体系温度为40℃,pH值为2,乙醇质量分数为30%,硫酸铵质量分数为15%,HP-β-CD的浓度为50g.L-1,CHMA浓度为0.5mmol.L-1时,手性识别分离效果最佳,一次萃取分离后,R和S对映体的分配比(DR和DS)分别为1.08和0.61,分离因子(α)达到了1.86。
     第三,研究了磺化-β-环糊精在乙醇/硫酸铵双水相体系中对扁桃酸对映体的手性识别影响因素。分别研究了S-β-CD的取代度、S-β-CD的浓度、醇和盐的浓度、温度、pH值等因素对手性识别效果的影响。结果显示,在含有手性识别剂S-β-CD(Ⅱ)的乙醇/硫酸铵双水相体系中,MA对映体的最大分离因子α可达到1.65,上相中对映体过量值e.e%可达到15.7%。
     第四,研究了β-环糊精双核铜络合物(Cu2-β-CD)在醇/盐体系中手性识别能力。首先在水溶液中制备了β-环糊精双核铜络合物,并采用红外、紫外光谱和X射线衍射对其进行了表征。将Cu2-β-CD作为手性识别剂添加到醇/盐双水相体系中,详细考察了Cu2-β-CD在乙醇/硫酸铵、乙醇/磷酸氢二钾、异丙醇/硫酸铵、异丙醇/磷酸氢二钾、正丙醇/硫酸铵、正丙醇/磷酸氢二钾六种醇/盐双水相体系中对CHMA对映体的手性识别能力。研究结果显示:Cu2-β-CD配合物在乙醇/硫酸铵体系和异丙醇/硫酸铵体系中对CHMA对映体表现出一定的手性识别能力,而在其它四种醇/盐体系中对CHMA对映体皆没有表现出明显的手性识别能力。然后选取乙醇/硫酸铵体系作为实验体系,详细考察了Cu2-β-CD的浓度、乙醇和硫酸铵质量分数、温度、pH值等因素对手性识别效果的影响。结果表明,在Cu2-β-CD配合物浓度为20 mmol.L-1,体系乙醇含量为35%,硫酸铵含量为15%,体系温度为30℃,pH值为6时,分离因子α达到最大值1.47。
     第五,利用红外光谱法分别研究了羟丙基-β-环糊精对α-环己基扁桃酸、磺化-β-环糊精对扁桃酸、β-环糊精双核铜络合物对α-环己基扁桃酸的包结作用。结果表明:HP-P-CD与CHMA形成包结物后改变了原有主一客体化合物固有的红外吸收峰的位置和形状,C=O伸缩振动吸收峰从1728cm-1处移动到1715cm-1处,而且峰形变宽;S-β-CD与MA形成包结物后,使得C=O伸缩振动吸收峰1716cm-1处微移到1720cm-1处,而且峰形变宽;Cu2-β-CD与CHMA形成包结物后,使得C=O伸缩振动吸收峰完全消失。上述红外光谱实验皆证实了HP-β-CD与CHMA、S-β-CD与MA、Cu2-β-CD与CHMA包结物的形成。
In this paper, mandelic acid(MA) enantiomers andα-cyclohexyl-mandelic acid (CHMA) enantiomers were separated by a novel chiral separation extraction systems-Alcohol/salt-based aqueous two-phase systems(ATPSs). The main contents can be summarized as follows:
     The first,the screening study of chiral recognition ability for cyclodextrins group reagents in the alcohol/salt-based aqueous two-phase system:Chiral recognition of mandelic acid and a-cyclohexyl-mandelic acid by alcohol/salt-based aqueous two-phase systems(C2H5OH/(NH4)2SO4、C2H5OH/K2HPO4、n-C3H7OH/(NH4)2SO4、n-C3H7OH/K2HPO4、i-C3H7OH/(NH4)2SO4、i-C3H7OH/K2HPO4) containing chiral selector(P-cyclodextrin、hydroxypropyl-β-cyclodextrin、hydroxypropyl-a-cyclodextrin、sulfonated-β-cyclodextrin、water-soluble (3-cyclodextrin polymer). The experimental results indicate that only P-cyclodextrin and hydroxypropyl-β-cyclodextrin as chiral selector showed a good chiral recognition ability toward CHMA enantiomers. Sulfonated-β-cyclodextrin have a chiral recognition ability toward MA enantiomers. It was also found that β-cyclodextrin and hydroxypropyl-β-cyclodextrin only have a chiral recognition ability in the C2H5OH/(NH4)2SO4 system. Sulfonated-β-cyclodextrin also only have a chiral recognition ability in the C2H5OH/(NH4)2SO4 system.
     The second,the dependency of the distribution ratio (D) and the separation factors(α) on parameters, such as the concentration of HP-β-CD,the concentration of CHMA, the mass fractions of C2H5OH and (NH4)2SO4 respectively,temperature and pH have been investigated. It could be concluded that the enantioseparation strongly depended on the concentration of HP-β-CD,the mass fraction of C2H5OH,temperature and pH. The optimum conditions of enantioseparation were as follows:The temperature was 40℃,the pH was 2.0,the mass fraction of C2H5OH and (NH4)2SO4 was 30%and 15%, respectively,the concentration of HP-β-CD was 50 g.L-1 the concentration of CHMA was 0.5 mmol.L"1.Under these conditions the separation factor(a) reached at 1.86.
     The third,the dependency of the distribution ratio (D) and the separation factors(a) on parameters such as the concentration of S-β-CD,the concentration of CHMA, the mass fractions of C2H5OH and (NH4)2SO4respectively,temperature and pH have been investigated. The maximum enantioselectivity(a=1.65, e.eup=15.7%) was reached by employing S-P-CD(Ⅱ) as chiral selector in the ethanol/ammonium sulfate system.
     The forth,the study of chiral recognition ability for Cu2-β-CD in the alcohol/salt-based aqueous two-phase system:Firstly,The dinuclear Cu2-β-CD complex was synthesized and characterized by IR、UV、XRD. The chiral recognition system was established by adding Cu2-β-CD into the alcohol/salt-based aqueous two-phase system. The experimental results show that the C2H5OH/(NH4)2SO4 and i-C3H7OH/(NH4)2SO4 aqueous two phase extraction system containing Cu2-β-CD has well chiral recognition ability toward CHMA enantiomers.Then,the dependency of the distribution ratio (D) and the separation factors(a) on parameters such as the concentration of Cu2-β-CD, the mass fractions of C2H5OH and (NH4)2SO4 respectively,temperature and pH were investigated. The experimental results indicate that the optimum conditions of enantioseparation were as follows:The temperature, was 30℃,the pH was 6.0,the mass fraction of C2H5OH and (NH4)SO4 was 35% and 15%, respectively,the concentration of Cu2-β-CD was 20 mmol.L-1,the concentration of CHMA was 0.5mmol.L-1.Under these conditions the separation factor(a) reached at 1.47.
     The fifth,the inclusion behavior between HP-β-CD and CHMA、S-β-CD and MA、Cu2-p-CD and CHMA was studied by infrared spectroscopy.The results indicate that the characteristic peak of-C=O group of CHMA in its inclusion compound of HP-β-CD/CHMA shifted from 1728 cm-1 to 1715 cm-1,the characteristic peak of-C=O group of CHMA disappeared in the infrared spectra of the inclusion compound of Cu2-β-CD/CHMA, the characteristic peak of-C=O group of MA in its inclusion compound of S-β-CD-MA shifted from 1728cm-1 to 1715 cm-1.The infrared spectra indicate that HP-P-CD and CHMA, S-β-CD and MA、Cu2-β-CD and CHMA all form the inclusion compound.
引文
[1]官家乐,高原,高鸿慈,等.手性药物.中国医院药学杂志,2001,21(7):443-445
    [2]黄量,戴立信.手性药物的化学与生物学.北京:化学工业出版社,2004,1
    [3]尤启冬,林国强.手性药物.北京:化学工业出版社,2004,3
    [4]苑可,戴立信.关注”手性药物”.科学术语研究,2002,4(2):46-48
    [5]Sheldon R A. Chirotechnology; industrial synthesis of optically active compounds; Marcel Dekker Inc.:New York,1993
    [6]Snyder S E, Carey J R, Pirkle W H. Biphasic enantioselective partitioning studies using small-molecule chiral selectors. Tetrahedron,2005,61,7562-7567
    [7]Reema K T, Jonathan A E, Robert G B. Highly efficient and enantioselective cyclization of aromatic lmines via directed C-H bond activation. J. Am. Chem. Soc.,2004,126:7192-7193
    [8]Do H R, Corey E. Highly enantioselective cyanosilylation of aldehydes catalyzed by a chiral oxazaborolidinium ion. J. Am. Chem. Soc,2004,126:8106-8107
    [9]Joshua D, Anjanette K, Preeti K, et al. Enantioselective separation on a naturally chiral surface. J. Am. Chem. Soc.,2004,126:14988-14994
    [10]Paul J P, Julian B C. Equilibrium and kinetic studies of the enantioselective complexation of (D/L)-phenylalanine with copper (Ⅱ) N-decyl-(L)-hydroxylproline. Chem. Engineer. Sci.,1997,52(3):377-386
    [11]Herraez-Hernandez R, Campins-Falco P. Chromatographic separation of chlorthalidone enantiomers using β-cyclodextrins as chiral additives. J. Chromatogr. B,2000,74:169-177
    [12]Abolfazl mostafavi S, Foster R T. Pharmacokinetics of metoprolol enantiomers following single and multiple administration of racemate in rat. Int. J. Pharm., 2000,2:97-102
    [13]Abolfazl S M, Robert T F, Pharmacokinetics of metoprolol enantiomers following single and multiple administration of racemate in rat. Int. J. Pharm., 2000,22:97-102
    [14]Xie R, Chu L Y. Membranes and membrane processes for chiral resolution. Chem. Soc. Rev.,2008,37:1243-1263
    [15]Afonso CAM, Grespo J G. Recent advances in chiral resolution through membrane-based approaches. Angew Chem. Int. Ed,2004,43:5293-5295
    [16]FDA, FDA's policy statement for the development of new stereoisomeric drugs Chirality,1992,4:338-340
    [17]杜灿屏,林国强,施敏.手性与手性药物研究中的若干问题.中国科学基金,2003,2:72-75
    [18]敖聪聪.世界药物研究发展趋势与市场预测.精细化工中间体,2004,34(2):5-8
    [19]继成.我国医药原料和中间体发展动向.中国制造信息,1998,14(12):28-31
    [20]徐雅妮,张凤宝,王燕,等.手性化合物拆分方法的研究进展.天津化工2002,8(6):20-22
    [21]Crosby J. Synthesis of optically active compounds:a large scale perspective. Tetrahedron,1991,47(27):4789-4846
    [22]唐课文,张国丽,黄可龙,等.双相(O/W)识别手性萃取分离α-环己基扁桃酸对映体.中国科学,B辑,2007,37:463-467
    [23]Tang K W, Chen Y Y, Huang K L, et al. Enantioselective resolution of chiral aromatic acids by biphasic recognition chiral extraction. Tetrahedron:Asymmerey, 2007,18:2399-2408
    [24]Tang K W, Chen Y Y, Liu J J, Resolution of zopiclone enantiomers by biphasic recognition chiral extraction. Sep. Purif. TechnoL.,2008,62:681-686
    [25]唐课文,周春山.L-酒石酸酯立体选择性萃取分离扁桃酸对映体.应用化学,2003,20:1108-1110
    [26]阎建辉,盛盈,黄可龙,等.手性溶剂萃取分离布洛芬对映体.化工学报,2007,58:679-685
    [27]Tan B, Luo G S, Qi X, et al, Enantioselective extraction of D,L-tryptophan by a new chiral selector:Complex formation with di(2-ethylhexyl)phosphoric acid and O,O'-dibenzoyl-(2R,3R)-tartaric acid. Sep. Purif. TechnoL,2006,49: 186-191
    [28]Dzygiel P, Monti C, Piarulli U, et al, Efficient resolution of racemic N-benzyl P-amino acids by iterative liquid-liquid extraction with a chiral (salen)cobalt(III) complex as enantioselective selector. Org. Biomol. Chem.,2007,5:3464-3471
    [29]Schuur B, Winkelman J G M, Heeres H J. Equilibrium studies on enantioselective liquid-liquid amino acid extraction using a cinchona alkaloid extractant. Ind. Eng. Chem. Res.,2008,47:10027-10033
    [30]Schuur B, Floure J, Hallett A J, et al. Continuous chiral separation of amino acid derivatives by enantioselective liquid-liquid extraction in centrifugal contactor separators. Org Proc Res Dev,2008,12:950-955
    [31]Tang L J, Choi S J, Nandhakumar R, et al.Reactive extraction of enantiomers of 1,2-amino alcohols via stereo selective thermodynamic and kinetic processes. J. Org. Chem.,2008,73:5996-5999
    [32]Bloch R, Finkelstein A, Kedem O. Metal-ion seperations by dialysis through solvent membranes Ind. Eng. Chem. Process Des. Dev.,1967,6:231-237
    [33]Ward W J, Robb W L. Carbon dioxide-oxygen separation:facilitated transport of carbon dioxide across a liquid film. Science,1967,156:1481-1484
    [34]LiNN. US Patent,3410794,1968-11-12
    [35]戴猷元,王运东,王玉军,等.膜萃取技术基础.北京:化学工业出版社,2008,3-5
    [36]Jiao F P, Chen X Q, Hu W G, et al. Enantioselective Transport of R-clenbuterol through a bulk liquid membrane containing O,O'-Dibenzoyl-(2S,3S)-tartaric acid. J. Braz. Chem. Soc,2007,18:804-809
    [37]Demirel N, Bulut Y, Hosgoren H. Enantioselective transport and liquid-liquid extraction of amino acids as their potassium and sodium salts by optically active diaza-18-crown-6 ethers. Chirality,2004,16:347-350
    [38]Maximini A, Chmiel H, Holdik H, et al. Development of a supported liquid membrane process for separating enantiomers of N-protected amino acid derivatives. J. Membr. Sci.,2006,276:221-231
    [39]Oshima T, Inoue K, Furusaki S, et al. Liquid membrane transport of amino acids by a calix[6]arene carboxylic acid derivative. J. Membr. Sci,2003,217:87-97
    [40]Verkuijl B J V, Minnaard A J, de Vries J G, et al. Chiral Separation of underivatized amino acids by reactive extraction with palladium-BINAP complexes. J. Org. Chem.,2009,74:6526-6533
    [41]Canepari S, Girelli AM, Matiei E et al. Enantioselective transport of D,L-Phenylalanine and D,L-Phenylglycine through a bulk liquid membrane containing cinchona alkaloid derivatives as chiral selectors. J. Braz. Chem. Soc, 2009,20:429-436
    [42]Krieg H M, Lotter J, Keizer K, et al. Enrichment of chlorthalidone enantiomers by an aqueous bulk liquid membrane containing (3-cyclodextrin. J. Membr. Sci., 2000,167:33-45
    [43]Pickering P J, Chaudhuri J B. Enantioselective extraction of (D)-phenylalanine from racemic (D/L)-phenylalanine using chiral emulsion liquid membranes. J. Membr. Sci.,1997,127:115-130
    [44]Pickering P J, Chaudhuri J B. Emulsion liquid membranes for chiral separations: Selective extraction of rac-phenylalanine enantiomers. Chirality,1997,9: 261-267
    [45]Dzygiel P, Wieczorok P, Kafarski P. Supported liquid membrane separation of amine and amino acid derivatives with chiral esters of phosphoric acids as carriers. J. Sep. Sci,2003,26:1050-1056
    [46]Clark J D, Han B, Bhown A S. et al. Amino acid resolution using supported liquid membranes. Sep. Purif. Technol,2005,42:201-211
    [47]Miyako E, Maruyama T, Kamiya N, et al. Enzyme-facilitated enantioselective transport of (S)-ibuprofen through a supported liquid membrane based on ionic liquids. Chem. Commun.,2003,23:2926-2927
    [48]Miyako E, Maruyama T, Kamiya N, et al. Highly enantioselective separation using a supported liquid membrane encapsulating surfactant-enzyme complex. J. Am. Chem. Soc,2004,126:8622-8623
    [49]Powers J D, Kilpatrick P K, Carbonell R G. Trypsin purification by affinity binding to small unilamellar liposomes. Biotechnol. Bioeng.,1990,36:506-519
    [50]Luong J H, Male K B, Nguyen AL.US Patent 4973554,1990-11-27
    [51]Poncet S, Randon J, Rocca J L. Enantiomeric separation of tryptophan by ultrafiltration using the BSA solution system. Sep. Sci. Technol.,1997,32: 2029-2038
    [52]Gamier F, Randon J, Rocca J L. Enantiomeric separation by ultrafiltration: complexation mechanism of tryptophan analogs to bovine serum albumin. Sep. Purif. Technol.,1999,16:243-250
    [53]Iritani E, Katagiri N, Kawabata T, et al. Chiral separation of tryptophan by single-pass affinity inclined ultrafiltration using hollow fiber membrane module. Sep. Purif. Technol.,2009,64:337-344
    [54]Yoshikawa M, Fujisawa T, Izumi J. Molecularly imprinted polymeric membranes having EFF derivatives as a chiral recognition site. Macromol. Chem. Phys., 1999,200:1458-1465
    [55]Kondo Y, Yoshikawa M, Okushita H. Molecularly imprinted polyamide membranes for chiral recognition. Polym. Bull,2000,44:517-524
    [56]Yoshikawa M, Ooi T, Izumi J. Novel membrane materials having EEE derivatives as a chiral recognition site. Eur. Polym. J.,2001,37:335-342
    [57]Itou Y, Nakano M, Yoshikawa M. Optical resolution of racemic amino acid derivatives with molecularly imprinted membranes from tetrapetide consisting of glycinyl residues. J. Membr. Sci,2008,325:371-375
    [58]Higuchi A, Higuchi Y, Furuta K, et al. Chiral separation of phenylalanine by ultrafiltration through immobilized DNA membranes. J. Membr. Sci,2003,221: 207-218
    [59]Higuchi A, Hayashi A, Kanda N, et al. Chiral separation of amino acids in ultrafiltration through DNA-immobilized cellulose membranes. J. Mol. Struct., 2005,739:145-152
    [60]Matsuoka Y, Kanda N, Lee Y M, et al. Chiral separation of phenylalanine in ultrafiltration through DNA-immobilized chitosan membranes. J. Membr. Sci, 2006,280:116-123
    [61]Hadik P, Kotsis L, Eniszne-Bodogh M, et al. Lactic acid enantioseparation by means of porous ceramic disc and hollow fiber organic membrane. Sep. Purif. Technol,2005,41:299-304
    [62]Ceynowa J, Sionkowska I. Enantioselective esterification of butanol-2 in an enzyme membrane reactor. A cta. Biotechnol.,1993,13:177-183
    [63]Giorno L, Drioli E. Biocatalytic membrane reactors:applications and perspectives. J. Chem. Technol. Biotechnol.,1997,69:11-14
    [64]Ceynowa J, Rauchfleisz M. High enantioselective resolution of racemic 2-arylpropionic acids in an enzyme membrane reactor. J. Mol Catal. B:Enzym, 2003,23:43-51
    [65]Koter I, Ceynowa J. Kinetic resolution of chiral alcohols in bifunctional membrane exhibiting enzyme activity and enantioselective permeation. J. Mol. Catal. B:Enzym.,2003,24-25:17-26
    [66]Simandi B, Keszei S, Fogassy E, et al. Supercritical fluid extraction, a novel method for production of enantiomers. J. Org. Chem.,1997,62:4390-4394
    [67]Keszei S, Simandi B, Szekely E, et al. Supercritical fluid extraction:a novel method for the resolution of tetramisole. Tetrahedron:Asymmetry,1999,10: 1275-1281
    [68]Kmecz I, Simandi B, Balint J, et al. Optical resolution of 6-fluoro-2-methyl-l,2,3,4-tetrahydroquinoline by supercritical fluid extraction. Chirality,2001,13:568-570
    [69]Szekely E, Simandi B, Fogassy E, et al. Enantioseparation of chiral alcohols by complex formation and subsequent supercritical fluid extraction. Chirality,2003, 15:783-786
    [70]Kmecz I, Simandi B, Szekely E, et al. Resolution of N-methylamphetamine enantiomers with tartaric acid derivatives by supercritical fluid extraction. Tetrahedron:Asymmetry,2004,15:1841-1845
    [71]Bauza R, Rios A, Valcarcel M. Enantioselective supercritical fluid extraction from racemic mixtures by use of chiral selectors. Sep. Sci. Technoi,2005,39: 459-478
    [72]Molnar P, Thorey P, Bansaghi G, et al. Resolution of racemic trans-1,2-cyclohexanediol with tartaric acid. Tetrahedron:Asymmetry,2008,19: 1587-1592
    [73]Albertsson P A. Partition of cell particles and macromolecules. NY:Wiley and Son,1986
    [74]de Souza R L, Barbosa J M P, Zanin G M, et al. Partitioning of porcine pancreatic lipase in a two-phase systems of polyethylene glycol/potassium phosphate aqueousAppl.Biochem. Biotechnol,2010,161:288-300
    [75]Barbosa H S C, Hine A V, Brocchini S, et al. Dual affinity method for plasmid DNA purification in aqueous two-phase systems. Chromatogr. A,2010,1217: 1429-1436
    [76]Chavez-Santoscoy A, Benavides J, Vermaas W, et al. Application of aqueous two-phase systems for the potential extractive fermentation of cyanobacterial products.C/zem. Eng. Technoi.,2010,33:177-182
    [77]Dembczynski R, Bialas W, Regulski K, et al. Lysozyme extraction from heiregg white in an aqueous two-phase system composed of ethylene oxide-propylene oxide thermoseparating copolymer and potassium,Pracess Biochem.,2010,45(3): 369-374
    [78]焦庆才,刘茜,陈耀祖.双水相萃取法从发酵液发中分离提取α-淀粉酶和蛋白酶的研究.高等学校化学学报,1998,19(3):391-394
    [79]Wang H, Dong Y S, Xiu Z L. Microwave-assisted aqueous two-phase extraction of piceid,resveratrol and emodin from polygonum cuspidatum by ethanol/ammonium sulphate systems. Biotechnol. Lett,2008,30(12):2079-2084
    [80]Ooi C W, Tey B T, Hii S L, et al. Direct purification of Burkholderia Pseudomallei lipase from fermentation broth using aqueous two-phase systems.Process Biochem.,2009,44:1083-1087
    [81]Jiang B, Li Z G, Dai J Y, et al. Aqueous two-phase extraction of 2,3-butanediol from fermentation broths using an ethanol/phosphate system.Process Biochem., 2009,44:112-117
    [82]Sellergren B, Ekberg P. Preparative chiral separation in an aqueous two-phase system by a few counter-current extractions. J. Chromatogr.,1988,450(3): 277-280
    [83]Arai T, Kuroda H, Distribution behavior of some drug enantiomers in an aqueous two-phase system using counter-current extraction with protein. Chromatographia,1991,32 (1):56-60
    [84]Shinomiya K, Kabasawa Y, Ito Y. Enantiomeric separation of commercial D, L-kynurenine with an aqueous two-phase solvent system by cross-axis coil planet centrifuge. J. Liq. Chromatogr. Rel. Technol,1998,21(1):135-141
    [85]邢健敏,李芬芳.温度诱导双水相体系中扁桃酸的手性识别研究.高等学校化学学报,2009,30:1744-1747
    [86]王珍,陈晓青,焦飞鹏等.双水相手性萃取拆分扁桃酸外消旋体.分析科学学报,2009,25(5):507-511
    [87]Dalgliesh C. The optical resolution of aromatic amino-acids on paper chromatograms, J. Chem. Soc,1952,3940-3942
    [88]Bhushan R, Gupta D, Singh K. Liquid chromatographic separation and UV determination of certain antihypertensive agents. Chromatogr. B,2006,20(2): 217-224
    [89]Shengli M, Sherry S, Nizar H. Chromatographic and spectroscopic studies on the chiral recognition of sulfated β-cyclodextrin as chiral mobile phase additive: Enantiomerie separation-next term of a chiral amine. J. Chromatogr. A,2009, 1216(8):1232-1248
    [90]侯经国,王柱命,何天稀,等.毛果芸香碱对映体的毛细管电泳手性分离.分析测试学报,2004,23(1):64-66
    [91]Dey J, Mohanty A, Roy S, et al. Cationic vesicles as chiral selector for enantieseparations of nonsteroidal antiinflammatory drugs by micellar electrokinetic chromatography. Chromatogr. A,2004,1048(1):127-132
    [92]王建忠,许旭,胡建国,等.反相高效液相色谱法直接拆分舒必利对映体.分析测试学报,2004,23(3):121-122
    [93]Mori Y, Ueno K, Umeda T. Enantiomeric separations of primary amino compounds by nonaqueous capillary zone electrophoresis with a chiral crown ether. J. Chromatogr. A,1997,757:328-332
    [94]罗均,郑企雨,陈传峰,等.固有手性杯芳烃的研究.化学进展,2006,18:897-906
    [95]Jursic B S. An enantiomeric discrimination in aqueous mixed chiral micelles through hydrogen bonding. Tetrahedron Letter,1993,34(6):963-966
    [96]Bombelli C. Chiral recognition of dipeptides in bio-membrane models:the role of amphiphile hydrophobic chains. Tetrahedron:asymmetry,2008,19:124-130
    [97]Ding J, Welton T, Armstrong D W. Chiral ionic liquids as stationary phases in gas chromatography. Anal. Chem.,2004,76:6819-6822
    [98]Tang W, Muderawan I W, Ng S C, et al. Enantioselective separation in capillary electrophoresis using a novel mono-6A-propylammonium-[beta]-cyclodextrin as chiral selector. Anal. Chim. Acta.,2006,555 (1):63-67
    [99]Graciela M. Escandadr Spectroscopic study of sadlicylatde-cyclodextrin systems in the presence and absence of alcohols. Spectrochimica. Acta. A.,1999,55: 1743-1752
    [100]Scypinski S, ClineLove L J. Cyclodextrin-induced room-temperature phosphorescence of nitrogen heterocycles and bridged biphenyls. Anal. Chem., 1984,56(3),331-336
    [101]Yanez C, Salazar R, Nunez L J et al. Spectrophotometric and electrochemical study of the inclusion complex between β-cyclodextrin and furnidipine. J. Pharm. Biomed. Anal.2004,35(1),51-56
    [102]Csernak O, Buvari-Barcza A, Barcza L. Cyclodextrin assisted nanophase determination of alkaloid salts. Talanta,2006,69(2),425-429
    [103]张国丽,唐课文,黄可龙,等.紫外光谱研究β-环糊精衍生物与α-环己基扁桃酸的包结作用.光谱实验室,2007,24(2):81-85
    [104]Huang D, Huang K, Chen S, et al. Racemic alpha-cyclohexyl-mandelic acid resolution across hollow fiber supported liquid membrane. Chem. Biochem. Eng. Q.,2008,22(4):447-452
    [105]Senanayake C H, Bakale R P, Fang Q K, et al. Asymmetric grignard synthesis with cyclic 1,2-aminoalcohols US 6013830[P],2000
    [106]Senanayake C H, Fang K, Grover P, et al. Rigid aminoalcohol backbone as a highly defined chiral template for the preparation of optically active tertiary [alpha]-hydroxyl acids.Tetrahedron Lett.,1999,40:819-822
    [107]Tang K W, Chen Y Y, Huang K L, et al.Enantioselective resolution of chiral aromatic acids by biphasic recognition chiral extraction. Tetrahedron:Asymmetry, 2008,18:2399-2408
    [108]Lopez J L, Matson S L. A multiphase/extractive enzyme membrane reactor for production of diltiazem chiral intermediate. J. Membr. Sci,1997,125: 189-211
    [109]Hallett A J, Kwant G J, de Vries J G. Continuous Separation of racemic 3,5-dinitrobenzoyl-amino acids in a centrifugal contact separator with the aid of cinchona-based chiral host compounds. Chem. Eur. J.,2009,15:2111-2120
    [110]阮宗琴,尤进茂,李菊白,等.磺化-β-环糊精的合成及其在毛细管电泳手性拆分中的应用.色谱,2000,18(2):183-186
    [111]聂淑芳,张姝,刘辉,等.新型药用辅料-水溶性β-环糊精聚合物的合成及性质研究.2006第六届中国药学会学术年会,2006
    [112]胡珊珊,吴怡祖,史美仁.β-环糊精手性流动相HPLC法拆分α-环己基扁桃酸对映体.精细化工,2004,21(10):730-732
    [113]傅小芸,孙翠荣,吕建德,等.羟丙基-β-环糊精的取代度和取代位置对毛细管电泳手性药物分离的影响.高等学校化学学报,1997,18(12):1957-1959
    [114]Tang K W, Song L T, Pan Y, et al. Enantioselective partitioning of racemic ibuprofen in a biphasic recognition chiral extraction system. Chin. J. Chem., 2010,28(1):119-124
    [115]金征宇,徐学明,陈寒青.环糊精化学-制备与应用,北京:化学工业出版社,2009:17-18
    [116]Tang K W, Yi J M, Liu Y B, et al. Enantioselective separation of R,S-phenylsuccinic acid by biphasic recognition chiral extraction. Chem:Eng. ScL,2009,64(18):4081-4088
    [118]Matsui Y, Kurita T, Date Y. Complexes of copper(Ⅱ) with cyclodextrins. Bull. Chem. Soc. Jpn.,1972,45(10):3229
    [119]Matsui Y, Kurita T, Yagi M, et al. The formation and structure of copper(Ⅱ) complexes with cyclodextrins in an alkaline solution. Bull. Chem. Soc. Jpn., 1975,48(7):2187-2191
    [120]金瑞祥,何锡文.β-环糊精的双核铜络合物对芳香基氨基酸分子识别的研究.分析科学学报,1997,13(3):177-181

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700