六方相三氧化钨的制备及光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三氧化钨是一种重要的半导体材料,在有机污染物的降解、光解水等方面有着广阔的应用前景,而实现三氧化钨优良的性能依赖于特殊的结构与形貌。因此,研究不同因素对三氧化钨结构、形貌以及光催化性能的影响具有重要的意义。
     本文利用水热法,研究了一价阳离子草酸盐为添加剂对三氧化钨结构与形貌的影响。研究发现,当阳离子为Li+、Na+时,易生成棒状六方相三氧化钨;当阳离子为K+、NH4+时形成六方相三氧化钨纳米线,并聚集成带有孔道的网状结构;当添加剂阳离子为Ru+、Cs+时,得到片状六方相三氧化钨;当添加剂阳离子为H+时,得到片状单斜相三氧化钨。结果表明,随着碱金属阳离子半径的增大,纳米三氧化钨的形貌由一维纳米线向二维纳米片转变;随着碱金属阳离子电负性增加,三氧化钨晶体生长越完全,并引起三氧化钨从六方相到单斜相的转变。
     以光催化降解亚甲基蓝溶液为模型,首先考察了晶型对光催化性能的影响,研究发现六方相三氧化钨光降解效率在30.0%以上,大于单斜相三氧化钨的光降解效率(21.4%)。本文进一步考察了不同形貌对六方相三氧化钨催化性能的影响,结果表明:当添加剂为K2C204时,由于三氧化钨聚集成网状结构,比表面积为93.73 m2/g,光降解效率最大,达到74.5%;同时发现,纳米棒的光降解效率在44.5%左右,大于纳米片的光降解效率(32.0%左右)。
     以乙二胺四乙酸二钠和左旋酒石酸钠为添加剂,分别制备了形貌较为少见的针状以及碟状的三氧化钨。以酒石酸为添加剂,考察了分子手性对光催化性能的影响。通过光吸收性能分析,左旋酒石酸为添加剂制备的三氧化钨光降解效率大于右旋酒石酸。
     此外,研究了水热温度与水热时间对制备六方相三氧化钨的影响,得到结论:三氧化钨晶体的生长随着水热温度的升高而更加完全,晶粒尺寸变大,其对亚甲基蓝溶液光降解效率降低;同样,时间的延长有助于三氧化钨晶体的进一步生长,但其对亚甲基蓝溶液光降解效率有所下降。
WO3 is a kind of important semiconductor material with excellent performance and has a wide variety of applications in degradation of organic pollutions, photodecomposition of water and other aspects. However, the performance improvement of WO3 depends on its special structure and morphology. Therefore, it's very important to study the effects of different factors on the crystal structure, morphology and photocatalytic activity of WO3.
     Hydrothermal method was used in this paper to investigate the influence on the structures and morphologies of WO3 when using the alkali metal cation oxalate as additives. The results show that nanorods structure hexagonal WO3(h-WO3)were synthesized when the monovalent cations are Li+ and Na+;while K+ and NH4+ induce the formation of h-WO3 nanowires which gathered into mesh structure with porous; besides, nanoplate structures h-W03 were obtained when using Ru+, Cs+ oxalate as additives; however, the addition of H2C2O4 leads to the formation of monoclinic WO3 nanoplates. It is found that the morphology of WO3 changed from 1D nanowires structures to 2D nanoplates structures with the increase of alkali metal cation radius. With the increase of the electronegativity of alkali metal cations, the WO3 crystals grew more completely and induced the crystal structure of WO3 transformed from hexagonal to monoclinic. In addition, we prepared unusual morphologies of needles and acetabuliform structures WO3 by adding EDTA-2Na and L(+)-sodium tartaric as additives respectively.
     In this paper, the photocatalytic degradation of methylene blue(MB) solution was used as model to investigate the photocatalytic properties of as-prepared WO3. We firstly investigated the influence of crystal structure on the photocatalytic properties of WO3, the results indicate that hexagonal WO3 exhibited higher photocatalytic activity than monoclinic WO3. The degradation rate of MB after 2h UV irradiation is over 30.0% with the h-WO3 as catalyst. While the degradation rate of MB is only 21.4% with monoclinic WO3 as catalyst. Further more, the effect of different morphologies on the photocatalytic properties of h-WO3 was also discussed. It was found that the WO3 prepared with K2C2O4 as additive shows the highest photocatalytic activity due to the network nanowires structure with high specific surface area of 93.73 m/g. Meanwhile, the results indicate that the degradation rate of MB with nanowires WO3 as catalyst is about 44.5%, higher than 32.0% when using the nanoplates WO3 as catalyst.
     In addition, the influence of molecule chirality on photocatalytic performance of products was also investigated by addition of tartaric acid. The results show that WO3 prepared with L(+)-tartaric acid as additive shows better photodegradation activity than that of WO3 synthesized by adding D(+)-tartaric acid.
     Finally, the impact of hydrothermal temperature and reaction time on the preparation of hexagonal WO3 was studied and reached the following conclusions:the WO3 crystal grew more perfect and bigger with increasing hydrothermal temperature, while showed lower photodegradation efficiency of MB. Meanwhile, longer reaction time contributed to the further growth of WO3 crystal, but weakened the performance of photocatalytic degradation of MB.
引文
[1]朱红.纳米材料化学及其应用.北京:清华大学出版社;北京交通大学出版社,2009
    [2]T S Wee. Selected topics in nanoscience and nanotechno-logy. Singapore:World Scientific Publishing Co. Pte. Ltd,2009
    [3]J Zhanga, XL Wanga, XH Xia. Electrochromic behavior of WO3 nano-tree films prepared by hydrothermal oxidation. Solar Energy Materials and Solar Cells, 2011,10(7):10-16
    [4]李晓俊,刘丰,刘小兰.纳米材料的制备及应用研究.济南:山东大学出版社,2006:101~193
    [5]李娟香,赵建勋.浅析城市污水处理与再生利用.神州,2010,12:25~28
    [6]Kraeutler A J Bard. Semiconductor photocatalysis reviews. Am Chem Soc,1978, 100 (101):2339-2345
    [7]解恒参,朱亦仁.三氧化钨的光催化氧化性能研究.工业用水与废水,2004,35(4):45~48
    [8]Regis E. Nano:The Emerging Science of Nanotechnology:Remaking the word-Molecule by Molecule. Boston:Little Brown and Company,1995
    [9]Cole B, Marsen B, Miller E L, et al. Evaluation of nitrogen doping of tungsten oxide for photoelectrochemical water splitting. Phys. Chem. C,2008,112 (13): 5213-5220
    [10]Kenneth P. Reis, E. Prince. Rietveld Analysis of NaxWOx·yH2O, Which Has the Hexagonal Tungsten Bronze Structure. Chem. Mater,1992,4 (6):307-312
    [11]M Stanley Whittingham. Hydrothermal synthesis of transition metal oxides under mild conditions. Solid State and Materials Science,1996,1 (1):227-232
    [12]杨娇.水热法制备六方相三氧化钨及光催化性能:[本科学位论文].长沙:中南大学,2010
    [13]王春雷.水相半导体纳米晶的设计制备与生长机理研究:[博士学位论文].吉林:吉林大学,2008
    [14]Shinichi Komaba, Naoaki Kumagai, Keiko Kato, et al. Hydrothermal synthesis of hexagonal tungsten trioxide from Li2WO4 solution and electrochemical lithium intercalation into the oxide. Solid State Ionics,2000,135:193-197
    [15]Kai Huang, Shen Y. Preparation of WO3 nanoparticles and application to NO2 sensor. Appl. Surf. Sci,2009,256 (4):1050-1053
    [16]XC Song, YF Zheng, E Yang, et al. Large-scale hydrothermal synthesis of WO3 nanowires in the presence of K2SO4. Materials Letters,2007,61:3904-3908
    [17]嵇天浩,侯少凡,杜海燕,等.六方相W03纳米带的制备与表征.无机化学学报,2009,25(5):818~822
    [18]Qingjun Sun,Jianmin Luo,Zhengfeng Xie, et al. Synthesis of Monodisperse WO3·2H2O Nanospheres by Microwave Hydrothermal Process With L(+)Tartaric Acid as a Protective Agent. Materials Letters.2008,62(17):2992-2994
    [19]黎先财,汪文娟,杨沂凤,等.H202氧化-水热结晶法合成纳米W03的研究.稀有金属,2005,29(3):377~380
    [20]J.D.Wang, Xintai Sua, Feng Xiao, et al. Synthesis of uniform WO3 square nanoplates via an organic acid-assisted hydrothermal process. Materials Letters, 2010,64:1232-1234
    [21]Xiang Q, Meng G F, Zhao H B, et al. Au nanoparticle modified WO3 nanorods with their enhanced properties for photocatalysis and gas sensing. J. Phys. Chem. C,2010,114 (5):2049-2055
    [22]S. Salmaoui, F. Sediri, N. Gharbi, et al. Characterization of h-WO nanorods synthesized by hydrothermal process. Polyhedron,2010,10:1771-1775
    [23]Kenneth, Sclafani A, Palmisano L. Influence of platinum on catalytic activity of polycrystalline WO3 employed for phenol photodegradation in aqueous suspension. Sol. Energy Mater. Sol. Cells,1998,51 (2):203-219
    [24]Asim N, Radiman S, Yarmo M A. Synthesis of WO3 in nanoscale with the usage of sucrose ester microemulsion and CTAB micelle solution. Mater. Lett,2007,61 (13):2652-2657
    [25]Szilagyi I M, Madarasz J, Pokol G, et al. Stability and controlled composition of hexagonal WO3. Chem. Mater,2008,20 (12):4116-4125
    [26]Sun Mu, Xu Nmg, Cao Y W, et al. Preparation, microstructure and photochromism of a new nanocrystalline WO3 films. Science lett,2000,19 (20): 1407-1409
    [27]何天平,彭子飞.微乳法制备纳米级W03粉体.合成化学,1997,1(1):12~19
    [28]魏小兰,沈培康.稳定W03乳液的制备及其电变色性能的研究.功能材料,2004,35(6):752~754
    [29]Tamaki J, Zhang Z, Akiyama M, et al. Grain-Size Effects in Tungsten Oxide-Based Sensor for Nitrogen Oxide. Electrochem Soc,1994,141(8): 2207-2210
    [30]Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354 (126): 56-58
    [31]C. Ma, D. Moore, J. Li. Nanobelts, Nanocombs and n-anowindmills of Wurtzite ZnS. Adv. Mater,2003,15 (69):228-231
    [32]Huang M H, Wu Y Y, Feick H, et al. Catalytic growth of zincoxide nanowires byvapor transport. Adv. Mater,2001,13 (26):113-116
    [33]Jing Yu Lao, Jian Guo Wen, Zhi Feng Ren. Letter Hierarchical ZnO Nanostructures. Nano Letters,2002,2 (11):1287-1291
    [34]Y Yao, S T Lee, F H Li. Direct synthesis of 2H-SiC nanowhiskers,2003,381 (269):628-633
    [35]HW Kroto, Yan Qiu Zhu.3D Silicon oxide nanostructures:from nanoflowers to radiolarian. J Mater Chem,1998,8 (8):1859-1864
    [36]Oranuch Yayapao, Titipun Thongtem. CTAB-assisted hydrothermal sy-nthesis of tungsten oxide microflowers. Journal of Alloys and Compounds,2010,10(111): 1-20
    [37]X.T.Su, F.Xiao. Hydrothermal synthesis of uniform WO3 submicrospheres using thiourea as an assistant agent, materials characterization,2010,61 (102): 831-834
    [38]S. Salmaoui, F. Sediri, N. Gharbi. Characterization of h-WO3 nanorods synthesized by hydrothermal process. Polyhedron,2010,29:1771-1775
    [39]Huili Xu, Zhude Xu, Xiaofei Han. The effect of pH on the hydrothermal synthesis of different crystal tungsten oxide nanorod. Adv. Mater,2005,13 (26): 113-116
    [40]Yu S H, Qian Y T. Self-Organized Nanoscale Materials. In:Lockwood D J, Adachi M, eds. Springer Publisher,2006,114
    [41]Zhanjun Gu, Huiqiao Li, Tianyou Zhai, et al. Large-scale synthesis of single-crystal hexagonal tungsten trioxide nanowires and electrochemical lithium intercalation into the nanocrystals. Journal of Solid State Chemistry,2007,180: 98-105
    [42]Maria-Magdalena Titirici, Markus Antonietti, Arne Thomas. A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach. Chemistry of materials,2006,18 (16):3808-3812
    [43]HM Xiao, SY Fu, LP Zhu. Controlled synthesis and characterization of CuO nanostructures through a facile hydrothermal route in the presence of sodium citrate. European Journal of Inorganic Chemistry,2007,14 (11):1966-1971
    [44]Robert Menzel, Ana M. Peiro, James R. Impact of Hydrothermal. Processing Conditions on High Aspect Ratio Titanate Nanostructures. Chem Mater,2006, 18 (25):6059-6068
    [45]D Reyes-Coronadol, G Rodriguez-Gattornol, M E Espinosa-PesqueiraPhasepure TiO2 nanoparticles:anatase, brookite and rutile. Nanotechnology,2008,19 (14): 5605-5618
    [46]B Nagappa, G T Chandrappa, Jacques Livage. Synthesis characterization and applications of nanostructural/nanodimensional metal oxides. Pramana,2005,65 (23):917-923
    [47]Park H, Choi W. Effects of TiO2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors. J. Phys. Chem. B,2004,108 (13): 4086-4093.
    [48]Ying Zhou, Kathrin Vuillel, Andre Heel, et al. Studies on Nanostructured Bi2WO6:Convenient Hydrothermal and TiO2-Coating Pathways. Inorganic Chemistry,2009,635 (33):1848-1855
    [49]Ragnar Kiebach, Nicole Pienack, Wolfgang Bensch, et al. Hydrothermal Formation of W/Mo-Oxides:A Multidisciplinary Study of Growth and Shape.Chem Mater,2008,20 (9):3022-3033
    [50]Lingna Sun, Qingrong Guo, Xinglong Wu, et al. Synthesis and Photo luminescent Properties of Strontium Tungstate Nanostructures. J Phys Chem C, 2007,111 (2):532-537
    [51]Meng D, Yamazaki T, Shen Y, et al. Preparation of WO3 nanoparticles and application to NO2 sensor. Appl. Surf. Sci,2009,256 (4):1050-1053
    [52]Yue Wu, Zhonghe Xi, Gengmin Zhang. Growth of hexagonal tungsten trioxide tubes. Journal of Crystal Growth,2006,292 (390):143-148
    [53]Zhou J, Ding Y, Deng S Z, et al. Three-Dimensional Tungsten Oxide Nanowire Networks, Adv. Mater,2005,175 (160):2107-2110
    [54]Giulio M D, Manno D, Micocci G, et al. Sputter Deposition of Tungsten Trioxide for Gas Sensing Applications. Journal of Materials Science,1998,9 (4): 317-322
    [55]Liu Z W, Bando Y. Synthesis of Tungsten Oxide Nanowires. Chem. Phys. Lett, 2003,372(500):179-182
    [56]Niklasson G A, Klasson J. Absorption in Tungsten Oxide Nanoparticle Aggregates. Electrochimica Atca,2001,46 (20):1967-1971
    [57]Zhang H R, Feng M, Liu F, et al. Structures and Defects of WO3-X Nan orods Grown by in-situ Heating Tungsten Felament. Chern. Phys. lett,2004,389 (440): 337-341
    [58]Abe R, Takata T, Sugihara H, et al. Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3-/I- shuttle redox mediator. Chem. Commun,2005 (30):3829-3831
    [59]Hodes G, Cahen D, Manassen J. Tungsten trioxide as a photoanode for a photoelectrochemical cell/PEC. Nature,1976,260:312-313
    [60]Gratian. Recent progress in the development of visible light-driven powdered photocatalysts for water splitting. Int. J. Hydrogen Energy,2007,32(14): 2673-2678
    [61]刘琼莎.WO3-x光解水催化剂结构与性能关系研究:[硕士学位论文].长沙.中南大学,2008
    [62]杜俊平,李洁,等.低量La3+掺杂WO3的表征及其光解水催化性能的研究.有色金属(冶炼部分),2008,1:48~51
    [63]Linsebigler A L, Lu G, Yates T, et al. Photocatalysis on WO3 surfaees:Principle, Mechanism and seteeted results. ChemRev,1995,95(5):735-758
    [64]雷东成,王大珲.水处理高级氧化技术,北京:化学工业出版社.2001
    [65]Chen Jian, Ollis David F, Rulkens Wim H, et al. Kinetic processes of photocatalytic mineralization of alcohols on metallized titanium dioxide. Wa-ter Research,1999,33 (5):1173-1180
    [66]宋继梅,胡晨.正交相三氧化钨的制备及其光催化次甲基蓝性质研究.中国钼业,2009,33(3):22~26
    [67]李芳柏,古国榜WO3/TiO2纳米材料及催化性能.物理化学学报,2000,16(11):997~1002
    [68]Kranthi K. Akurati, Andri Vital, Jean-Philippe Dellemann, et al. Flame-made WO3/TiO2 nanoparticles:Relation between surface acidity, structure and photocatalytic activity. Applied Catalysis B:Environmental,2008,79 (26): 53-62
    [69]Hoffman M R, Martin S T, Choi W, et al. Environmental application of semiconductor photocatalysi-s. Chemical Reviews,1995,95 (25):69-96
    [70]吴辉,党炜,李成芳,等.TiO2光催化氧化亚甲基蓝的动力学研究.化学与生物工程,2009,26(25):36~39
    [71]崔玉民,张文保.纳米W03光催化甲基橙脱色单的研究.稀有金属,2006,30(6):783~788
    [72]Guangli Huang, Yongfa Zhu. Synthesis and photocatalytic performance of ZnWO4 catalyst. Materials Science and Engineering:B,2007,139:201-208
    [73]Sheng Wang, Xiaoliang Shi, Gangqin Shao,et al.Preparation, characterization and photocatalytic activity of multi-walled carbon nanotube-supported tungsten trioxide composites. Journal of Physics and Chemistry of Solids,2008,69: 2396-2400
    [74]于听,等.纳米W03光催化降解苯酚废水的研究.徐州师范大学报,2008,26(4):72~75
    [75]C. Martin, I. Martin. V. Rives, G. Solana. Physicochemical characterization of WO3/ZrO2 and WO3/Nb2O5 catalysts and their photoactivity for 4-nitrophenol photooxidation in aqueous dispersion.J. Mater. Science,1997,32:6039-6047
    [76]Takeo Arai. Nanocrystalline tungsten oxide thin film:preparation, microstructure, and photochromic behavior. J. Mater. Res,2000,15 (4):927-933
    [77]Cheng-Fang Lin, Chung-Hsin Wu, Zong-Nan Onn. Degradation of 4-chlorophenol in TiO2, WO3, SnO2 TiO2/WO3 and TiO2/SnO2 systems. Journal of Hazardous Materials,2008,154:1033-1039
    [78]H.X.Li, Z.F.Bian, J.Zhu, et al. Mesoporous titania sphereswith tunable chamber structure and enhanced photocatalytic activity. J.Am.Chem.Soc,2007,129(27), 8406-8407
    [79]H.Yamashita, Y.Ichihashi, M.Anpo, et al. Photocatalytic decomposition of NO at 275K on titannium oxides included within Y-zeolite cavities:The structure and role of the active sites. J.Phys.Chem,1996,100:16041-16044
    [80]祖庸,雷闫盈,李晓娥,等.纳米Ti02一种新型无机抗菌剂.现代化工,1999,19:46~48
    [81]鹿院卫,马重芳,王伟,等.纳米光催化杀菌技术研究进展.北京工业大学学报,2006,32(7):622~626
    [82]C.Hu, J.Guo, J.H.Qu, et al. Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation. Langmuir,2007,23(9):4982-4987
    [83]桥本和仁.光触媒反应的原理.工业材料,1997,45(10):31~35
    [84]Di Chen, Jinhua Ye. Hierarchical WO3 Hollow Shells:Dendrite, Sphere, Dumbbell, and Their Photocatalytic Properties. Adv. Funct. Mater,2008,18: 1922-1928
    [85]Thomas L. Sounart, Jun Liu, James A. Voigt, et al. Secondary Nucleation and Growth of ZnO. J. AM. CHEM. SOC,2007,129:15786-15793
    [86]Tierui Zhang, Wenjun Dong, Mary Keeter-Brewer, et al. Site-Specific Nucleation and Growth Kinetics in Hierarchical Nanosyntheses of Branched ZnO Crystallites. J. AM. CHEM. SOC,2006,128:10960-10968
    [87]Zhanjun Gu, Tianyou Zhai, Bifen Gao,et al. Controllable Assembly Of WO3 Nanorods/Nanowires into Hierarchical Nanostructures. J. Phys. Chem,2006,110: 23829-23836
    [88]Xiaoping Shen, Wu Z, Panaitescu E, et al. Ultra-high-aspect-ratio titania nanotubes. Adv. Mater,2007,19 (7):946-948
    [89]S.R.Nataraj, Marsen B, Miller E L, et al. Controlled Growth of WO3 Nanostructures with Three Different Morphologies and Their Structural, Optical,and Photodecomposition Studies. J. Phys. Chem. C,2008,112 (13): 5213-5220
    [90]Alexej Michailovski, Ragnar Kiebach, Wolfgang Bensch, et al. Morphological and Kinetic Studies on Hexagonal Tungstates. Chem. Mater.,2007,19:185-197
    [91]J.H.Ha, P.Muralidharan, D.K.Kim. Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts. J. Alloys Compd, 2009 (475):446
    [92]Z.J.Gu, H.Q.Li, T.Y.Zhai, et al. Large-scale synthesis of single-crystal hexagonal tungsten trioxide nanowires and electrochemical lithium intercalation into the nanocrystals.Journal of solid state chemistry,2007,180:98
    [93]H.Hassani, E.Marzbanrad, C. Zamani, et al. Effect of hydrothermal duration on synthesis of WO3 nanorods. J Mater Sci:Mater Electron,2011,83:946-948

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700