环状芳香半频哪醇引发可控自由基聚合的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了具有环状芳香半频哪醇结构的引发剂在聚合反应过程中的可逆断裂偶合机理,并依据此机理应用到各种聚合反应体系中。主要研究内容如下:
     1.双氧杂蒽二醇引发剂分解生成的半频哪醇自由基与聚马来酸酐/异戊二烯(MAH/IP)交联微球表面的乙烯基双键加成反应,制得微球表面带有引发剂片段的聚合物MAH/IP-XTOH,以MAH/IP-XTOH为大分子引发剂釆用溶液聚合法引发不同单体(MMA、St、BA)聚合反应,合成核壳微球。探讨反应过程中转化率、时间、粒径之间的关系。结果表明,聚合过程中单体转化率和微球粒径都随反应时间增加而增加,微球体积随转化率增加而近似线性增加,得到微球粒径均匀性和单分散性较好,变异系数小。
     2.双氧杂蒽二醇分解生成的半频哪醇自由基与聚丁二烯橡胶(PB)侧链乙烯基双键发生加成反应,得到PB侧链上带有引发剂片段的聚合物PB-XTOH。以PB-XTOH为大分子引发剂釆用溶液聚合法引发MMA单体聚合反应,合成PB-g-PMMA聚合物。
     3.采用还原偶合羰基化合物的方法把ITX合成频哪醇结构的双异丙基硫杂蒽酮BITX。在加热和光照条件下,BITX裂解生成半频哪醇自由基引发单体聚合,研究了自然光引发本体聚合、可见光引发本体聚合、热引发本体聚合和热引发溶液聚合等不同聚合体系的自由基聚合特征。得到不同反应体系聚合特征为:在单体转化率40%以前,单体转化率随反应时间增加而增加,分子量随转化率增加而近似线性增加,从1万增长到6万左右,但分布指数也随转化率增加而增加。
     4.利用ITX在可见光和热作用下合成高分子量PMMA。ITX在低温14度可见光引发MMA本体聚合,分子量在280万左右。ITX在高温80度热引发MMA本体聚合,分子量随ITX浓度的增加而减少,从ITX浓度0.2%时的1600万下降到ITX浓度4%时的750万。
In this paper, the reversible breaking and coupling mechanism ofsemipinacol radicals to initiate living radical polymerization was explored.Anthracene diols initiator was applied to a variety of the polymerizationsystem based on this mechanism. The main contents were listed as followed:
     1. MAH/IP-XTOH microspheres containing initiator fragments on itssurface was prepared by the addition reaction between semipinacol radicalsgenerated from the homolytic cleavage of9,9’-bixanthydrol (BXAN) initiatorand double bond on the surface of the cross-linked microspheres ofpolymaleic anhydride/isoprene. Analysis of IR and UV spectroscopyconfirmed the presence of the initiator fragments on the surface ofcross-linked microspheres. Using the MAH/IP cross-linked microspherecontaining BXAN fragment as a macroinitiator, the solution polymerization ofdifferent monomer (MMA, St, BA) was carried out, and core-shellmicrosphere was obtained. The relationship between the conversion, reactiontime, particle size was explored. In the polymerization process, the monomerconversion and the core-shell microsphere size both increased with reaction time, the volume of the core-shell microspheres increased linearly with theconversion. SEM measurements indicated that the core-shell microsphereshad good uniformity, monodisperse and coefficient of variation.
     2. PB-XTOH polymer containing initiator fragments in its side chain wasprepared by the double bond addition reaction between semipinacol radicalsgenerated from the homolytic cleavage of9,9’-bixanthydrol initiator andpolybutadiene rubber. Using the PB-XTOH polymer containing BXANfragment as a macroinitiator, the solution polymerization of MMA was carriedout, and a PB-g-PMMA copolymer was obtained.
     3.9,9’-biisopropylthioxanthene-9,9’-diol(BITX) was synthesized byreductive coupling of two isopropyl thioxanthone(ITX) molecules.Semipinacol radicals generated from the homolytic cleavage of BITX initiatorin the heating and lighting conditions initiated polymerization of monomer.Radical polymerization characteristics of the different polymerization systemwhich contains MMA bulk polymerization with natural light, MMA bulkpolymerization with visible light, MMA bulk polymerization with heat andMMA solution polymerization with heat has been studied. The mainpolymerization characteristics of the different polymerization system werelisted as followed: The monomer conversion increased with reaction time, themolecular weight increased linearly with the conversion from10000to60000,the molecular weight distribution was in the range1.3to3.
     4. The high molecular weight of PMMA was synthesized by isopropyl thioxanthone(ITX) in the visible light or heat. ITX initiated bulkpolymerization of MMA with visible light at14℃, the molecular weight ofPMMA was about2.8million. ITX initiated bulk polymerization of MMAwith avoid light at80℃. The molecular weight is reduced with the increase ofthe concentration of ITX, the molecular weight decline to7.5million in theITX concentration of4%from16million in the ITX concentration of0.2%.
引文
[1] Szwarc M,Levey M,Milkovich R. Polymerization Initiated by Electron Transfer toMonomer. A New Method of Formation of Block Polymers [J]. Journal of theAmerican Chemical Society,1956,78(11):2656-2657
    [2] Miyamoto M, Sawamoto M, Higashimura T. Living Polymerization of Isobutyl Vinylwith the Hydrogen Iodide Initiating[J]. Macromolecules,1984,17(3):265-268
    [3] R Faust, A Nagy, J P Kennedy. Living carbocationic polymerization.5.Linear telechelicpolyisobutylenes by bifunctional initiators[J]. Journal of Macromolecular Science, PartA: Pure and Applied Chemistry,1987,24(6):595-609
    [4] Mayadunne R T A, Rizzardo E, Chiefari J, etal. Living Polymers by the Use ofTrithiocarbonates as Reversible Addition-Fragm entation Chain Transfer(RAFT)Agents:ABA Tribloek Copolymers by Radical Polymerization in Two Steps[J].Macromolecules.2000,33(2):243-245
    [5] Wang J S, Matyjaszewski K. Controlled “Living” Radical Polymerization. AtomTransfer Radical Polymerization in the Presence of Transition-Metal Complexes[J].Journal of the American Chemical Society,1995,117(20):5614-5615
    [6] Georges M K, Veregin R P N, Kazmaier P M, etal. Narrow Molecular Weight Resinsby a Free-Radical Polymerization Process[J]. Macromolecules,1993,26(11):2987-2988
    [7] Georges M K, Veregin R, Kazmaier P M, Hamer G K. Narrow molecular weight resinsby a free-radical polymerization process[J]. Macromolecules,1993,26:2987-2988
    [8] Eva Harth, Craig J. Hawker. Chain End Functionalization in Nitroxide-Mediated“Living” Free Radical Polymerizations [J]. Macromolecules,2001,34(12),3856-3862
    [9] Thodoris Tsoukatos, Stergios Pispas, Nikos Hadjichristidis. Complex macromoleculararchitectures by combining TEMPO living free radical and anionic polymerization[J].Macromolecules,2000,33:9504-9511
    [10] Y. K. Chong, Frances Ercole, Graeme Moad, Ezio rizzardo, San H. Thang.Imidazolidinone nitroxide-mediated polymerization [J]. Macromolecules,1999,32(21):6895-6903
    [11] Didier Benoit, Eva Harth, Peter Fox, Robert M. Waymouth, Craig J. Hawker. AccurateStructural Control and Block Formation in the Living Polymerization of1,3-Dienes byNitroxide-Mediated Procedures[J]. Macromolecules,2000,33:363-370
    [12] P. Najafi,Mogaddam,A. Entezami. Synthesis of triblock copolymers of styrene andisoprene by a nitroxide-mediated living free radical polymerization[J]. Chinese Journal ofPolymer Science.2004,22(1):55-61
    [13] Gao Long-cheng, Pan Qi-wei,Fan Xing-he,Chen Xiao-fang, Wan Xin-hua, ZhouQi-feng. Synthesis of Poly (styrene-b-isoprene-b-styrene)via Nitroxide-mediated RadicalPolymerization by a Novel Alkoxyamine[J]. CHEM. PES. CHINESE U.,2005,21(5),615-618
    [14] Otsu T, Matsunaga T, Yoshioka M. Living radical polymerization through the use ofiniferters: Controlled synthesis of polymers [J]. European Polymer Journal,1989,25(8),643-650
    [15] Otsu T. Iniferter concept and living radical polymerization [J]. Journal of PolymerScience Part A: Polymer Chemstry,2000,38(12),2121-2136
    [16] A Bledzki, D Braun. Polymerization von methylmethacrylate mit1,1,2,2-tetraphenyl-1,2-diphenoxyethan[J]. Makromol Chem,1981,182(4):1047-1056
    [17] Andrezj Bledzki, Dietrich Braun, Klaus Titzschkau. Polymerisation sausl sung mitsubstituierten ethanen,6. Polymerisation von methylmethacrylat mit verschiedenentetraphenylethanen[J]. Makromolekulare Chemie,1983,184(4):745-754
    [18] Qin S H, Qiu K Y, Westmorelan d D G, et al. Polymerization of methyl methacrylatewith a thermal iniferter: Diethyl2,3-dicyano-2,3-di(p-tolyl)succinate[J]. J. Appl. Polym.Sci.,2001,80:2566-2572
    [19] Shu-Hui Qin, Kun-Yuan Qiu. Radical polymerization of styrene initiate with a newmultifunctional iniferter[J]. Polymer Bulletin,2000,44(2):123-128
    [20] Jinyu Huang, Hironobu Murata, Richard R. Koepsel, Alan J. Russell. Antibacterialpolypropylene via surface-initiated atom transfer radical polymerization[J].Biomacromolecules,2007,8:1396-1399
    [21] C. P. Reghunadhan Nair, G. Clouet. Block Copolymers via Thermal Polymeric Iniferters.Synthesis of Silicone-Vinyl Block Copolymers[J]. Macromolecules,1990,23(5):1361-1369
    [22] H. Y. Lee, B. S. Kim. Grafting of molecularly imprinted polymers on iniferternanotube[J]. Biosensors and Bioelectronics,2009,25:587-591
    [23] Shu-Hui Qin, Kun-Yuan Qiu. A facile method for synthesis of ABA triblock copolymerswith macro-iniferter technique[J]. Polymer,2001,42(7):3033-3042
    [24] Shu-Hui Qin, Kun-Yuan Qiu. Polymerization of vinyl monomers using a noveltrifunctional iniferter[J]. Journal of Polymer Science Part A: Polymer Chemistry,2000,38(11):2115-2120
    [25] Meizhen Yin, Yajun Cheng, Miaoyin Liu, Jochen S. Gutmann, Klaus Mullen.Nanostructured TiO2films template by amphiphilic dendriteic core-double-shellmacromolecules: from isolated nanorings to continuous2D mesoporous networks[J].Angew. Chem. Int. Ed.,2008,47:8400-8403
    [26] A Bossi, M J Whitcombe, Y Uludag, S Fowler, I Chianella, S Subrahmanyam, I Sanchez,S A Piletsky. Synthesis of controlled polymeric cross-linked coating via iniferterpolymerization in the presence of tetraethyl thiuram disulphide chain terminator[J].Biosensors and Bioelectronics,2010,25:2149-2155
    [27] Chiefari J,Chong(Bill) Y KErcolc F,Rizzardo E.Moad GThang S H,et al. LivingFree-Radical Polymerization by Reversible Addition Fragmentation ChainTransfer: The RAFT Process [J]. Macromolecules,1998,31(16):5559-5562.
    [28] M. Laus, R. Papa, K. Sparnacci. Controlled Radical Polymerization of Styrene withPhosphoryl-and (Thiophosphoryl)dithioformates as RAFT Agents [J]. Macromolecules,2001,34(21),7269-7275
    [29] Yingwu Luo, Xiaoguang Wang, Yue Zhu, Bogeng Li, Shiping Zhu.Polystyrene-block-poly(n-butyl acrylate)-block-polystyrene triblock copolymerthermoplastic elastomer synthesized via RAFT emulsion polymerization[J].Macromolecules,2010,43:7472-7481
    [30] Y. K. Chong, Tam P. T. Le, Graeme Moad, Ezio Rizzardo, San H. Thang. A MoreVersatile Route to Block Copolymers and Other Polymers of Complex Architecture byLiving Radical Polymerization: The RAFT Process [J]. Macromolecules,1999,32(6),2071-2074
    [31] Daniel Boschmann, Philipp Vana. Z-RAFT star polymerizations of acrylates: starcoupling via intermolecular chain transfer to polymer[J].Macromolecules,2007,40:2683-2693
    [32] Yoshiro Mitsukami, Michael S. Donovan, Andrew B. Lowe, Charles L. McCormick.Water-Soluble Polymers. Direct Synthesis of Hydrophilic Styrenic-Based Homopolymersand Block Copolymers in Aqueous Solution via RAFT [J]. Macromolecules,2001,34(7),2248-2256
    [33] Jin-Shan Wang, Krzysztof Matyjaszewski. Controlled/"living" radical polymerization.atom transfer radical polymerization in the presence of transition-metal complexes [J]. J.Am. Chem. Soc.,1995,117(20),5614-5615
    [34] Jin-Shan Wang, Krzysztof Matyjaszewski. Controlled/"Living" Radical Polymerization.Halogen Atom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(II) RedoxProcess [J]. Macromolecules,1995,28(23),7901-7910
    [35] Virgil Percec, Bogdan Barboiu."Living" Radical Polymerization of Styrene Initiated byArenesulfonyl Chlorides and CuI(bpy)nCl [J]. Macromolecules,1995,28(23),7970-7972
    [36] Jin-Shan Wang, Krzysztof Matyjaszewski."Living"/Controlled Radical Polymerization.Transition-Metal-Catalyzed Atom Transfer Radical Polymerization in the Presence of aConventional Radical Initiator [J]. Macromolecules,1995,28(22),7572-7573
    [37] Yang W T, Ranby B. Radical Living Graft Polymerization on the Surface of PolymericMaterials[J]. Macromolecules1996,29,3308-3310
    [38] Xuesong Jiang,Hongjie Xu,Jie Yin. Polymeric amine bearing side-chain thioxanthone asa novel photoinitiator for photopolymerization[J]. Polymer,2004,45:133-140.
    [39] Huadong Bai,Zhenhua Huang,Wantai Yang. Visible light-induced living surface graftingpolymerization for the potential biological applications [J].Journal of Polymer SciencePart A: Polymer Chemistry,2009,47(24):6852-6862
    [40] Asano M, Chen J, Maekawa Y, et al. Novel UV-Induced Photografting Process forPreparing Poly(tetrafluoroethylene)-Based Proton-Conducting Membranes[J]. Journal ofPolymer Science: Part A: Polymer Chemistry,2007,45,2624-2637
    [41] X.Jiang,J.Yin.Dendritic macrophotoinitiator containing thioxanthone and coiniatoramine[J].Macromolecules,2004,37:7850-7853.
    [42]李会玲,杨万泰. ITX/EDAB光引发丙烯酸溶液聚合动力学[J].北京化工大学学报,2001,28,45-47
    [43] Gao X Y, Zhang J S, Zhang L D. Hollow sphere selenium nanoparticles: Their in-vitroanti hydroxyl radial effect[J].Advanced Materials,2002,14(4):290-293
    [44] Huang J X, Xie Y, Li B, Liu Y, Qian Y T, Zhang S Y. In-situ source-template-interfacereaction route to semiconductor CdS submicrometer hollow spheres[J]. Adv Mater,2000,12(11):808-811
    [45] Wu D, Ge X, Zhang Z, Wang M, Zhang S. Novel one-step route for synthesizingCdS/polystyrene nanocomposite hollow spheres[J]. Langmuir,2004,20:5192-5195
    [46] Schuetz P, Caruso F. Copper-assisted weak polyelectrolyte multilayer formation onmicrospheres and subsequent film crosslinking[J]. Adv Funct Mater,2003,13(12):929-937
    [47] Kim S W, Lee W Y, Hyeon T. Fabrication of Hollow Palladium Spheres and TheirSuccessful Application to the Recyclable Heterogeneous Catalyst for Suzuki CouplingReactions[J]. J Am Chem Soc,2002,124(26):7642-7643
    [48] Lok K P, Ober C K. Particle size control in dispersion polymerization ofpolystyrene[J].Can.J.Chem.1985,63:209-216
    [49] Zhang J G, Xu S Q, Kumacheva E. Polymer Microgels: Reactors for Semiconductor,Metal, and Magnetic Nanoparticles[J]. J Am Chem Soc,2004,126(25):7908-7914
    [50] Ober C K, Lok K P, Hair M L. Monodispersed micron-sized polystyrene particles bydispelson polymerization[J]. J Polym Sci, Polym Lett Ed,1985,23:103-108
    [51] Yu D, An J H, Bae J Y, Jung D, Kim S, Ahn S D, Kang S, Suh K S. Preparation andcharacterization of acrylic-based electronic inks by in situ emulsifyier-free emulsionpolymerization for electrophoretic displays[J]. Chem Mater,2004,16:4693-4698
    [52] Okubo M, Yamada A, Matsumoto T. Estimation of morphology of composite polymeremulsion particles by soap titration method[J]. J Polym Sci, Polym Chem Ed,1980,18:3219-3228
    [53] Okubo M, Katsuta Y, Matsumoto T. Studies on suspension and emulsion: peculiarmorphology of composite polymer latex particles produced by seeded emulsionpolymerization[J]. J Polym Sci, Polym Lett Ed,1982,20:45-51
    [54] Wang P H, Pan C Y. Preparation of styrene/acrylonitrile copolymer microspheres andtheir composites with metal particles [J]. Colloid and PolymerScience,2000,278(3):245-249
    [55] Okubo M, Fukami N, Shinohara R. Behavior of nonionic emulsifier molecules on thepreparation of nanoparticles from submicron-sized ionized styrene-methacrylic acidcopolymer particles by the particle dissolution method [J]. Colloid and Polymer Science,1999,277(9):900-904
    [56] Wang P H, Pan C Y. Polymer-metal composite particles: Metal particles onpoly(St-co-MAA) microspheres[J]. Journal of Applied PolymerScience,2000,75:1693-1698
    [57] A lbertsson A C, Carlfors J. Study on epoxy resins modifiedwith polycarbonatepolyurethane[J]. Journal of Applied Polymer Science,1998,68(4):695-705
    [58] Ishizu K. Application of a series of novel curing agent and toughing modified for epoxyresin[J].Progress in Polymer Science,1998,23(8):1383-1408
    [59] Saito R, Okamura S, Ishizu K. Synthesis of poly(vinyl alcohol) core-polystyrene shelltype microspheres Original Research Article[J].Polymer,1995,36(23):4515-4520
    [60] M. Okubo, Y. Konishi, M. Takebe and H. Minami. Preparation of micron-sized,monodispersed, anomalous polymer particles by utilizing the solvent-absorbing/releasingmethod[J]. Colloid and Polymer Science,2000,278(10):919-926
    [61] Yin M Z, Kuhlmann C R W, Sorokina K, etal. Novel fluorescent core-shellnanocontainers for cell membrane transport [J]. Biomacromolecules,2008,9:1381-1389
    [62] Sun H, Hu N F. Electroactive layer-by-layerfilms of heme protein-coated polystyrenelatex beads with poly(styrenesulfonate)[J]. Analyst,2005,130:76-84
    [63] Goncalves O H, Machado R A F, de Araujo P H H, Asua J M. Secondary particleformation in seeded suspension polymerization [J]. Polymer,2009,50(2):375-381
    [64] Okubo M, Hosotani T, Yamashita T, Izumi J. Influence of the swelling state of seedpolymer particles with monomer on the morphology of micron sized monodispersedcomposite polymer particles produced by seeded polymerization utilizing the dynamicswelling method[J]. Colloid&Polymer Science,1997,275(8):888-892
    [65] Wang Q, Liu L Y, Yang W T. A novel and facile approach for preparing compositecore-shell particles by sequentially initiated grafting polymerization[J].Polymer,2007,48:6581-6588
    [66] Song J S, Winnik M A. Monodisperse, micron-sized reactive low molar mass polymermicrospheres by two-stage living radical dispersion polymerization of styrene[J].Macromolecules,2006,39:8318-8325
    [67] Chen Zhijun, Peng Kai, Fang Shaoming, Qian Junfeng, Li Dingding, Jia Lujun, MaoXiaofeng. Preparation of magnetic polystyrene nanoparticles by the controlled/”living”free radical polymerization of styrene [J]. Acta Phys-Chim Sin,2007,23(3):349-354
    [68] Min K, Matyjaszewski K. Atom transfer radical dispersion polymerization of styrene inethanol[J]. Macromolecules,2007,40:7217-7222
    [69] Yang W T, R nby B. Radical living graft polymerization on the surface of polymericmaterials [J]. Macromolecules,1996,29(9):3308-3310
    [70] Ma H M, Davis R H, Bowman C N. A novel sequential photoinduced living graftpolymerization [J]. Macromolecules,2000,33(2):331-335
    [71] Hekmatshoar R, Yavari I, Beheshtiha Y S, Heravi M M. Reductive coupling of carbonylcompounds to pinacols with zinc in THF-saturated aqueous ammonium chloride[J].Monatshefte für Chemie,2001,132(4):689-691
    [72]高冬,刘莲英,杨万泰.含Bixan残基的大分子引发剂引发自由基聚合制备嵌段共聚物[J].北京化工大学,2009,36(2):49-52
    [73] C. P. Reghunadhan Nair, G. Clouet. Block Copolymers via Thermal Polymeric Iniferters.Synthesis of Silicone-Vinyl Block Copolymers [J]. Macromolecules,1990,23(5):1361-1369
    [74]尹梅贞,孙玉凤,杨万泰. ITX的光引发特性及机理的研究[J].高分子材料科学与工程,2000,16,140-142

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700