用户名: 密码: 验证码:
分数阶微积分在量子力学和非牛顿流体力学研究中的某些应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文由彼此相关的而又独立的五章组成。第一章为序言,简要介绍了本文所需的数学工具,即分数阶微积分理论和某些特殊函数。在§1.1节中,简要介绍了分数阶微积分的发展历史及其最近的应用,分别给出了Riemann-Liouville(R-L)分数阶积分算子_0D_t~(-β)、分数阶微分算子_0D_t~β(0<Reβ<1)、Caputo分数阶导数D_*~α和Riesz/Weyl分数阶导数_(-∞)D_x~μ(μ>0)的定义和重要性质,并讨论了分数阶积分和微分算子的Laplace变换。在§1.2节中,简单介绍了广义Mittag-Leffler函数E_(α,β)(z)的定义及其某些重要公式。在§1.3节中,给出了H-Fox函数的定义、级数表达式及其基本性质,并讨论了H-Fox函数的特例及其Fourier正弦和余弦积分变换。Fox函数是求解分数阶微分方程的有力工具。本章是后面各章的基础。
     第二章讨论了分数阶微积分在量子力学中的应用,主要研究了一维空间分数阶Schr(?)dinger方程的一些应用。首先,§2.2节给出了自由粒子满足的分数阶Schr(?)dinger方程
     并利用积分变换和H-Fox函数及其性质求得自由粒子的波函数:
     §2.3节求解了如下的无限深方形势阱
     中粒子的波函数和能级分别为:
     §2.4节讨论并求得了粒子贯穿如下方形势垒
     的贯穿系数和反射系数分别为:
     还讨论了具有能量E的粒子通过方形势阱的情形。第二章的最后我们讨论了量子散射问题中与分数阶Schr(?)dinger方程
     等价的广义的Lippmann-Schwinger积分方程
     并同样利用H-Fox函数及其性质确定了其Green函数的形式:
     在第三章中,我们对比广义Oldroyd-B流体的本构关系:引入了修正的现象逻辑学的分数阶导数描述的Darcy定律:
     在描述粘弹性流体的分数阶Darcy定律的基础上,研究了带分数阶导数的广义Oldroyd-B流体在多孔介质中的涡流运动模型:
     我们利用分数阶导数的Laplace变换和Hankel变换,以及广义的Mittag-Leffler函数,分别给出了涡流速度场和温度场的精确解:
     特别得,当η=0时,(17)式简化为广义Oldroyd-B流体在非多孔介质中的涡流速度场的解;而当α=1,β=1时,(17)式化为经典Oldroyd-B流体通过多孔介质的涡流速度场的解。当α=0,λ→0,η=0时,我们便得到广义二阶流体的涡流速度场的解,该结果与沈等人的结果一致,并包含了过去的经典结果作为其特例。
     第四章在描述粘弹性流体的分数阶Darcy定律的基础上,研究了广义Oldroyd-B流体在多孔介质中由于平板的突然启动而引起的流动:即Stokes第一问题。运用Laplace变换和Fox函数的性质,给出了该问题的速度精确解:
     特别地,当η=0时,上述结果就退化为非多孔介质中的广义Oldroyd-B流体的Stokes第一问题的解;当α=1,β=1可得到多孔介质中整数阶Oldroyd-B流体的相关结果;当α=0,λ=0时,可得到多孔介质中广义二阶流体的相关结果;当β=0,λ_t=0时,得到多孔介质中广义二阶流体的解。
     第五章中讨论了带分数阶导数的广义Oldroyd-B流体的非定常Couette流模型:
     应用Laplace变换和Weber变换,以及广义Mittag-Leffler函数,我们得到了该问题的精确解:
     其中A(λ_i,t)=L~(-1)
     特别地,当α=β=1时,该模型简化为经典Oldroyd-B流体的非定常Couette流模型;当β=0,λ_t→0时,结果即为广义Maxwell流体的非定常Couette流的解;当α=0,λ→0时,结果即为广义二阶流体的非定常Couette流的解;当α=0,λ=0,β=0,λ_t=0时,该结果简化为Newtonian粘性流体的非定常Couette流的经典解。
This paper is composed of five chapters, which are independent and correlative to one another. In chapterl, i.e. prologue, the fractional calculus and some special functions are introduced. They are the basic math tools needed in this paper. In section§1.1, the fractional calculus and its development history, current status are introduced concisely, the definitions and the main properties of the Riemann-Liouville fractional integral operator _oD_t~(-β), differential operator_oD_t~(-β)(00) are given. Andthe Laplace transforms of fractional integral and derivative operators are discussed. In section§1.2, the definitions and some important formulae of the generalizedMittag-Leffler function E_(α,β)(z) are given. In section§1.3, the definition of seriesexpression and some basic properties of H-Fox function are outlined. The special cases of Fox function and its Fourier sine and cosine transforms are discussed. H-Fox function is a powerful tool for the solving of the fractional differential equations. This chapter is the basis for the remainder.
     In chapter 2, we investigate some applications of fractional calculus in quantum mechanics. Some physical applications of the space fractional Schrodinger equation are considered. In§2.2, using the properties of H-Fox function, we solve the time-dependent fractional Schrodinger equation for a free particle and give the wave function of it
    In §2.3 the energy levels and the normalized wave functions of a particle in an infinite square potential well
    are given as follows
    respectively. In §2.4 according to the time-independent fractional Schrodinger equation we consider the motion of a particle from a rectangular potential wall
    and give the reflection coefficient
    and the transmission coefficient
    When the particle is passing over a rectangular potential well instead of a potential
    barrier, the above theory still holds, in which . In the last section, the fractional time-independent Schrodinger
     equationand the equivalent Lippmann-Scheinger functionare considered, and the Green's function of it is given
     In chapter 3, by analogy with generalized Oldroyd-B constitutive relationshipwe introduce a modified phenomenological Darcy's law with fractional derivative as followsBased on a modified Darcy's law for a viscoelastic fluid, the circular motion of a generalized Oldroyd-B fluid with fractional derivative model through a porous mediumis investigated. Using the discrete Laplace transform of the sequential fractional derivatives and Hankel transform, exact solutions of velocity and temperature fields are obtained in terms of generalized Mittag-Leffler function In special, whenη= 0, the above result can be simplified to the solution of vortex velocity field for a clear generalized Oldroyd-B fluid (nonporous case), and to be the solution for ordinary Oldroyd-B fluid through porous medium, whenα=1,β=1.Whenα=0,λ→0,η= 0, the solution of vortex velocity field for generalizedsecond grade fluid can be obtained, which is the same as the result obtaied by Shen and includes some past classical results as special.
     In chapter 4, the fractional calculus approach has also been taken into account in the Darcy's law and the constitutive relationship of fluid model. Based on a modified Darcy's law for a viscoelastic fluid, Stokes' first problem is used to solve a generalized Oldroyd-B fluid problem in a porous half spaceBy using the Laplace transform method, an exact solution of Stokes' first problem in the porous half space is obtained as follows As special cases, we can obtain the Stokes' first problems for the generalized second grade fluid, for the fractional Maxwell fluid and for the ordinary Oldroyd-B fluid in porous medium, respectively.
     In chapter 5, the unsteady Couette flow of generalized Oldroyd-B fluid with fractional derivative is studied. The dimensionless equations are:By using the Laplace transform, Weber transform and the generalized Mittag-Leffler function, we obtain the exact solutionSome previous results, such as the solution of unsteady Couette flow of generalized Maxwell fluid and of generalized second grade fluid, and the classical result of Newtonian viscous fluid all can be regarded as special cases of this solution.
引文
[1] R. Hilfer, Applications of Fractional Calculus in Physics [M], World Scientific Press, Singapore, 2000.
    [2] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations[M], John Wiley \& Sons, Inc., New York, 1993.
    [3] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications [M], Gordon and Breach, New York, 1993.
    [4] H. M. Srivastava and R. K. Saxena, Operators of fractional integration and their applications[J], Appl. Math. Comp., 2001, 118: 1-52.34z.
    [5] K. B. Oldham and J. Spanier, The Fractional Calculus [M], Academic Press, New York, 1974.
    [6] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications[M], Academic Press, San Diego, 1999.
    [7] B. B. Mandelbrot, The Fractal Geometry of Nature[M]. Freeman, San Francisco, 1982.
    [8] B. B. Mandelbrot (Translated by Wen Zhiying and Su Hong), Les Objets Fractals: Forme, Hasard et Dimension[M]. World Publishing Corporation, Beijing, 1999.
    [9] B. B. Mandelbrot and M. Frame, Fractals: Encyclopedia of Physical Science and Technology[M]. 2001, 6:185-208.
    [10] H. Takayasu (Translated by Shen Buming, Chang Ziwen), Fractal (Chinese Version)[M]. Earthquake Press, Beijing, 1989.
    [11] A. Carpinteri and F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics[C]. Springer, New York, 1997.
    [12] K. M. Kolwankar, Fractals and differential equations of fractional order[J]. J. Indian Inst. Sci., 1998, 78(4): 275-291.
    [13] R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry[J]. Phys. Stat. Sol. (B), 1986, 133: 425-430.
    [14] T. F. Nonnenmacher and R. Metzler, On the Riemann-Liouville fractional calculus and some recent applications[J]. Fractals, 1995, 3(3): 557-566.
    [15] F. Y. Ren, J. R. Liang and X. T. Wang, The determination of the diffusion kernel on fractals and fractional diffusion equation for transport phenomena in random media[J]. Physics Letter A, 1999, 253(2): 535-546.
    [16] A. Rocco and B. J. West, Fractional calculus and the evolution of fractal phenomena[J]. Physica A, 1999, 265(3): 535-546.
    [17] D. S. Wang and L. Cao, Chaos, Fractal and their Applications(Chinese Version)[M]. Science and Technology Press of China, Hefei, 1995.
    [18] B. B. Mandelbrot et al, Is nature fractal[J]? Science, Feb. 1998, 279(5352).
    [19] V. M. Ovidiu and others, Universality classes for asymptotic behavior of relaxation process in systems with dynamical disorder: dynamical generalizations of stretched exponential[J]. J. Math. Phys., 1996, 37(5): 2279-2306.
    [20] H. Schiessel and A. Blumen, Hierarchical analogues to fractional relaxation equations[J]. J. Phys. A: Math. Gen., 1993, 26: 5057-5069.
    [21] F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena[J]. Chaos, Solitons and Fractals, 1996, 7: 1461-1477.
    [22] Yu. A. Rossikhin and M. V. Shitikova, Analysis of rheologieal equations involving more than one fractional parameters by the use of the simplest mechanical systems based on these equations[J]. Mechanics of Time-Dependents Materials, 2001, 5: 131-175.
    [23] Y. E. Ryabov and A. Puzenko, Damped oscillation in view of the fractional oscillator equation[J]. Phys. Rev. B, 2002, 66: 184-201.
    [24] B. N. N. Achar, J. W. Hanneken and T. Clarke, Damping characteristics ofa fractional oscillator[J]. Physica A, 2004, 339: 311-319.
    [25] R. Hilfer, Fractional diffusion based on Riemann-Liouville fractional derivatives[J]. J. Phys. Chem, B, 2000, 104: 3914-3917.
    [26] J. R. Leith, Fractal scaling of fractional diffusion processes[J]. Signal Processing, 2003, 83: 2397-2409.
    [27] R. Metzler and J. Klafter, Boundary value problems for fractional diffusion equations[J]. Physica A, 2000, 278: 107-125.
    [28] W. R. Schneider and W. Wyss, Fractional diffusion and wave equations[J]. J. Math. Phys., 1989, 30(1): 134-144.
    [29] W. Wyss, The fractional diffusion equation[J]. J. Math. Phys., 1986, 27(11): 2782-2785.
    [30] L. R. da Silva, L. S. Lucena, E. K. Lenzi, R. S. Mendes and K. S. Fa, Fractional and nonlinear diffusion equation: additional results[J]. Physica A, 2004, 344: 671-676.
    [31] V. V. Anh and N. N. Leonenko, Harmonic analysis of random fractional diffusion-wave equations[J]. Applied Mathematics and Computation, 2003, 141: 77-85.
    [32] A. M. A. El-Sayed and F. M. Gaafar, Fractional calculus and some intermediate physical processes[J].Applied Mathematics and Computation, 2003, 144:117-126.
    [33] W. G. Gl(?)ckle and T. F. Nonnenmacher, A fractional calculus approach to self-similar protein dynamics[J]. Biophysical Journal, 1995, 68: 46-53.
    [34] M. Kopf et al, Anomalous diffusion behavior of water in biological tissues[J]. Biophysical Journal, 1996, 70(6): 2950-2958.
    [35] G. Srinivas, A. Yethiraj and B. Bagchi, Nonexponentiality of time dependent survival reactions in polymer chain[J]. J. Chem. Phys., 2001, 114(2): 9170-9179.
    [36] M. Y. Xu and W. C. Tan, Theoretical analysis of the velocity field, stress field and vortex sheet of generalized second order fluid with fractional anomalous diffusion[J]. Science in China Series A, 2001, 44(11): 1387-1399.
    [37] G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport[J]. Phys. Rep., 2002, 371: 461-580.
    [38] M. M. El-Borai, Some probability densities and fundamental solutions of fractional evolution equations[J]. Chaos, Solitons and Fractals, 2002, 14: 433-440.
    [39] I. A. Lopez and W. O. Urbina, Fractional differentiation for the Gaussian measure and applications[J]. Bull. Sci. Math., 2004, 128: 587-603.
    [40] Y. Al-Assaf, R. El-Khazali and W. Ahmad, Identification of fractional chaotic system parameters[J]. Chaos, Solitons and Fractals, 2004, 22: 897-905.
    [41] W. T. Coffey, Y. P. Kalmykov and S. V. Titov, Inertial effects in anomalous dielectric relaxation[J]. Journal of Molecular Liquids, 2004, 114: 35-41.
    [42] R. Hilfer, On fractional diffusion and continuous time random walks[J]. Physica A, 2003, 329: 35-40.
    [43] R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach[J]. Phys. Rep., 2000, 339: 1-77.
    [44] R. R. Nigmatullin and S. I. Osokin, Signal processing and recognition of true kinetic equations containing non-integer derivatives from raw dielectric data[J]. Signal Processing, 2003, 83: 2433-2453.
    [45] M. D. Ortigueira, On the initial conditions in continuous-time fractional linear systems[J]. Signal Processing, 2003, 83: 2301-2309.
    [46] B. M. Vinagre and Y. Q. Chen, Fractional calculus applications in automatic control and robotics[A]. 41st IEEE Conference On Decision and Control[C], Las Vegas, Dec. 2002.
    [47] R. L. Bagley and P. J. Torvik, On the fractional calculus model of viscoelastic behavior[J]. J. Rheol., 1986, 30(1): 133-155.
    [48] R. Metzler and T. F. Nonnenmacher, Fractional relaxation processes and fractional rheological models for the description of a class of viscoelastic materials[J]. Int. J. Plasticity, 2003, 19: 941-959.
    [49] A. Chatterjee, Statistical origins of fractional derivatives in viscoelasticity[J]. Journal of Sound and Vibration, 2005, 284:1239-1245.
    [50] H. Schiessel, R. Metzler, A. Blumen and T. F. Nonnenmacher, Generalized viscoelastic models: their fractional equations with solutions[J]. J. Phys. A: Math. Gen., 1995, 28: 6567-6584.
    [51] S. W. J. Welch, R. A. L. Rorrer and R. G. Duren, JR., Application of time-based fractional calculus methods to viscoelastic creep and stress relaxation of materials[J]. Mechanics of Time-Dependent Materials, 1999, 3: 279-303.
    [52] M. Y. Xu and W. C. Tan, Representation of the constitutive equation of viscoelastic materials by the generalized fractional element networks and its generalized solutions[J]. Science in China Series G, 2003, 46(2): 145-157.
    [53] S. Kempfle, I. Sch(?)fer and H. Beyer, Fractional calculus via functional calculus: theory and applications[J]. Nonlinear Dynamics, 2002, 29:99-127.
    [54] N. Laskin, Fractional quantum mechanics and Levy path integrals[J]. Physics Letters A, 2000, 268: 298-305.
    [55] D. Baleanu and S. I. Muslih, About fractional supersymmetric quantum mechanics[J]. Czechoslovak Journal of Physics, 2005, 55(9): 1063-1066.
    [56] F. B. Adda and J. Cresson, Fractional differential equations and the Schr(?)dinger equation[J].Applied Mathematics and Computation, 2005, 161: 323-345.
    [57] G. Dattoli, Operational methods, fractional operators and special polynomials[J]. Applied Mathematics and Computation, 2003, 141: 151-159.
    [58] M. M. El-Borai, Semigroups and some nonlinear fractional differential equations [J]. Applied Mathematics and Computation, 2004, 149:823-831.
    [59] S. S. de Romero and H. M. Srivastava, An application of the N-fractional calculus operator method to a modified Whittaker equation [J]. Applied Mathematics and Computation, 2000, 115: 11-21.
    [60] K. Y. Chen and H. M. Srivastava, Some infinite series and functional relations that arose in the context of fractional calculus[J]. Journal of Mathematical Analysis and Applications, 2000, 252: 376-388.
    [61] B. B. Mandelbrot, Topics on fractals in mathematics and physics[A]. In: L. H. Y. Chen, Challenges for the 21st Century-Fundamental Sciences (Proceedings of the International Conference on Fundamental Sciences: Mathematics and Theoretical Physics)[C], World Scientific, Singapore, March 2000.
    [62] R. Gorenflo and F. Mainardi, Essentials of Fractional Calculus[M]. MaPhySto Center, preliminary version, 2000.
    [63] T. A. Surguladze, On certain applications of fractional calculus to viscoelasticity [J]. Journal of Mathematical Sciences, 2002, 112(5): 4517-4557.
    [64] I. M. Gel'fand and G. E. Shilov. Generalized Function (Translated by Lin Jianbing) [M]. Science Press, Beijing, (in Chinese), 1984.
    [65] R. Hiller, Foundations of fractional dynamics[J]. Fractals, 1995, 3(3): 549-556.
    [66] R. Hilfer, Fractional dynamics, irreversibility and ergodicity breaking[J]. Chaos, Solitons & Fractals, 1995, 5(8): 1475-1484.
    [67] H. Jin and M. Y. Xu, Exact solutions of fractional second order fluid flow in a pipe [J]. (Chinese Version), Journal of Shandong University (Natural Science), 2003, 38(1): 23-27.
    [68] A. Compte, Phys. Rev. E 53 (1996) 4191.
    [69] E. W. Weisstein, CRC Concise Encyclopedia of Mathematics CD-ROM [M]. CRC Press, Boca Raton, FL, 1999.
    [70] V. V. Anh and N. N. Leonenko, Scaling laws for fractional diffusion-wave equations with singular data[J].Statistics and Probability Letters, 2000, 48(3): 239-252.
    [71] J. M. Sixdeniers, K. A. Penson and A. I. Solomon, Mittag-Leffler coherent states[J]. J. Phys. A: Math. Gen., 1999, 32(43): 7543-7564.
    [72] V. S. Kiryakova, Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus[J]. J. Comp. Appl. Math., 2000, 118: 241-259.
    [73] I. Podlubny, The Laplace Transform Method for Linear Differential Equations of the Fractional Order[M].UEF-02-94, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, 1994.
    [74] B. D. Carter and M. D. Springer, The distribution of products quotients and powers of independent H-function variates[J]. SIAM, J. Appl. Math., 1977, 33(4): 542-558.
    [75] A. M. Mathai and R. K. Saxena, The H-Function with Applications in Statistics and other Disciplines[M]. Wiley Eastern Limited, New Delhi, 1978.
    [76] H. M. Srivastava, K. C. Gupta and S. P. Goyal, The H-function of One and Two Variables with Applications[M]. South Asian Publ., New Delhi, 1982.
    [77] W. G. Gl(?)ckle and T. F. Nonnenmacher, Fractional integral operators and Fox functions in the theory of viscoelasticity[J]. Macromolecules, 1991, 24: 6426-6434.
    [78] Z. X. Wang and D. R. Guo, Introduction to Special Function (Chinese Version) [M]. Peking University Press, Beijing, 2000.
    [79] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
    [80] B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1982).
    [81] N. Laskin, Phys. Lett. A 268, 298 (2000). hep-ph/9910419 v2 22 Oct 1999.
    [82] N. Laskin, Phys. Rev. E 62, 3135 (2000).
    [83] N. Laskin, Phys. Rev. E 66, 056108 (2002). quant-ph/0206098.vl 14 Jun 2002.
    [84] N. Laskin, Chaos 10, 780 (2000).
    [85] Mark Naber, J. Math. Phys. 45, 3339 (2004).
    [86] Charles J. Joachain, Quantum collision theory [M] (Amaterdam-North2 Holland, 1983).
    [87] R. G. Newton, Scattering theory of waves and particles [M] (New York: McGraw-Hill, 1982).
    [88] A. M. Mathai and R. K. Saxena, The H-function with Applications in Statistics and Other Disciplines (Wiley Eastern, New Delhi, 1978).
    [89] W. G.Gl(?)ckle, J. Stat. Phys. 71,741 (1993).
    [90] I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999).
    [91] N. Laskin, arXiv: quant-ph/0504106 vl 14 Apr 2005.
    [92] C. Fetecau, Corina Fetecau, J. Zierep, Decay of a potential vortex and propagation of a heat wave in a second grade fluid, International Journal of Non-Linear Mechanics, 37 (6): 1051-1065, 2002.
    [93] Fang Shen, Wenchang Tan, Yaohua Zhao and T. Masuoka, Decay of vortex velocity and diffusion of temperature in a generalized second grade fluid. Applied Mathematics and Mechanics, vol. 25 No. 10, 2004.
    [94] K. R. Rajagopal and R. K. Bhatnagar, Exact solutions for some simple flows of an Oldroyd-B fluid, Acta Mech., 113,233, 1995.
    [95] T. Hayat, A. M. Siddiqui, and S. Asghar, Some simple flows of an Oldroyd-B fluid, Int. J. Eng. Sci., 39, 135, 2001.
    [96] C. Fetecau and C. Fetecau, The first problem of Stokes for an Oldroyd-B fluid, Int. J. Non-Linear Mech., 38, 1539, 2003.
    [97] C. Fetecau, Analytical solutions for non-Newtonian fluid flow in pipe-like domains, Int. J. Non-Lin. Mech. 39, 225-231, 2004.
    [98] Tong Dengke, Liu Yusong, Exact solutions for the unsteady rotational flow of non-Newtonian fluid in an annular pipe, Int. J. Eng. Sci., 43, 281-289, 2005.
    [99] Tong Dengke, Wang Ruihe, Yang Heshan, Exact solutions for the flow of non-Newtonian fluid with fractional derivative in an annular pipe, Sci. China(Ser. G), 48, 485-495, 2005.
    [100] Moustafa E1-Shahed, Ahmed Salem, Decay of vortex velocity and diffusion of temperature for fractional viscoelastic fluid through a porous medium, Int. Communications in Heat and Mass Transfer, 33, 240-248, 2006.
    [101] B. Khuzhayorov, J. L. Auriault, and P. Royer, Derivation of macroscopic filtration law for transient linear viscoelastic fluid flow in porous media, Int. J. Eng. Sci. 38, 487, 2000.
    [102] J. Jerri Abdul, Integral and discrete transforms with applications and error analysis, Marcel Dekker, INC, 1992.
    [103] J. Zierep, Similarity Laws and Modeling, Marcel Dekker, New York, 1971.
    [104] V. M. Soundalgekar, Stokes problem for elastico-viscous fluid, Rheol. Acta 13, 177-179, 1981.
    [105] K. R. Rajagopal, T. Y. Na, On Stokes' problem for anon-Newtonian fluid, Acta Mech. 48, 233-239, 1983.
    [106] P. Purl, Impulsive motion of a flat plate in a Rivlin-Ericksen fluid, Rheol. Acta 23, 451-453, 1984.
    [107] R. Bandelli, K. R. Rajagopal, G. P. Galdi, On some unsteady motions of fluids of second grade, Arch. Mech. 47(4), 661-676, 1995.
    [108] G. Bohme, Stromungsmechanik nicht-newtonscher fluide B. G. Teubner, Stuttgart, Leipzig, Wiesbaden, 2000.
    [109] V. Tigoiu, Stokes flow for a class of viscoelastic fluids, Rev. Roum. Math. Pures Appl. 45(2), 375-382, 2000.
    [110] C. Fetecau, J. Zierep, On a class of exact solutions of theequations of motion of a second grade fluid, Acta Mech. 150, 135-138, 2001.
    [111] C. Fetecau, C. Fetecau, A new exact solution for the flow of a Maxwell fluid past an infinite plate. Int. J. Non-Linear Mech. 38, 423-427, 2002.
    [112] P. M. Jordan, P. Puri, Stokes' first problem for a Rivlin-Ericksen fluid of second grade in a porous half-space, Int. J. Non Linear Mech. 39, 1019-1025, 2003.
    [113] W. C. Tan, T. Masuoka, Stokes' first problem for a second grade fluid in a porous half-space with heated boundary, Int. J. Non Linear Mech. 40, 515-522, 2005.
    [114] W. C. Tan, T. Masuoka, Stokes' first problem for an Oldroyd-B fluid in a porous half space, Physics of fluid, 17, 023101, 2005.
    [115] C. Friedrich, Relaxation and retardation functions of the Maxwell model with fractional derivatives. Rheologica Acta 30(2): pp. 151-158, 1991.
    [116] R.L.Bagley, A theoretical basis for the application of fractional calculus to viscoelasticity, Journal of Rheology 27(3): pp.201-210, 1983.
    [117] W. C. Tan, W. X. Pan, M. Y. Xu, A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates, International Journal of Non-linear Mechanics 38, 645-650, 2003.
    [118] W. C. Tan, F. Xian, L. Wei, An exact solution of unsteady Couette flow of generalized second grade fluid, Chinese Science bulletin, 47 (21): 1783-1785, 2002.
    [119] S. W. Wang, M. Y. Xu, Exact solution on unsteady Couette flow of generalized Maxwell fluid with fractional derivative, Acta Mechanica, in press.
    [120] M. N. (?)zisik, Heat Conduction, Wiley, New York, 1980.
    [121] F. Mainardi, R. Gorenflo, On Mittag-Leffier-Type function in fractional evolution processes, J. Comput. Appl. Math., 118(2): 283, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700