黔东北梵净山地区晚元古代岩浆活动及其大地构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南中国板块由扬子与华夏两大陆块拼贴而成,出露大量前寒武纪岩石,是研究前寒武纪,特别是中、晚前寒武纪地质演化的良好场所,目前已成为国内外前寒武纪地质研究的热点地区。虽然尚无明确定义,分割华夏与扬子陆块的江南造山带是研究热点。通过近一个世纪的研究,前人积累了大量研究数据,综合分析这些研究数据,本文定义江南造山带为“位于扬子地块与华夏地块之间,发生于新元古代中期,其产物组成江南古陆主体的一个晋宁期造山带”。虽然针对江南造山带的数据很多,但其构造演化模型依然如雾里看花,争议很大。特别是对于造山带西南段,问题更多,远未形成共识。造成这种状况的原因主要包括:(1)详细的地球化学、年代学分析与野外地质关系脱节,未能形成完整的数据体系;(2)关键性年代学数据缺失,未能构造区域地质时代格架;(3)岩石地球化学数据没有与岩石学特点结合,造成数据解释丧失合理性。
     基于上述研究现状,本论文选择黔东北梵净山地区开展详细地质解剖,以期:(1)厘清各种地质单元之间的构造关系;(2)开展详细的年代学研究,建立年代学格架;(3)挑选典型样品进行地球化学分析,探讨不同时代岩石的大地构造属性;(4)综合野外地质关系、岩石学、年代学、地球化学等资料,分析大地构造相;(5)构建江南造山西段构造演化历史,加深对江南造山带的理解。
     梵净山地区出露两套沉积地层,其间为角度不整合:(1)不整合面之下部为梵净山群,主要由变质砾岩(极少量,分布很局限)、砂岩、粉砂岩及泥质岩、大量火山岩组成;往上火山岩含量变少,碎屑岩粒度变细,组成了一个完整的盆地沉积系列。(2)不整合面之上为下江群碎屑岩夹火山岩组合。
     梵净山群中的火山岩夹层具有两种岩石类型:细碧岩(枕状玄武岩)及石英角斑岩(酸性喷出岩),以及与玄武岩渐变过渡的辉绿岩。详细的地质填图工作揭示出大量基性-超基性岩浆岩,以及少量酸性岩浆岩侵入到梵净山群浅变质地层中。火山碎屑岩锆石原位U/Pb同位素测年结果显示,梵净山群地层沉积时代在850-815Ma之间,而不是Zhou et al. (2009)认为的870-800Ma,也不是Wanget al. (2010)认为的800Ma之后。
     详细的年代学研究结果揭示出梵净山地区具有两期基性-超基性岩浆活动,形成两个基性-超基性岩浆岩系列:(1)早期岩浆活动形成梵净山群中的基性火山岩,以及顺层产出的层状辉绿-辉长岩-橄榄辉石岩-辉石橄榄岩。原位锆石U/Pb测年结果表明,该系列基性岩-超基性岩形成时代在856-820Ma之间,与地层沉积同时。详细的地球化学分析结果显示,基性岩具有与富集型洋中脊玄武岩类似的稀土元素配分曲线,但初始地幔标准化微量元素曲线具有明显的Nb、Ta、Sr、P、Ti负异常,表明岩浆受到了地壳物质的强烈混染,以及明显的结晶分异作用。(2)晚期基性岩浆活动时代为815-745Ma,形成辉绿-辉长岩及少量超基性岩,侵入梵净山群地层中。晚期基性岩具有与早期基性岩相同的地球化学特点:球粒陨石标准化稀土元素曲线显示富集型洋中脊玄武岩样式;初始地幔标准化微量元素曲线具有Nb、Ta、Sr、P、Ti负异常。表明两次基性岩浆活动具有相同的成岩源区、相似的岩浆演化过程。但两个岩浆系列间的细微差别表明,早期岩浆可能源自较高程度的地幔局部熔融;而晚期岩浆活动过程中矿物结晶分离程度可能较高。
     在梵净山群地层中发育的石英角斑岩,与基性岩浆岩一起组成双峰式火山岩组合。石英角斑岩SiO_2含量达72%,轻、重稀土均强烈分异,高场强元素也强烈分异,与裂谷型酸性岩浆岩十分相似;具有明显的Ti负异常、中等程度的Nb、Ta、Sr、P负异常,指示遭受明显地壳物质的混染。
     伴随早期岩浆活动,梵净山地区发育高硅、强过铝花岗岩—白云母花岗岩。其SiO_2含量超过72%,A/CNK值大于1.1。稀土元素标准化曲线显示典型的海鸥型,具有明显四分量效应。这种岩石的存在指示上涌软流圈地幔提供了额外热量造成地壳富泥质岩石高温局部熔融。
     综合沉积学、岩石学、地球化学、同位素年代学资料,江南造山带西南段新元古代地质演化大致可分为两个阶段:晋宁I期—860-815Ma,晋宁II期—815-750Ma,其间被梵净山群与下江群之间的角度不整合面分割。两阶段演化均表现为火山裂谷盆地的发育。结合区域地质资料,晋宁I期可能与扬子-华夏陆块之间洋盆的形成有关,梵净山地区的梵净山群代表该洋盆西部末端(现代地理位置)坳拉槽;而晋宁II期显然与大型地幔柱活动有关,是Rodinia超大陆裂解在华南地区的响应。
Voluminous Precambrian rocks expose along the margin of, or within the SouthChina Block (SCB), which have become a hot study-object to reveal the Precambrianhistory of the Earth. The Jiangnan orogenic belt that separates the Yangtze andCathaysian blocks, is one of the hottest topics concerning the SCB geology, regardlessthe fact that this belt has not been well defined. A growing body of geological andgeochronological data led to below definition for the Jiangnan orogenic belt:“a largebelt of middle Neoproterozoic rocks between the Yangtze and Cathaysian blocks, thatcompose the major portion of the previously defined Jiangnan ancient land.”In spiteof numerous previously-published high quality data, no consensus appears on thetectonic evolution of the Jiangnan orogenic belt, especially concerning the westernsegment of this belt. Reasons may include: (1) Field relationship has not beenpositively taken into account in interpreting most geochemical and geochronologicaldata; (2) Some key geochronological data are still absent, which obscured making areasonable tectonic model; and (3) Detail petrological information is commonlyunavailable for most geochemical studies.
     Accordingly, this paper tries to report a detailed case study of the Fanjingshan Mt.region, northeast Guizhou Province, South China, in order to: (1) reveal the fieldrelationship between the different geologic units; (2) make a reasonablegeochronological scheme on the basis of much more detail sampling; (3) select typicalrock samples for geochemistry study; (4) integrate all available data from field works,petrological observations, geochronological studies, and geochemical analyses tosuggest possible tectonic facies, and/then, (5) synthesis a tectonic evolution model forthe western segment of the Jiangnan orogenic belt.
     Two sedimentary sequences in the Fanjingshan region have been identified,which are separated by an angular unconformity: (1) below the unconformity is theFanjingshan Group, consisting mainly of meta-volcanics, meta-volcaniclastics andmeta-fine clastics. The content of volcanics and the grain-size of clastic decreaseupward, defining a complete basin sedimentary circle. (2) Resting upon the unconformity is another volcaniclastic sequence, the Xiajiang Group.
     The volcanics in the Fanjingshan Group include: spilite-keratophyre sequence(mainly meta-basalt with pillow), quartz spilite (silicic extrusion), and diabase dykesthat has a gradual boundary with the basalt. Besides, geological mapping has revealednumerous mafic-ultramafic and minor granitic plutons intruded the FanjingshanGroup. In-site LA-ICP-MS zircon U/Pb analyses demonstrate that the volcanism andsimultaneous sedimentation of the Fanjingshan Group took place during 860 to 815Ma, rather than previously-thought 870-800 Ma (Zhou et al., 2009) or after 800 Ma(Wang et al., 2010).
     On the basis of detail geochronological studies, two stages mafic-ultramaficmagmatism were revealed that gave rise two suites of mafic to ultramafic igneousrock in Fanjingshan region: (1) The earlier stage magmatism has resulted in basalthorizons and bed-paralleled diabase or gabbroic dykes composing the FanjingshanGroup. In-site LA-ICP-MS zircon U/Pb results indicate that the mafic magmatism andsedimentation were simultaneous during 856-820 Ma. Geochemistry revealed anE-MORB-like Chondrite-normalized REE pattern for the earlier stage mafic rocks,while their primitive-mantle normalized trace element spider diagrams are generallyE-MORB like but with obvious Nb, Ta, Sr, P, and Ti negative anomalies. Suchgeochemical feature suggests an intensive crustal contamination and magmadifferentiation during the mafic magmatism. (2) The later stage mafic magmatismoccurred during 815 to 745 Ma according to new in-site LA-ICP-MS zircon U/Pbresults, which gave rise voluminous diabase, gabbro, and minor ultramafic plutonsintruding the Fanjingshan Group. The later stage mafic rocks have similargeochemical characteristic as those of the earlier stage rocks: both have anE-MORB-like Chondrite-normalized REE pattern and E-MORB like primitive-mantlenormalized trace element spider diagrams with obvious Nb, Ta, Sr, P, and Ti negativeanomalies, suggesting they have a similar petrogenesis process. However, subtledifference in geochemistry suggests a higher degree mantle partial melting for theearlier mafic magma and a higher degree magma differentiation for the later stagemagmatism.
     The quartz spilite and basalt of the Fanjingshan Group define bi-modelvolcanism. The quartz spilite has high SiO_2-content up to 72 wt. %, and is highlycomparable with the silicic volcanics in a continental rift featured by strongdifferentiation of light and heavy rare earth elements (LREE and HREE), and traceelements including high-field-strength elements. The silicic volcanics have obviousnegative Ti-anomaly and medium Nb, Ta, Sr, and P negative anomalies, suggesting,again, an intensive crustal contamination.
     During the earlier stage mafic magmatism, some high-SiO_2, stronglyperaluminous leucogranites developed in Fanjingshan region. Geochemical studiesdemonstrate that the leucogranite is strongly peraluminous with very highSiO_2-content (up to 72 wt. %) and high A/CNK value > 1.1. The chondrite-normalizedREE patterns are eagle-like, exhibiting strong negative Eu-anomaly and obvioustetrahedral effect, suggesting they likely have resulted from a high temperature(>875oC)partial melting of clay-enriched psammitic rocks.
     Synthesizing available sedimentary petrologic, igneous petrologic, geochemical,and geochronological data, the Neoproterozoic tectonic evolution of the westernsegment of the Jiangnan orogenic belt may be divided into two stages: 860-815 Ma isthe Jinning-I stage, and 815-750 Ma is the Jinning-II stage, between them is theangular unconformity separating the Fanjingshan and Xiajiang Groups. Both theJinning-Ⅰand -Ⅱmovements are displayed as continental-rifting-related volcanismand sedimentation. According to geologic data from other areas, the JinningⅠstagerifting may have resulted in an aulacogen, likely representing the western tip of anocean between the Yangtze and Cathaysian blocks, while the JinningⅡstage rifting iscommonly thought as the represent of the mantle plume activity that has led tobreakup of the Rodinia super-continent.
引文
[1] Bergantz G W. Underplating and partial melting, implications for melt generation andextraction. Science, 1989, 245: 1093~1095.
    [2] Condie K C. Chemical composition and evolution of the upper continental crust: contrastingresults from surface samples and shales. Chemical Geology, 1993, 104: 1~37. doi:10.1016/0009-2541(93)90140-E.
    [3] Druschke P, Hanson A D, Yan Q R, et al. Stratigraphic and U-Pb SHRIMP Detrital ZirconEvidence for a Neoproterozoic Continental Arc, Central China: Rodinia Implications. The Journalof Geology, 2006, volume 114: 627~636.
    [4] Geng H Y, Sun M, Yuan C, et al. Geochemical, Sr–Nd and zircon U–Pb–Hf isotopic studies ofLate Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridge subduction?.Chemical Geology, 2009, 266: 364~389.
    [5] Grabau A W. Migration of the Geosyclines. The national Geological Survey of China, 1924,208~237.
    [6] Hofmann A W. Chemical differentiation of the Earth: the relationship between mantle,continental crust, and oceanic crust. Earth and Planetary Science Letters, 1988, 90: 297~314. doi:10.1016/0012-821X(88)90132-X.
    [7] Huppert H E, Sparks R S. The generation of granite magmas by intrusion of basalt intocontinental crust. Journal of Petrology, 1988, 29: 599~624.
    [8] Isacks B, Sykes L R, Oliver J. Seismology and the new global tectonics. Journal ofGeophysical Research, 1968, 73: 5855~5899.
    [9] Kerr R A. Plate tectonics goes back 2 billion years. Science, 1985, 230: 1364~1367.
    [10] Kroner A. Changes in plate tectonic styles and crustal growth during the Precambrian.Bulletin de la Societk gdologique de France, 1984, 26: 297~319.
    [11] Le Pichon X. Sea-floor spreading and continental drift. Journal of Geophysical Research,1968, 73: 3661~3697.
    [12] Li X H, Li Z X, Ge W C, et al. Neoproterozoic granitoids in South China: crustal meltingabove a mantle plume at ca. 825Ma?. Precam. Res., 2003, 122: 45~83.
    [13] Li Z X, Li X H, Kinny P D. The breakup of Rodinia: Did is start with a mantle plume beneathSouth China?. Earth Planet.Sci.Lett., 1999, 173: 171~181.
    [14] Li Z X, Li X H, Kinny P D, et al. Geochronology of Neoproterozoic syn-rift magmatism inthe Yangtze Graton, South China and correlations with other continents: evidence for a mantlesuperplume that broke up Rodinia. Precam. Res., 2003, 122(1-4): 85~109.
    [15] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrousminerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 2008, 257:34~43.
    [16] M-C, Donough W F, and S S Sun. The composition of the Earth. Chem. Geol., 1995, 120:223~253.
    [17] Meissner R. Evolution of plate tectonics on terrestrial planets. Annales Geophysicae, 1983, l:121~127.
    [18] Pearce J A. Geochemical fingerprinting of oceanic basalts with applications to ophioliteclassification and the search for Archean oceanic crust. Lithos, 2008, 100: 14~48.
    [19] Scherer E, Munker C, Mezger K. Calibration of the Lutetium–Hafnium clock. Science, 2001,293: 683~687.
    [20] Sun W H, Zhou M F. The 860-Ma, Cordilleran-Type Guandaoshan Dioritic Pluton in theYangtze Block, SW China: Implications for the Origin of Neoproterozoic Magmatism. The Journalof Geology, 2008, 116: 238~253.
    [21] Sylvester P J. Post-collisional strongly peraluminous granites. Lithos, 1998, 45: 29~44.
    [22] Thompson A B, Connolly J A D. Melting of the continental crust: some thermal andpetrologic constraints on anatexis in continental collision zones and other tectonic settings. Journalof Geophysic Research, 1995, 100: 15565~15579.
    [23] Wang J, Li Z X. History of Neoproterozoic rift basins in South China: implications forRodinia break-up. Precambrian Research, 2003, 122: 141~158.
    [24] Wang, L-J, W. L. Griffin, Jin-Hai Yu, S.Y. O’Reilly. Precambrian crustal evolution of theYangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks. PrecambrianResearch, 2010, 177: 131~144.
    [25] Wang X C, Li X H, Li Z X, et al. The Willouran basic province of South Australia: Its relationto the Guibei large igneous province in South China and the breakup of Rodinia. Lithos, 2010, 119:569~584.
    [26] Wang Xiao-Lei, Zhou Jin-Cheng, Qiu Jian-Sheng, et al. Geochronology and geochemistry ofNeoproterozoic mafic rocks from western Hunan, South China: implications for petrogenesis andpost-orogenic extension. Geol. Mag., 2008, 145(2): 215~233.
    [27] Wang Xiao-Lei, Zhou Jin-Cheng, Qiu Jian-Sheng, et al. LA-ICP-MS U-Pb zircongeochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China:Implications for tectonic evolution. Precambrian Research, 2006, 145: 111~130.
    [28] Wang X C, Li X H, Li W X, et al. Ca. 825 Ma komatitic basalts in south China: first evidencefor >1500°C mantle melts by a Rodinian mantle plume. Geology, 2007, 35(2): 1103~1106.
    [29] Wang Xiao-Lei, Zhoua Jin-Cheng, Griffin W.L, et al. Detrital zircon geochronology ofPrecambrian basement sequences in the Jiangnan orogen: dating the assembly of the Yangtze andCathysia blocks. Precambrian Res., 2007, 159:117~131.
    [30] Wickham S M, Oxb urgh E R. Low-pressure regional metamorphism in the Pyre′ne′es and itsimplications for the thermal evolution of rifted continental crust. Philos. PhilosophicalTransactions of Royal Society of London. Series A, Mathematical and Physical Sciences, 1987,321: 219~242.
    [31] Workman, R.K. and Hart, S.R.. Major and trace element composition of the depleted MORBmantle (DMM). Earth and Planetary Science Letters, 2005, 231: 53~72.
    [32] Wu Rongxin, Zheng Yongfei, Wu Yuanbao. Reworking of juvenile crust: element and isotopegeochemistry evidence from Neoproterozoic granodiorite in South China. Precam. Res., 2006, 146:179~212.
    [33] Yao J L, Shu L S, Santosh M. Detrital zircon U-Pb geochronology, Hf-isotopes andgeochemistry--New clues for the Precambrian crustal evolution of Cathaysia Block, South China.Gondwana Research, 2011, doi:10.1016/j.gr.2011.01.005.
    [34] Ye M F, Li X H, Li W X, et al. SHRIMP zircon U-Pb geochronological and whole-rockgeochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeasternmargin of the Yangtze Block. Gondwana res., 2007, 12(1/2): 144~156.
    [35] Yuan H.L., Gao, S., Dai, M.N. et al. Simultaneous determinations of U/Pb age, Hf isotopesand trace elements compositions of zircon by excimer laser-ablation quadrupole andmultiple-collector ICP–MS. Chemical Geology, 2008, 247: 100~118.
    [36] Yuan C, Sun M, Wilde S, et al. Post-collisional plutons in the Balikun area, East ChineseTianshan: Evolving magmatism in response to extension and slab break-off. Lithos, 2010, 119:269~288.
    [37] Zhang S H, Jiang G Q, Han Y G.. The age of the Nantuo Formation and Nantuo Glaciation inSouth China. Terra Nova, 2008, 20(4): 289~294.
    [38] Zhang Q R, Li X H, Feng L J, et al. A new age constraint on the onset of the Neoproterozoicglaciations in the Yangtze Platform, South China. 2008, J Geol,116: 423~429.
    [39] Zhao, J-H., M.F. Zhou, J.P. Zheng, S.M. Fang. Neoproterozoic crustal growth and reworkingof the Northwestern Yangtze block: Constraints from the Xixiang dioritic intrusion, South China.Lithos, 2010, 120: 439~452.
    [40] Zhou Jibin, Li Xianhua, Ge Wenchun, et al. Age and origin of middle Neoproterozoic maficmagmatism in southern Yangtze Block and relevance to the break-up of Rodinia. GondwanaResearch, 2007, (12): 184~197.
    [41] Zhou Jin-Cheng, Wang Xiao-Lei, Qiu Jian-Sheng. Geochronology of Neoproterozoic maficrocks and sandstones from northeastern Guizhou, South China: Coeval arc magmatism andsedimentation. Precambrian Research, 2009,170: 27~42.
    [42] Zhou C, Tucker R, Xiao S, et al. New constraints on the ages of Neoproterozoic glaciation insouth China. Geology, 2004, 32(5): 437~440.
    [43] Zhou, M.F., Yan, D.P., Kennedy, A.K. et al. SHRIMP U-Pb zircon geochronological andgeochemical evidence for Neoproterozoic, arc-magmatism along the western margin of theYangtze block, south China. Earth and Planetary Science Letters, 2002, 196: 51~67.
    [44]柏道远,贾保华,刘伟,等.湖南城步火成岩锆石SHRIMP U/Pb年龄及其对江南造山带新元古代构造演化的约束.地质学报,2010,84:1715~1726
    [45]董树文,薛怀民,项新葵,等.赣北庐山地区新元古代细碧岩-角斑岩系枕状熔岩的发现及地质意义.中国地质,2010,37:1021~1033
    [46]陈文西,王剑,付修根,等.黔东南新元古界下江群甲路组沉积特征及其下伏岩体的锆石U-Pb年龄意义. 2007,地质论评,53(1):126~131
    [47]储雪蕾,Wolfgang Todt,张启锐,等.南华-震旦系界线的锆石U-Pb年龄.科学通报,2005,50(6):600~602
    [48]戴传固,张慧,王敏,等.江南造山带西南段地质构造特征及其演化.北京:地质出版社,2010
    [49]邓国辉,龙军军,贺和岭.赣东北构造带中的“放射虫硅质岩”不是“茅口组硅质岩”.现代地质,2006,20(4):573~578
    [50]丁炳华,史仁灯,支霞臣,等.江南造山带存在新元古代(~850Ma)俯冲作用:来自皖南SSZ型蛇绿岩锆石SHRIMP U-Pb年龄证据.岩石矿物学杂志,2008,27(5):375~388
    [51]房俊雷,罗金海,曹志远,等.黔东南新元古代花岗质岩石的特征及地质意义.西北大学学报(自然科学版),2010,40(4):672~678
    [52]高林志,戴传固,刘燕学,等.黔东地区下江群凝灰岩锆石SHRIMP U-Pb年龄及地层意义.中国地质,2010,37:1070~1080
    [53]高林志,陈峻,丁孝忠,等.湘东北岳阳地区冷家溪群和板溪群凝灰岩SHRIMP锆石U-Pb年龄:对武陵运动的制约.地质通报,2011,30(7):1001~1008
    [54]葛文春,李献华,李正祥,等.桂北“龙胜蛇绿岩”质疑.岩石学报,2000,16:111~118
    [55]葛文春,李献华,李正祥,等.龙胜地区镁铁质侵入体:年龄及其地质意义.地质科学,2001,36(1):112~118
    [56]葛文春,李献华,李正祥,等.桂北龙胜丹洲群火山岩的地幔源区及大地构造环境.长春科技大学学报,2001,31(1):20~24
    [57]葛文春,李献华,梁细荣,等.桂北元宝山宝坛地区约828Ma镁铁-超镁铁岩的地球化学及其地质意义.地球化学,2001,3(1):123~130
    [58]贵州省革命委员会地质局.中华人民共和国贵州省梵净山区1/5万区域地质调查报告及地质图.非公开出版,1974
    [59]郭令智,卢华复,施央申,等.江南中、新元古代岛弧的运动学和动力学.高校地质学报,1996,2(1):1~13
    [60]郭令智,等.华南板块构造.北京:地质出版社,2001
    [61]何科昭,赵崇贺,邰道乾,等.赣东北蛇绿混杂岩带中多处发现含晚古生代放射虫硅质岩.现代地质(中国地质大学研究生院学报),1996,10(3):303~307
    [62]何科昭,聂泽同,赵崇贺,等.赣东北晚古生代放射虫化石综述.现代地质(中国地质大学研究生院学报),2000,14(1):1~7
    [63]侯可军,李延河,田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质,2009,28:481~492
    [64]胡受奚,叶英.对“华夏古陆”、“华夏地块”及“扬子-华夏古陆统一体”等观点的质疑.高校地质学报,2006,12(4):432~439
    [65]黄汲清.中国主要大地构造单元.北京:地质出版社,1954. 35~37
    [66]陆慧娟,华仁民,毛光周,等.德兴地区新元古代镁铁-超镁铁岩的地球化学特征及其地质意义.矿物学报,2007,27(2):153~160
    [67]李献华,王选策,李武显,等.华南新元古代玄武质岩石成因与构造意义:从造山运动到陆内裂谷.地球化学,2008,37(4):382~398
    [68]李献华,周国庆,赵建新.赣东北蛇绿岩的离子探针锆石U-Pb年龄及其构造意义.地球化学,1994,23(2):125~131
    [69]李献华.广西北部新元古代花岗岩锆石U-Pb年代学及其构造意义.地球化学,1999,28(1):1~9
    [70]李献华,李正祥,葛文春,等.华南新元古代花岗岩的锆石U-Pb年龄及其构造意义.矿物岩石地球化学通报,2001,20(4):271~273
    [71]陆惠娟,华仁民,毛广周,等.德兴地区新元古代镁铁-超镁铁岩的地球化学特征及其地质意义.矿物学报,27:153~158
    [72]马铁球,陈立新,柏道远,等.湘东北新元古代花岗岩体锆石SHRIMP U-Pb年龄及地球化学特征.中国地质,2009,36(1):65~73
    [73]邱检生,周金城,张光辉,等.桂北前寒武纪花岗岩类岩石的地球化学与成因.岩石矿物学杂志,2002,21:197~208
    [74]任纪舜,陈廷愚,牛宝贵,等.中国东部及邻区大陆岩石圈的构造与成矿.北京:科学出版社,1990
    [75]水涛.中国东南大陆基底构造格局.中国科学(D),1987,4:414~421
    [76]舒永宽,杨宏辉,曾昭光,等.高武地区过铝花岗岩特征与构造环境.贵州地质,2004,21:16~23
    [77]唐红峰,周新民.江南古陆东段两类玄武岩成瘾的地球化学制约.中国科学(D),1997,27(4):306~311
    [78]唐红峰,张光辉,周新民,等.一个造山后花岗岩基:石耳山花岗岩的形成时代和成因.南京大学学报(自然科学版),1997,33(4):587~595
    [79]唐红松,肖禧砥,刘继顺.桂北四堡群中科马提岩系及其成因类型.矿产与地质,1992,6:126~138
    [80]吴荣新,郑永飞,吴元保.皖南新元古代井潭组火山岩锆石U-Pb定年和同位素地球化学研究.高校地质学报,2007,13(2):282~296
    [81]王剑,李献华,T. Z. Duan,等.沧水铺火山岩锆石SHRIMP U-Pb年龄及“南华系”底界新证据.科学通报,2003,48(46):1726~1731
    [82]王剑.华南南华系研究新进展—兼论南华系地层划分与对比.地质通报,2005,24:491~495
    [83]王敏.贵州从江地区花岗质斑岩的地球化学特征.贵州地质,1999,16:278~281
    [84]王敏,戴传固,王雪华,等.贵州梵净山白云母花岗岩锆石年代、铪同位素及对华南地壳生长的制约.地学前缘,2011,18(5):213~223
    [85]汪新,马瑞士.怀玉山蛇绿混杂岩及古碰撞缝合线的确定.南京大学学报(地球科学),1989,1-2:72~81,86
    [86]王孝磊,周金城,邱检生,等.湖南中-新元古代火山-侵入岩地球化学及成因意义.岩石学报,2003,19:49~60
    [87]王孝磊,周金城,邱检生,等.湘东北新元古代强过铝花岗岩的成因:年代学和地球化学证据.地质论评,2004,50(1):65~76
    [88]王玉净,杨群,尹磊明,等.赣东北蛇绿混杂岩带和变质岩系中“放射虫硅质岩”的再研究.高校地质学报,2006,12(1):98~105
    [89]吴浩若.赣东北蛇绿岩带相关地质问题的构造古地理分析.古地理学报,2003,5(3):328~342
    [90]夏斌.广西龙胜元古代二种不同成因蛇绿岩岩石地球化学及侵位方式研究.南京大学学报(自然科学版),1984,3:554~566
    [91]夏林圻,夏祖春,李向民,等.华南新元古代中期裂谷火山岩系:Rodinia超大陆裂谷化-裂解的地质纪录.西北地质,2009,42(1):1~33
    [92]徐备,乔广生.赣东北晚元古代蛇绿岩套的Sm-Nd同位素年龄及原始构造环境.南京大学学报(地球科学版),1989,3:108~114
    [93]徐备,郭令智,施央申.皖浙赣地区元古代地体和多期碰撞造山带.北京:地质出版社,1992. 1~112
    [94]薛怀民,马芳,宋永勤,等.江南造山带东段新元古代花岗岩组合的年代学和地球化学:对扬子与华夏地块拼合时间与过程的约束.岩石学报,2010,26:3215~3244
    [95]尹崇玉,王砚耕,唐烽,等.贵州松桃南华系大塘坡组凝灰岩锆石SHRIMP U-Pb年龄.地质学报,2006,80(2):273~278
    [96]尹崇玉,刘敦一,高林志,等.南华系底界与古城冰期的年龄:SHRIMP U-Pb定年证据.科学通报,2003,48(16):1721~1725
    [97]张春红,范蔚茗,王岳军,等.湘西隘口新元古代基性-超基性岩墙年代学和地球化学特征:岩石成因及其构造意义.大地构造与成矿学,2009,33(2):283~239
    [98]张桂林,梁金城.桂北龙胜地区基性-超基性岩的变形分解构造及其大地构造意义.桂林冶金地质学院学报,1993,13:357~365
    [99]张世红,蒋干清,董进,等.华南板溪群五强溪组SHRIMP锆石U-Pb年代学新结果及其构造地层意义.中国科学(D),2008,38(12):1496~1503
    [100]张彦杰,廖圣兵,周效华,等.江南造山带北缘鄣公山地区新元古代地层构造变形特征及其动力学机制.中国地质,2010,37(4):978~994
    [101]赵崇贺,何科昭,莫宣学,等.赣东北深断裂带蛇绿混杂岩中含晚古生代放射虫硅质岩的发现及其意义.科学通报,1995,40(23):2161~2163
    [102]周刚,张招崇,罗世宾,等.新疆阿尔泰山南缘玛因鄂博高温型强过铝花岗岩:年龄、地球化学及其地质意义.岩石学报,2007,23(8):1909~1920
    [103]周金城,王孝磊,邱检生,等.桂北中-新元古代镁铁质-超镁铁质岩的岩石地球化学.岩石学报,2003,19(1):9~18
    [104]周金城,王孝磊,邱检生.江南造山带西段岩浆作用特性.高校地质学报,2005,11(4):527~533
    [105]周金城,王孝磊,邱检生.江南造山带形成过程中若干新元古代地质事件.高校地质学报,2009,15(4):453~459
    [106]周继彬,李献华,葛文春,等.桂北元宝山地区超镁铁岩的年代、源区及其地质意义.地质科技情报,2007,26(1):11~18
    [107]钟玉芳,马昌前,佘振兵,等.江西九岭花岗岩类复式岩基锆石SHRIMP U-Pb年代学.地球科学(中国地质大学学报),2005,30(6):685~691
    [108]朱钧,张景桓.试论浙皖赣深断裂带.地质论评,1964,22(2):91~98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700