利用苯并咪唑-(4,5,f)-并-(1,10)-邻菲罗啉和芳香羧酸配体控制超分子配位聚合物的自组装
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着有机化学和无机化学的快速发展,配位化学成为了合成新型固态材料的一个焦点。研究者合成了越来越多的新的配位聚合物,剑桥晶体数据库CCDC也收录了越来越多的晶体结构。同时,随着超分子结构研究的深入,含金属的超分子配位聚合物得到了快速发展。新型超分子结构不仅仅具有迷人的规整结构,更重要的是,其在光、电、磁等方面具有潜在应用价值。超分子配位聚合物的性质主要依赖与晶体结构,每个晶体结构具有其独特的性质。因此,控制超分子配位聚合物的结构和维度是非常重要的。然而,对控制配位超分子结构仍然缺乏一个非常有效的方法。
     在本篇论文中,我们选择了苯并咪唑-(4,5,f)-并-(1,10)-邻菲罗啉(PTCP)作为多氮配体。这个配体包含五个芳香环,四个氮原子,其中两个来自邻菲罗啉的配位给体N,另外两个来自咪唑部分。配体PTCP可以与大多数的金属离子进行配位,同时,配体中的咪唑单元既是氢给体,也是氢受体,所以是一个构建配位超分子结构的优良配体。同时,我们选择芳香多羧酸配体作为桥联配体。芳香羧酸配体上的氧原子能够给电子,可以和大多数金属原子进行配位。我们利用水热方法合成并通过红外光谱、元素分析、热重分析、X-射线单晶衍射和固态光致发光光谱来表征了19个新的配位聚合物和超分子配位聚合物:[Eu2(BDC)3(H2O)].(H2BDC=邻苯二甲酸)(1);[Pb3(BTC)2(H2O)]n(BTC=均苯三甲酸)(2);[Pb3(BTC)2(H2O)2]n·n(H2O)3.5(3);[Ni2(PTCP)4(SO4)(H2O)3][(SO4)(H2O)4.5] (4);[Fe(PTCP)3][(SO4)(H2O)7](5);[Co2(PTCP)2(3,5-NSYS)2(H2O)2](3,5-H2NSYS=3,5-二硝基水杨酸)(6);[Zn(PTCP)2(5-SSYS)(H2O)](5-H2SSYS=5-磺基水杨酸)(7);[Pb2(PTCP)2(BTC)2] (8);[Ln2(PTCP)2(m-BDC)3]n·0.5n(H2O) (Ln=Ce,Pr,Nd,Sm, Eu,Tb,Dy,Tm)(9-16);[Co(PTCP(LBSS)(H2O)2]n·n(H2O)(H4LBSS=3,3',4,4'-联苯四甲酸)(17);[Pb(PTCP)(PYDC)]n·0.5n(H2O)(H2PYDC=吡啶-2,5-二甲酸)(18);[Cu(PTCP)(PTA)]n(H2PTA=对苯二甲酸)(19)。配合物1~3是新的通过芳香羧酸和金属离子构筑的2D或者3D的无机有机聚合物结构。超分子配位聚合物4和5是通过单个PTCP配体和无机盐形成的OD结构,并形成了3D的配位超分子结构。超分子配位聚合物6-19是通过PTCP和芳香羧酸作为混合配体构建的。所以这些配合物是从0D或者1D形成的2D或者3D的超分子结构。
     在本篇论文中,我们初步实现利用PTCP配体和芳香多羧酸来控制配位超分子维度的目标:
     (1)由于多芳香羧酸配体的可延展性,所以,当利用单个的芳香多羧酸作为有机配体,可以形成高维的结构(2D或者3D);
     (2) PTCP具有单个配位点,并且具有良好的氢键位点,所以,当利用PTCP和其类似的配体作为单配体,一般可以形成0D的结构。同时由于PTCP具有氢键位点,所以可以通过氢键增长成高维(2D或者3D)结构;
     (3)由于PTCP的巨大的空间位阻作用和多芳香羧酸的扩展作用,当选用PTCP和多芳香羧酸配体作为混合配体时,一般形成0D或者1D多核结构,并且自组装成3D的超分子结构。在大多数情况下,多芳香羧酸配体作为桥联配体与金属相连,而PTCP作为位阻配体,是构建氢键网络的关键之处。最终超分子结构是1D还是2D,决定于芳香羧酸的空间位阻和延展性。
     (a)当选用单羧酸作为芳香羧酸配体(例如水杨酸)和空间位阻大的配体PTCP混合可以构建OD结构,并通过氢键和芳香堆积作用形成3D超分子结构。
     (b)当选用空间位阻较大的多羧酸配体(例如间苯二甲酸,吡啶-2,5-二甲酸,均苯三甲酸等)与具有大空间位阻和多氢键位点的单配位点的配体PTCP可以构建1D链状的配位聚合物并通过氢键形成3D超分子结构。
     (c)当选用延展性很好的多羧酸配体(例如对苯二甲酸)和具有大空间位阻和多氢键位点的单配位点的配体PTCP可以构建2D平面的配位聚合物,并通过芳香作用或者氢键形成3D结构。
With the rapid development of the organic chemistry and inorganic chemistry, the coordination chemistry become the focus of the synthesis of new solid material. More and more new polymers are synthesized and depositted in CCDC in the form of crystal. At the same time, the supramolecular chemistry has a great progress in the recent years. So metal-containing supramolecular has rapidly emerged as a hot subject and more and more amusing coordination supramolecular polymers have been researched in literature. But there is still a lack of an effective method to control the structures.
     In this paper we have selected the 2-phenyl-1H-1,3,7,8-tetraazacyclopenta[1]-phenanthrene (PTCP) as the multi-nitrogen ligand which contains five condensation rings and four nitrogen atoms, two at the phenanthroline moiety and two nitrogens from the imidazole portion. The ligand can coordinate with most of the transition metal ions and rare metal ions. The imidazole rings in this ligand is both the H-donor and H-acceptor which are good candidates to cunstruct new coordination supramolecular structures. At the same time, the aromatic acid can coordinate with most of the metal atoms which can be selected as the bridge ligands.
     Nineteen novel coordination complexes [Eu2(BDC)3(H2O)]n (1); [Pb3(BTC)2(H2O)]n(2); [Pb3(BTC)2 (H2O)2]n·n(H2O)3.5 (3); [Ni2(PTCP)4(SO4)(H2O)3] [(SO4)(H2O)4.5] (4); [Fe(PTCP)3][(SO4)(H2O)7] (5); [Co2(PTCP)2(3,5-NSYS)2(H2O)2] (6); [Zn(PTCP)2(5-SSYS)(H2O)] (7); [Pb2(PTCP)2(BTC)2] (8); [Ln2(PTCP)2(m-BDC)3]n·0.5n(H2O) (Ln=Ce,Pr,Nd,Sm,Eu,Tb,Dy,Tm) (9-16); [Co(PTCP(LBSS)(H2O)2]n·n(H2O) (17); [Pb(PTCP)(PYDC)]n·0.5n(H2O) (18); [Cu(PTCP)(PTA)]n (19) have been hydrothermally synthesized and characterized by IR spectra, Elemental analyses, TGA, X-ray single-crystal diffraction and solid-state photoluminescent spectra. Complex 1-3 represent the new 2D or 3D inorganic-organic polymeric structure constructed by aromatic carboxylic acid and transition metal ions. Complex 4 and 5 are 3D coordination supramolecular polymers formed form OD structure. Both polymers are constructed by PTCP and inorganic metal salt. Complexes 6-19 are constructed by PTCP and aromatic carboxylic acid ligands. These polymers are the 2D or 3D supramolecular structure which are constructed form OD or 1D structure.
     In this paper, a new method is found to control the dimension by using the PTCP ligand:
     (1) When the single multi-aromatic acid is used as the organic ligand, the high dimensional (2D or 3D) polymers can be formed;
     (2) When the PTCP ligand and the analog are used as the single-ligand, low dimensional (OD) polymer can be synthesized, but the OD structure can be grown to high dimensional (2D or 3D) supramolecular structure;
     (3) When the PTCP and multi-aromatic acid ligands are mixed-used, OD or 1D multi-nuclear polymers can be self-assembled in to the 3D supramolecular structure. In the most case, the multi-aromatic acid ligands used as the bridge ligands and the PTCP ligand is the key point of constructing the hydrogen-bond net. The 1D or OD is rest with the steric effect and the tractility of the carborxylic acid ligands.
     (a) When single-carborxylic acid ligands (salicylic acid) are selected to mixed-used with ligands (such as PTCP) which have big steric effect and single coordinate site, OD polymers can be constructed and extended to 3D supramolecular structure via H-bonds.
     (b) When multi-carborxylic acid ligands (such as 1,3-benzenedicarboxylic acid, 1,3,5-benzenetricarboxylic acid, pyridine-2,5-dicarboxylic acid, and so on) with big steric effect are selected to mixed-use with ligands (such as PTCP) which have big steric effect and single coordinate site, 1D chian polymers can be constructed and extended into 3D supramolecular structure via H-bonds and stacking interactions.
     (c) When multi-carborxylic acid ligands (such as 1,4-benzenedicarboxylic acid) with small steric effect and good tractility are selected to mixed-use with ligands (such as PTCP) which have big steric effect and single coordinate site, 2D polymers can be constructed and extended into 3D supramolecular structure via H-bonds and stacking interactions.
引文
[1]弗瑞德.配位化学[M].北京:北京大学出版社,1982.
    [2]孙为银.配位化学[M].北京:化学工业出版社,2004.
    [3]Adeline Y R, Katharina M F. Coordination polymer networks with O-and N-donors:What they are, why and how they are made[J]. Coordination Chemistry Reviews,2006,250:2127-2157.
    [4]Tzuoo T L, Wu H C, Jao Y C, et al. Self-Assembled Arrays of Single-Walled Metal-Organic Nanotubes[J]. Angew. Chem. Int. Ed.,2009,48:9461-9464.
    [5]Gerard F,Caroline M D,Christian S & Franck M. Crystallized Frameworks with Giant Pores: Are There Limits to the Possible? [J]. Acc. Chem. Res.2005,38:217-225.
    [6]Bi J H, Kong L T, Huang Z X & Liu J H. Self-Encapsulation of [MⅡ(phen)2(H2O)2]2+(M=Co, Zn) in One-Dimensional Nanochannels of [MⅡ(H2O)6(BTC)2]4- (M= Co, Cu, Mn):A High HQ/CAT Ratio Catalyst for Hydroxylation of Phenols [J]. Inorg. Chem.,2008,47:4564-4569.
    [7]Satoshi Y C, Ibuki Y M, Takahiro K, et al. Cooperation between Artificial Receptors and Supramolecular Hydrogels for Sensing and Discriminating Phosphate Derivatives [J]. J. Am. Chem. Soc.,2005,127:11835-11841.
    [8]Liang X Y, John A. P, Michael W, et al. Structure and Dynamics of Metallomacrocycles: Recognition of Zinc Xylyl-Bicyclam by an HIV Coreceptor [J]. J. Am. Chem. Soc.,2002, 124:9105-9112.
    [9]Yu T Z, Su W M, Li W L, et al. Ultraviolet electroluminescence from organic light-emitting diode with cerium(Ⅲ)-crown ether complex [J]. Solid-State Electronics,2007,51:894-899.
    [10]李文连.超分子金属有机配合物的光化学和光物理[J].发光快报,1995,3:20-26.
    [11]Feng S H & Xu R R. New Materials in Hydrothermal Synthesis [J]. Acc. Chem. Res.,2001, 34:239-247.
    [12]William C S, Emmanuelle M, Antoine B, Hydrothermal Synthesis of Delafossite-Type Oxides [J]. Chem. Mater.,2006,18:7-20.
    [13]Olga A G,Ekaterina A M, Marina I N, et al. Sandwich-Type Tetranuclear Lanthanide Complexes with Cucurbit[6]uril:From Molecular Compounds to Coordination Polymers[J]. Inorg. Chem.,2008,47:8869-8880.
    [14]He X, Lu C Z,& Yuan D Q, Two 3D Porous Cadmium Tetrazolate Frameworks with Hexagonal Tunnels[J]. Inorg. Chem.,2006,45:5760-5766.
    [15]Kim Y J, Lee E W & Jung D Y. Mn2(H2O)[O2C(CH2)nCO2]2 (n= 3-12):Replication of anInorganic Monolayer in Three-Dimensional(Dicarboxylato)manganese(II) [J]. Chem. Mater., 2001,13:2684-2690.
    [16]Andreas S, Stefan K, Peter B & Michael W. Two Zinc(II) Coordination Polymers Constructed with Rigid 1,4-Benzenedicarboxylate and Flexible 1,4-Bis(imidazol-l-ylmethyl)-2,3,5,6-tetramethylbenzene Linkers:From Interpenetrating Layers to Templated 3D Frameworks[J]. Crystal Growth&Design,2008,8:3200-3205.
    [17]Li C Y, Hsieh C Y, Lin H M, et al. High-Temperature, High-Pressure Hydrothermal Synthesis,Crystal Structure, and Solid State NMR Spectroscopy of a New Vanadium(IV) Silicate:Rb2(VO)(Si4O10)·xH2O[J]. Inorg. Chem.,2002,41:4206-4210.
    [18]Swastik M,Monika M, Santu C, et al. A Novel Three-Dimensional Network Containing Pr(III) Ions and Tartrate:Synthesis, Spectroscopic, Thermal, Ab Initio X-ray Powder Structure Analyses, and Photoluminescence Properties[J]. Cryst.Growth Des.,2006,6:940-945.
    [19]Hu S, Zou H H, Zeng M H, et al. Molecular Packing Variation of Crimpled 2D Layers and 3DUncommon 65.8 Topology:Effect of Ligand on the Construction of Metal-Quinoline-6-carboxylate Polymers [J]. Cryst.Growth Des.,2008,8:2346-2351.
    [20]Zhang G Q, Yang G Q,& Ma J S. Hydrothermal Syntheses and Characterization of Novel 3D Open-Framework and 2D Grid Lanthanide Fumarates:Ln2(fum)3(H2fum)(H2O)2 (Ln=Ce or Nd),[Sm2(fum)3(H2O)4](H2O)3, and [Yb2(fum)3(H2O)4](H2O)2[J]. Cryst.Growth Des.,2006,7: 933-939.
    [21]Zhang X J, Xing Y H, Sun Z, et al. A Series of Two-Dimensional Metal-Organic Frameworks Based on the Assembly of Rigid and Flexible Carboxylate-Containing Mixed Ligands with Lanthanide Metal Salts[J]. Cryst.Growth Des.,2007,7:2041-2046.
    [22]Wang X L, Qin C & Wang E B, Polythreading of Infinite 1D Chains into Different Structural Motifs:Two Poly(pseudo-rotaxane) Architectures Constructed by Concomitant Coordinative and Hydrogen Bonds[J]. Cryst.Growth Des.,2006,6:439-443.
    [23]Vanessa K. P, Liu Y,Craig M. B& Cameron J. K. Neutron Powder Diffraction Study of D2 Sorption in Cu3(1,3,5-benzenetricarboxylate)2[J]. J. Am. Chem. Soc.,2006,128:15578-15579.
    [24]Guo X D, Zhu G S, Fang Q R, et al. Synthesis, Structure and Luminescent Properties of Rare Earth Coordination Polymers Constructed from Paddle-Wheel Building Blocks[J]. Inorg. Chem., 2005,44:3850-3855.
    [25]Long L S, Ren Y P, Ma L H, et al. A unique three-dimensional coordination polymer constructed from 4,4'-biphenyldicarboxylate and zinc(Ⅱ) [J]. Inorg. Chem. Commun.,2003, 6:690-693.
    [26]Hani M E,Joseph R H, Jose L M, et al. Designed Synthesis of 3D Covalent Organic Frameworks[J]. Science,2007,316:268-272.
    [27]Mohamed E,David B M,Li H L, et al. Modular Chemistry:Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks[J]. Ace. Chem. Res.,2001,34:319-330.
    [28]Nathan W O,OLAF D F, Michael O, et al. Reticular Chemistry:Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks [J]. Acc. Chem. Res.,2005,38:176-182.
    [29]David J T, Jose L M, Michael O & Omar M Y. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks[J]. Chem.Soc.Rev.,2009,38:1257-1283.
    [30]Nathaniel L R, Mohamed E, Jaheon K, et al. Advances in the chemistry of metal-organic frameworks[J]. CrystEngComm,2002,68:401-404.
    [31]Christophe V, Thierry L, Gerard F. Two metal-organic frameworks with infinite indium hydroxide chains connected through tetradentate carboxylate linkers[J]. Solid State Sciences,2009, 11:29-35.
    [32]Thomas D, Olivier D, Marion V, et al. An Illustration of the Limit of the Metal Organic Framework's Isoreticular Principle Using a Semirigid Tritopic Linker Obtained by "Click" Chemistry[J]. J. Am. Chem. Soc.,2007,129:12614-12615.
    [33]Meenakshi D H,Christian S,Theo F, et al. A New Photoactive Crystalline Highly Porous Titanium(IV) Dicarboxylate[J]. J. Am. Chem. Soc.,2009,131:10857-10859.
    [34]Lionel B, Thierry L & Gerard F, Hydrothermal Synthesis and Structural Characterization of a New Organically Templated Germanate, Ge10O21(OH)·N4C6H21 [J]. Inorg. Chem.,2002, 41:3962-3966.
    [35]Christian S, Jerome M & Gerard F, An Open-Framework Rare-Earth Acetylenedicarboxylate: MIL-95, EuⅢ2(H2O)2(CO3)·{O2C-C2-CO2}·{H2O}x[J]. Inorg. Chem.,2005,44:654-657.
    [36]Steven S K,Anne D,Omar M Y & Jeffrey R L. mpact of Preparation and Handling on the Hydrogen Storage Properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5) [J]. J.Am. Chem. Soc., 2007,129:14176-14177.
    [37]Mohamed E,Jaheon K,Nathaniel R, et al. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage[J]. Science,2002,295:469-472.
    [38]Katie A C, Antek G W & Adam J M. Enabling Cleaner Fuels:Desulfurization by Adsorption to Microporous Coordination Polymers[J]. J.Am. Chem. Soc.,2009,131:14538-14543
    [39]Kyoungmoo K, Antek G W & Adam J M. A Porous Coordination Copolymer with over 5000 m2/g BET Surface Area [J]. J.Am. Chem. Soc.,2009,131:4184-4185.
    [40]Christian S, Franck M,Christelle T, et al. Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids:MIL-53 or CrⅢ(OH)·{O2C-C6H4-CO2} ·{HO2C-C6H4-CO2H}x·H2O[J]. J.Am. Chem. Soc.,2002,124:13519-13526.
    [41]Borovik A S, Bioinspired Hydrogen Bond Motifs in Ligand Design:The Role of Noncovalent Interactions in Metal Ion Mediated Activation of Dioxygen[J]. Acc. Chem. Res.,2005,38:54-61.
    [42]杨华,王冰,张乃武,氢键的研究进展[J].牡丹江师范学院学报,2003,2:33-35.
    [43]马天慧,于海涛,付宏刚,基于氢键和π-π堆积的网络化合物[J].黑龙江大学自然科学学报,2005,22:22-24.
    [44]Raju M, Tannistha B, Dipali S, et al. Influence of Anion on the Coordination Mode of a Flexible NeutralLigand in Zn(II) Complexes:From Discrete Zero-Dimensional to Infinite 1D Helical Chains,2D Nanoporous Bilayer Networks, and 3D Interpenetrated Metal-Organic Frameworks[J]. Cryst.Growth Des.,2009,9:1095-1105.
    [45]Rodebush W H, The Hydrogen Bond and Coordination[J]. Chem. Rev.,1936,19:59-65.
    [46]张广宏,马文霞,万会军,氢键的类型和本质[J].化学教学,2007,7:72-75.
    [47]Bruce R S L, Cooper M K, Freeman H C,& McGrath B G. Evidence for an intramolecular C--H...N hydrogen bond in (E)-5-methylpyridine-2-carboxaldehyde-2'-pyridyl hydrazonetetracarbonylmolybdenum(O) from its crystal structure and proton magnetic resonance spectrum[J]. Inorg. Chem.,1974,13:1032-1037.
    [48]Ralph G P, The transition-metal-hydrogen bond[J]. Chem. Rev.,1985,85:41-49.
    [49]Michael D W & Francesco B[J]. Control of photoinduced energy transfer between metal-polypyridyl luminophores across rigid covalent, flexible covalent, or hydrogen-bonded bridges[J]. Coord. Chem. Rev.,2001,216:127-154.
    [50]Jia C J, Sun L D, Luo F, et al. Large-Scale Synthesis of Single-Crystalline Iron Oxide Magnetic Nanorings[J]. J. Am. Chem. Soc.,2008,130:16968-16977.
    [51]Kong Z P, Weng L H, Tan D J, et al. Hydrothermal Synthesis, Crystal Structure, Conductivity, and Thermal Decomposition of [Cu(4,4'-bipy)(H2O)(Mo3O10)]·H2O [J]. Inorg. Chem.,2004, 43:5676-568.
    [52]Suh M P, Young E C, Lee E Y. Syntheses and functions of porous metallosupramolecular networks[J]. Coord. Chem. Rev.,2008,252:1007-1026.
    [53]Chang S H & Youngkyu D. Hydrogen-and Covalent-Bond-Linked 3D Manganese Array[J]. Inorg. Chem.,1998,37:4470-4472.
    [54]Zhang B,Wang Z M, Fujiwara H, et al.Tetrathiaflulalene [Fe(C2O4)Cl2]:An Organic-Inorganic Hybrid Exhibiting Canted Antiferroagnetism[J]. Adv. Mater,2005,17:1988-1991.
    [55]OWEN R E & LIN W B. Crystal Engineering of NLO Materials Based on Metal-Organic Coordination Networks[J]. Acc. Chem. Res.,2002,35:511-522.
    [56]Yoann L, Dario M Bi, Gediminas J, Nathan D M. Equilibration between Three Different Excited States in a Bichromophoric Copper(Ⅰ) Polypyridine Complex[J]. J. Am. Chem. Soc.,2007, 129:8688-8689.
    [57]Alicia M B. Open-framework coordination complexes from hydrogen-bonded networks: toward host/guest complexes[J]. Coord. Chem. Rev.,2003,246:131-143.
    [58]Yang J, Ma J F, Liu Y Y, et al. A Series of Lead(Ⅱ) Complexes with π-π Stackings:Structural Diversities by Varying the Ligands[J]. Cryst.Growth Des.,2009,9:1894-1911.
    [59]Dalia G, Amira R, Jacob K, et al. Pairing of Propellers:Dimerization of Octahedral Ruthenium(Ⅱ) and Osmium(Ⅱ) Complexes of Eilatin via π-πStacking Featuring Heterochiral Recognition[J]. J. Am. Chem. Soc.,2002,124:5449-5456.
    [60]Megha S D,Avinash S K, Vedavati G P, et al. Supramolecular Self-Assembled Ruthenium-Polypyridyl Framework Encapsulating Discrete Water Cluster [J]. Cryst.Growth Des., 2006,6:743748.
    [61]Constantina P, George E K, Catherine P R, et al. Investigation of the MSO4·xH2O (M=Zn, x=7; M=Cd, x=8/3)/methyl 2-pyridyl ketone oxime reaction system:A novel Cd(II) coordination polymer versus mononuclear and dinuclear Zn(Ⅱ) complexes [J]. Inorg. Chim. Acta, 2009,362:2361-2370.
    [62]Ye H Y, Fu D W, Zhang Y, Hydrogen-Bonded Ferroelectrics Based on Metal Organic Coordination [J].J. Am. Chem. Soc.,2009,131,42-43.
    [63]Xie Y S Ni J, Zheng F K, et al. Tetra-and Binuclear Complexes of Hydroxy-Rich Ligands:Supramolecular Structures, Stabilization of Unusual Water Clusters, and Magnetic Properties[J]. Cryst.Growth Des.,2009,9:118-126.
    [64]Han Z B, Zhang G X, Ji J W,Zhang P. Synthesis and Crystal Structure of a 1D Coordination Polymer[Cd(PYDC)(phen)]n (H2PYDC=pyridine-2,3-dicarboxylic acid,phen= 1,10-phenanthroline) [J]. J Chem Crystallogr,2009,39:169-172.
    [65]Xu H T, Li Y D. The organic ligands as template:the synthesis, structures and properties of a series of the layered structure rare-earth coordination polymers[J]. J.Mol. Struc.,2004, 690:137-143.
    [66]Songa H H, Li Y J, Song Y, et al. Synthesis, crystal structure and properties of two 1D nano-chain coordination polymers constructed by lanthanide with pyridine-3,4-dicarboxylic acid and 1,10-phenanthroline[J]. J. Sol.State Chem.,2008,181:1017-1024.
    [67]Scott J D, Michaele J H Jerry L A, et al. Bilayers, Corrugated Bilayers, and Coordination Polymers of p-Sulfonatocalix[6]arene[J]. Inorg. Chem.,2004,43:6351-6356.
    [68]Shi X, Zhu G S, Wang X H, et al. From a 1-D Chain,2-D Layered Network to a 3-D Supramolecular Framework Constructed from aMetal-Organic Coordination Compound[J]. Cryst.Growth Des.,2005,5:207-213.
    [69]Ye B H, Tong M L, Chen X M. Metal-organic molecular architectures with 2,2-bipyridyl-like and carboxylate ligands[J]. Coord. Chem. Rev.,2005,249:545-565.
    [70]Moriwaki K, Satoh K, Takada M, et al. Amination and amidation of aryl iodides catalyzed by copper(Ⅰ)-phenanthroline complexes[J]. Tetrahedron Letters,2005,46:7559-7562.
    [71]Warren W B, Francis P D & Eleanora D G. Chelate Complexes of 1,10-Phenanthroline and Related Compounds[J]. Chem. Rev.,1954,54:959-1017.
    [72]李重阳,李波阳,薛禄辰等.新型荧光显现剂邻苯二甲酸-Eu-邻菲罗啉表面活性剂SDS的进一步研究[J].公安大学学报(自然科学版),2002,2:27-29.
    [73]Zhang S C, Zhu Y G, Tu C, et al. A novel cytotoxic ternary copper(Ⅱ) complex of 1,10-phenanthroline and L L-threonine with DNA nuclease activity[J]. J.Inorg. Biochem.,2004, 98:2099-2106.
    [74]Tomoya H, Yuko K, Eriko E, et al. Copper(II) complexes of 1,10-phenanthroline-derived ligands:Studies on DNA binding properties and nuclease activity[J]. J.Inorg. Biochem.,2005, 99:1205-1219.
    [75]何其庄,郁慧,周美峰等.稀土天冬氨酸邻菲咯啉三元配合物的合成、表征及其生物活性研究[J].中国稀土学报,2007,25:150-156.
    [76]崔运成,王家军.1,10-邻菲罗啉类配体修饰的研究进展[J].2007,1:39-42.
    [77]Dai C Y, Johnson S M, Fiona J L, et al.2,2'-Bipyridyl and 1,10-phenanthroline adducts of the diborane(4)compound B2(1,2-S2C6H4)2[J]. Polyhedron,1998,17:3028-3032.
    [78]Mark T. M., Peter K. G.& Timothy B. K. A Highly Emissive Heteroleptic Copper(I) Bis(phenanthroline) Complex:[Cu(dbp)(dmp)]+(dbp=2,9-Di-tert-butyl-1,10-phenanthroline; dmp=2,9-Dimethyl-1,10-phenanthroline) [J]. J. Am. Chem. Soc.,1999,121:4292-4293.
    [79]Dietrich-Buchecker C O, Marnot P A & Sauvage J P. Direct Synthesis of Disubstituted Aromatic Polyimine Chelate [J]. Tetrahedron Letters,1982,23:5291-5294.
    [80]Robert H B,Jose J.Syntheses of 2,9-bis(halomethyl)-1,10-phenanthrolines:Potential Robust Ligands for Oxidation Catalysts[J]. Org. chem.,1993,58:1746.
    [81]Aragoni M C, Arca M, Demartin F, et al. Fluorometric Chemosensors. Interaction of Toxic Heavy Metal Ions PbⅡ, CdⅡ, and HgⅡ with Novel Mixed-Donor Phenanthroline-Containing Macrocycles:Spectrofluorometric, Conductometric, and Crystallographic Studies[J]. Inorg. Chem. 2002,41:6623-6632.
    [82]Jacob M P, Jeremy A W, Bruce C N, et al. J. Org. Chem.2008,73:3911-3914.
    [83]Suzuki H, Kanbara T & Yamamoto T. Ru(Ⅱ) complexes with new redox-active 1,10-phenanthroline derivatives:structural, spectral, and electrochemical investigations[J]. Inorg.Chim. Acta,2004,357:4335-4340.
    [84]Wu F Y,Elvira R, Pavalova A, et al. Ruthenium(II) Complexes of 2-Aryl-1,10-phenanthrolines:Synthesis, Structure, and Photophysical Properties [J]. Inorg. Chem., 1999,38:5620-5628.
    [85]Edmood A, Abdulrazzak H,Synthese and study of a Mixed Ruthenium Complex in Its Groud and Excited States:Bis(2,2'-bipyridine)(dipyrido)phenzine ruthenium[J]. Chem. Soc.Dalton Trans, 1990,6:1841-1845.
    [86]Catharina H, Per L,DNA Binding of [Ru(phen)DPPZ]1+[J]. J. Am. Chem. Soc.,1993,115, 3448-3454.
    [87]Swamy B & Frederick M M. Synthesis of Free and Ruthenium Coordinated 5,6-Diamino-1,10-phenanthroline[J]. Tetrahedron Letters,1997,38:8159-816.
    [88]Edgar A. S & Lan R D. Reactions of Phenanthraquinone and Retenequinone with Aldehydes and Ammonium Acetate in Acetic Acid Solution[J]. J. Am. Chem. Soc. 1943,65:452-455.
    [89]Chao H, Ye B H, Li H, et al. Synthesis, electrochemical and spectroscopic properties of ruthenium(II) complexes containing 1,3-bis([1,10] phenanthroline-[5,6-d]imidazol-2-yl) benzene[J]. Polyhedron 2000,19:1975-1983.
    [90]Chao H, Ye B H, Zhang Q L, et al.A luminescent pH sensor based on a diruthenium complex: 'off-on-off switching via the protonation/deprotonation of an inmidazole-containing ligand[J]. Inorg. chem. comm.,1999,2:338-340.
    [91]Tan L F, Chao H, Zhou Y F, et al. Synthesis, characterization, DNA-binding and DNA-photocleavage studies of [Ru(bpy)2(BPIP)]2+and [Ru(phen)2(BPIP)]2+(BPIP 2-(40-biphenyl)imidazo[4,5-f][1,10]phenanthroline) [J]. Polyhedron,2007,26:3029-3036.
    [92]Tan L F & Chao H. DNA-binding and photocleavage studies of mixed polypyridyl ruthenium(II) complexes with calf thymus DNA[J].Inorg. Chim. Acta,2007,360:2016-2022.
    [93]Tan L F, Wang F, Chao H, et al. Ruthenium(II) mixed-ligand complex containing 2-(40-benzyloxy-phenyl)imidazo[4,5-f][1,10]phenanthroline:Synthesis, DNA-binding and photocleavage studies[J]. J. Inorg. Biochem.,2007,101:700-708.
    [94]Miranda F D S, Signori A M, Vicente J, et al. Synthesis of substituted dipyrido[3,2-a:20,30-c]phenazines and a new heterocyclicdipyrido[3,2-f:20,30-h]quinoxalino [2,3-b]quinoxaline[J]. Tetrahedron,2008,64:5410-5415.
    [95]Wang X L, Lin H Y, Hu T L, et al. New 3-D supramolecular networks formed via hydrogen bonding and p-p stacking interactions:Synthesis,characterization and crystal structures[J]. J. Mol. Struct.,2006,798:34-39.
    [96]Greg A. S,Viktor K, Paul H, et al. Synthesis of Readily Cleavable Immobilized 1,10-Phenanthroline Resins[J]. Org. Lett.,2004,6:2909-2912.
    [97]Smith G F,& Getz C A. The Improved Synthesis of o-Phenanthroline[J]. Chem. Rev.,1935, 16:113-120.
    [98], Serafino G, Giorgio C, Maria S, et al. Friedlander Synthesis of Chiral Alkyl-Substituted 1,10-Phenanthrolines[J]. J. Org. Chem.,2001,66:400-405.
    [99]Bonnefous C, Chouai A & Thummel R P. Cyclometalated Complexes of Ru(II) with 2-Aryl Derivatives of Quinoline and 1,10-Phenanthroline[J]. Inorg. Chem.,2001,40:5851-5859.
    [100]Zhang L, Li Z J, Lin Q P, et al.Synthesis, Structure, and Luminescent Properties of Hybrid Inorganic-Organic Framework Materials Formed by Lead Aromatic Carboxylates:Inorganic Connectivity Variation from 0D to 3D[J]. Inorg. Chem.,2009,48:6517-6525.
    [101]Chen P K, Che Y X, Xue L, Zheng J M. Two 2-Fold Interpenetrated Frameworks Showing DifferentTopologies Based on the Isomerous Benzenedicarboxylate Mixed with a Flexible N,N'-Type Ligand2006[J]. Cryst.Growth Des.,2006,6:2517-2522
    [102]Felicitas S,Daniel E,Mirza C, et al. Ruthenium Nanoparticles inside Porous [Zn4O(bdc)3]by Hydrogenolysis of Adsorbed [Ru(cod)(cot)]:A Solid-State Reference System for Surfactant-Stabilized Ruthenium Colloids[J]. J. Am. Chem. Soc.,2008,130,6119-6130.
    [103]Yaghi O M, Li H L, Groy T L, Construction of Porous Solids from Hydrogen-Bonded Metal Complexes of 1,3,5-Benzenetricarboxylic Acid[J]. J. Am. Chem. Soc.,1996,118:9096-9101.
    [104]Qua Y L, Kea Y X, Lu S M, et al. Hydrothermal synthesis, structures and spectroscopy of 2D lanthanide coordination polymers built from helical chains:[Ln2(BDC)3(H2O)2]n (Ln=Sm,1; Ln=Eu,2; BDC= 1,3-benzenedicarboxylate) [J]. J. Mol. Stru.2005,734:7-13.
    [105]Wan Y G, Zhang L P, Jin L P, et al. High-Dimensional Architectures from the Self-Assembly of Lanthanide Ions with Benzenedicarboxylates and 1,10-Phenanthroline[J]. Inorg. Chem.,2003, 42:4985-4994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700