基于工控机的直驱式电液压力伺服阀数字控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电液伺服阀按照其输出量的不同,可分为电液压力伺服阀、电液流量伺服阀以及电液压力流量伺服阀(即PQ阀)。目前使用的电液压力伺服阀主要是两级双喷嘴挡板式电液压力伺服阀,这类阀虽然性能优良,但结构复杂,制造困难,对油液的污染非常敏感,故障率较高。直驱式电液压力伺服阀(Direct Drive Pressure Control Servo Valve),简称DDPV,克服了这些缺点,具有体积小,结构简单,抗污染能力强,而其性能指标基本能够达到喷嘴挡板阀的各项性能指标,是传统喷嘴挡板阀的补充和发展。
     随着计算机和信息技术的飞速发展,电液伺服技术在过去的二、三十年间经历了一场由模拟控制方式向数字控制方式的转变。数字控制相对于模拟控制有很大的优越性,表现在精度高、灵活性大、可靠性好、易于大规模集成等方面。传统的电液伺服阀一般采用的是模拟控制方式,而模拟控制方式中存在着模拟电路,易于产生温漂和零漂,并且伺服阀的性能受使用场合的影响,使得对伺服阀本身的非线性因素如死区、滞环等难以实现彻底补偿。而采用数字控制能很好地解决上述问题,且参数调整方便,易于进行性能优化。
     本论文查阅了大量关于直驱式电液伺服阀以及数字控制的相关研究资料,着重分析和总结了直驱式电液伺服阀以及数字控制在国内外的研究现状和成果,建立了直驱式电液压力伺服阀的数学模型,设计了以工控机为核心的DDPV数字控制系统,并对控制系统进行了仿真研究,分析了各参数对系统控制的影响。
     对DDPV的仿真研究表明,影响系统稳定性和误差的主要因素是PID控制器中的比例积分系数,合理调整这些系数,能够获得较好的DDPV动静态特性。通过搭建DDPV数字控制系统试验台,进行试验研究,检验了DDPV数学模型的正确性,并验证了所设计的DDPV数字控制系统的可行性。本文比较了数字控制系统相对于模拟控制系统的优缺点,为进一步开发电液伺服阀的DSP数字控制器提供理论基础和有利的参考。
Considering different outputs, electro-hydraulic servo valves can be divided into pressure control servo valves, flow control servo valves and press-flow control servo valves. Nowadays, the commonly used electro-hydraulic pressure control servo valves are two-step nozzle-flapper servo valves. Though this type of servo valves has good performances, they have complicated structure and are difficult to be made. They are also sensitive to oil pollution as well as high frequency of failures. Direct drive pressure control servo valve (DDPV) does not have these defaults. DDPV has small volume, simple structure and strong anti-pollution ability. The performance of DDPV could also reach the standards of the performance of the nozzle-flapper servo valve. DDPV is the extension and development of the traditional nozzle-flapper servo valve.
     With the development of computer and information technology, electro-hydraulic technology has transited from analog control mode to digital control mode in the past twenty to thirty years. The digital mode has more advantages than the analog mode, such as high precision, good flexibility, excellent reliability, easy integration and so on. The traditional servo valves often use the analog mode. However, the analog mode, which has analog circuit in it, brings temperature float and zero float. Besides, the characteristics of this kind of servo valves are affected by the application. So the non-linearity of the servo valves, such as dead-band and hysteresis, can not be compensated completely. But digital control mode can solve these problems and the parameters can be changed conveniently as well as optimized characteristics.
     There were several research reports on DDPV and digital control. The status and harvests of research on DDPV and digital control were analyzed and summarized specially. The mathematical model of the DDPV was built and the digital control system of DDPV was designed using industrial personal computer. Based on the theoretical analysis, the paper did a lot of computer simulation so as to analyze the effect of every parameter on the control system.
     The main factors of stability and error of the system were proportional-integral coefficient of PID controller according to the simulation on DDPV. The characteristics of DDPV were better when the coefficients were adjusted. The test bed of digital control system of DDPV was built in order to test the correction of the mathematical model of DDPV and the feasibility of the digital control system. The difference between the digital control system and analog control system of DDPV were compared. So this paper can provide a reference and theoretical foundation when DSP digital controller is developed.
引文
1林躜,陈奎生.电液伺服装置嵌入式数字控制器研究.液压气动与密封. 2006, (3): 46~47
    2田源道.电液压力伺服阀的设计和使用.液压与气动. 2001, (9): 17~19
    3鄂世举,杨志刚等.一种新型电液伺服阀.压电与声光. 2004, 26(5): 377~379
    4金松.直动式电液数字伺服阀及其在位置伺服控制系统中的应用研究.浙江工业大学硕士学位论文. 2006: 5~6
    5许梁,杨前明.电液元件数字化技术进展.现代制造技术与装备. 2007, (2): 65~68
    6刘向明,刘庆和.一种新型电液伺服阀.液压与气动. 2000, (6): 340~35
    7章宏甲,黄谊.液压传动.机械工业出版社, 2000: 30~56
    8姜继海.液压传动.第3版.哈尔滨工业大学出版社, 2004: 194~195
    9 H. E.梅里特著.液压控制系统.陈燕庆译.科学出版社, 1967: 83~87
    10高翔,冯正进.电液伺服系统研究中的非线性分析方法.上海交通大学学报. 2002, (3): 31~36
    11雷天觉.液压设计手册.机械工业出版社, 2002: 584~591
    12邹小舟.直接驱动电液伺服阀静动态特性的研究.哈尔滨工业大学硕士学位论文. 2006: 1~5
    13李长春,顾亮,王申申,郭军.一种用于坦克半主动悬挂控制的电液DDV阀的研制.机床与液压. 2000, (6): 47~48
    14夏立群,张新国.直接驱动阀式伺服作动器研究.西北工业大学学报. 2006, 24(3): 308~312
    15李宁,张宝林,胡劲松.采用4个DDV阀控制的DEH系统的应用.江西电力第27卷, 2003, (5): 13~14, 25
    16王葳. MOOGDDV阀在汽轮机控制系统中的应用.电站系统工程. 2002, 18(3): 38–39
    17朱盘生. MOOG公司DDV伺服阀.液压与气动. 1996, (5): 20~21
    18 Bidlack, J. D. Mechanical Feedback Servo-valves Design and Manufacturing Teckniques. Proceedings of the 23rd National Conference on Fluid Power, 1967: 86~89
    19 H. Bangert. Update on Proportional Valve Performance. Hydraulics &Pneumatics. 1992, (6): 77~79
    20陈彬,易孟林.电液伺服阀的研究现状和发展趋势.液压与气动. 2005, (6): 5~8
    21周斌,邓耀礼.计算机实时电液控制系统的发展方向—全数字化.流体传动与控制. 2006, (5): 4–5
    22张业建,何晓霞,钟廷修. CAN总线及其在电液伺服系统中的应用.液压与气动. 2002, (1): 28~30
    23吴建昆,唐小琦,宋宝.一种基于DSP的伺服控制器的设计与应用.机械与电子. 2003, (3): 26~28
    24陈振华,李声晋,芦刚.一种高精度数字伺服系统控制器设计.微特电机. 2007, (4): 36~38
    25田源道.电液伺服阀技术.航空工业出版社, 2008: 62~74
    26 L. zhong, M. F. Rahman, W. Y. Hu, K. W. Lim. Analysis of Direct Torque Control in Permanent Magnet Synchronous Motor Drives. IEEE Trans. On SMC, No. 8, 1997: 457~472
    27 Geyer, L. H. Controlled Dumping Through Dynamic Pressure Feedback. Technique Bulletin 101, MOOG Inc, 1958: 48~62
    28 K. A. Oleson, R. R. Boyle. How to Cool Steam-Electric Power Plants. Annual Heat Transfer. 1986: 94~105
    29骆平,王莹.铁芯磁滞特性的分析与仿真.江西电力. 1994, 18(4): 23~26
    30裴翔,杨继隆,郑家锦,阮健.直动式电液数字伺服阀性能分析研究.浙江工业大学学报. 2001, 29(1): 35~39
    31霍焱.通用比例阀数字控制器的研制.大连理工大学硕士学位论文. 2005: 83~88
    32 D. Caputo. Electro hydraulic proportional valve in crease system efficiency. Hydraulic & Pneumatics, 1994(1): 94~100
    33王幼民.电液伺服阀结构参数优化.安徽机电学院学报, 2002, 17(2): 13~16
    34向春梅,张家深,马芳梅.电液伺服阀动态特性的研究.热力发电. 1996,(6): 50~54
    35肖俊东,王占林,陈克昌.新型高性能直接驱动电液伺服阀.机械科学与技术. 2005, 24(12): 1423~1425
    36 Dworak, Josepf Alan. Digital Control of the Hydraulic Actuators of an Adaptive Suspension Vehicle. A Dissertation for the Degree of Doctor of Philosophy inMechanical Engineering in the Ohio State University’s, 1985: 247~268
    37 J. Terava, T. Kuikko, M. Vilenius. Development of Sea Water HydraulicPpower Pack. Proc. 4th Scandinavian Int. Conf. on Fluid Power, Tampere, Finland, 1995: 978~991
    38 D. C. Hicks, C. M. Pleass. Development and Testing of a Composite/plastic High Pressure Seawater Pump. 1986: 69~78
    39付永领,裴忠才,宋国彪,王占林.新型直接驱动伺服阀的瞬态液动力分析.机床与液压. 1999, (1): 23~25
    40 George Ellis.控制系统设计指南(第3版).刘君华汤晓君译.电子工业出版社, 2006: 73~90
    41任玉军,邹俊,傅新.液压位置伺服系统PID参数在线优化.机床与液压. 2005, (10): 87~88
    42许益民.电液伺服阀频率特性测试系统误差分析.武汉科技大学学报(自然科学版). 2005, (4): 346~348
    43韩安太,刘峙飞,黄海. DSP控制器原理及其在运动控制系统中的应用.清华大学出版社, 2003: 314~316
    44 M. ITO, H. SATO, Y. Maeda. Direct Drive Volume Control of Hydraulic System and its Application to the Steering System of Ship. FLUCOME’97, Hayama 3(1): 445~450
    45 Bidlack, J. D. Mechanical Feedback Servovalves Design and Manufacturing Teckniques. Proceedings of the 23rd National Conference on Fluid Power, 1967: 386~393
    46 Geyer, L. H. Controlled Dumping Through Dynamic Pressure Feedback. Technique Bulletin 101, MOOG Inc, 1958: 275~280
    47 K. Tan, S. Huang, R. Ferdous. Robust Selftuning PID Controller for Nonlinear Systems. Journal of Process Control. 2002, (12): 753~761
    48 Cui. Bowen, Zhou. Jihua, Ren. Zhang. Modeling and Simulation of Permanent Magnet Synchronous Motor Drives. Proceedings of the Fifth International Conference, ICEMS 2001. Electrical Machines and Systems. 2001: 905~908
    49 AHN Kyoung Kwan. New Energy Saving Hybrid Actuator and Application to Mechanical System. Research Report in HIT University. 2005: 165~173
    50邵华平,董选明,裘丽华.基于LH0041的伺服电流放大器的电路设计.电子技术应用. 1998, (7): 30~32
    51路甬祥.液压气动技术手册.机械工业出版社, 2002: 708~710
    52 E. Trostmann, P. M. Clausen. Hydraulic Components Using Water as Pressure Medium. Proc.4th Scandinavian Int. Conf. on Fluid Power. Tampere, Finland, Sept. 1995: 942~954
    53 Takashi Miyajima, Kazutoshi Sakaki, Takashi Shibukawa, Toshinori Fujita, Kenji Kawashima, Toshibaru Kagawa. Development of Pneumatic High Precise Position Controllable Servo Valve. International Conference on Control Applications, Taiwan, 2004. Proceedings of the IEEE. 2004: 1159~1164
    54 Tomonori Kato, Kenji Kawashima, Tatsuya Funaki, Harus Laksana Gunter, Toshiharu kagawa. Active Control of a Pneumatic Vibration Isolation Table using a Newly Developed Precise and High Response Pressure Regulator. Part of IEEE Multi-conference on Systems and Control, Singapore, 2007. 16th IEEE International Conference on Control Applications, 2007: 497~502
    55 Herbert E. Merrit. Hydraulic Control Systems. John Wiley, Sons Inc. New Yok.London.Sydney,1967
    56 Dworak, Josepf Alan. Digital Control of the Hydraulic Actuators of an Adaptive Suspension Vehicle. A Dissertation for the Degree of Doctor of Philosophy in Mechanical Engineering in the Ohio State University’s, 1985: 408~420
    57任振家,刘连山,田纪熊,陆嘉明.电液伺服阀频率特性测试系统的设计与实践.液压与气动. 1983, (1): 42~46
    58 Wheeler, P. W.; Clare, J. C.; Apap, M.; Empringham, L.; Whitley, C.; Towers, G.; Power Supply Loss Ride-through and Device Voltage Drop Compensation in a Matrix Converter Permanent Magnet Motor Drive for an Aircraft Actuator. Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual, 20-25 June 2004 Vol.1: 149~154
    59 Kennedy J, Eberhart. R1Particle Swarm Optimization. In: Proc. IEEE Int. Conf. Neural Networks, Perth, Australia. 1995: 1942~1948
    60 Shi Y, Eberhart R.A. Modified Particle Swarm Optimizer. In: Proc. IEEE Int.Conf.Evolution Computer, Anchorage, AK. 1998: 690~731
    61陈燎原.基于Matlab/Simulink的液压绞车动态特性仿真研究.煤炭科学技术. 2002, (4): 18~21
    62王秋敏.阀控非对称液压缸同步系统建模研究.山东机械. 2005, (6): 26~28
    63 AverillM law, W. Davidkelton. Simulation Modeling and Analysis. 2000
    64 Kong Xiaowu. Improvement of Fluid Pipe Lumped Parameter Model. Chinese Journal of Mechanical Engineering. 2004,(3):114~116
    65臧怀泉,黄镇海等.液压伺服系统建模的新方法.计算机仿真. 2005, (5): 54~56
    66许贤良.伺服阀静态特性实验及分析.安徽理工大学学报(自然科学版). 1986, (3): 40~42
    67周玉涛,盛镔,朱国力,段正澄.传感器信号检测电路的设计.机械与电子. 1998, (2): 25~27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700