基片集成波导传播特性及滤波器的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为适应电子与通信技术飞速发展的局面,微波毫米波集成电路及系统正在向高性能、低成本、高集成度和小型化方面快速发展。但是,将微波毫米波系统单片化技术的一个突出的困难是系统中需要的高品质因数的无源元件,如滤波器、谐振器和双工器等元件在半导体芯片内难以实现。新兴的基片集成波导(SIW:Substrate Integrated Waveguide)技术具有高品质因数、大功率容量、易于加工、造价低和容易集成等优点,从而使微波毫米波系统的封装级单片化成为可能。基片集成波导技术目前处于刚刚兴起的阶段,因此有许多理论问题需要研究,有很多应用领域亟待开拓。本文重点研究了基片集成波导结构的传播特性并设计和实现了多种新型高性能的基片集成波导滤波器。
     首次利用频域有限差分法结合Floquet定理并采用理想匹配层(PML)作为吸收边界条件对基片集成波导的传播特性进行了研究,得到了基片集成波导传播问题的复数本征解,在毫米波频段的实验测试结果和数值计算结果的良好吻合验证了方法的正确性和有效性。
     应用频域有限差分法结合理想匹配层对二维开放型基片集成波导结构形成的谐振腔的本征值问题进行了分析,从理论上证明了基片集成波导谐振腔的能量泄漏远小于介质损耗,可以获得很高的品质因数。
     设计和实现了多种基片集成波导滤波器:共面波导耦合级联基片集成波导腔体滤波器、直接耦合级联基片集成波导腔体滤波器、底面耦合层叠式基片集成波导腔体滤波器、周期性十字形破损性地结构-基片集成波导腔体滤波器、微带损性地结构-基片集成波导腔体级联滤波器和低阻-高阻短微带线基片集成腔体滤波器等。这些滤波器在低损耗微波介质基片上用印刷电路板的工艺实现,并给出了仿真结果和测试结果。它们具有良好的滤波特性,并具有高品质因数、大功率容量、易于加工、成本低和容易集成等优点,其中六种滤波器已提交了发明专利申请。
     用基片集成波导设计和实现了H面环形电桥,具有体积小、重量轻、高品质因数、低损耗、低成本、易于集成的优点,可以简单方便的与SIW天线等SIW器件连接,不会因为不连续性与转接而产生辐射、电磁干扰和明显降低系统的性能。
Recent advances in electronic and communication technology further the need for small, high performance and low cost microwave and millimeter wave systems. Due to the difficulty of realizing passive components with high quality factor (Q) in semiconductive materials, now it is impossible to integrate a microwave or millimeter wave system on chip (SOC). Recently, a new technology called substrate integrated waveguide (SIW) has been proposed and developed as an attractive for low-cost, high-Q, relatively high-power capacity, and high-density integration of microwave and millimeter wave components and sub-systems. Because the SIW is a newly arisen technique, many theoretical problems still remain unclear and its applications are still far from being completed.
     In this dissertation, essential propagation characteristics and applications in filters of SIW are investigated.
     A novel finite difference frequency domain (FDFD) algorithm with perfectly matched layer (PML) and Floquet's theorem for the analysis of SIW guided-wave problems is presented. In this scheme, the problem is converted into a generalized matrix eigenvalue problem and finally transformed to a standard matrix eigenvalue problem that can be solved with efficient subroutines available. This approach has been verified with experiment.
     FDFD method is applied to analyze the eigenvalue problems of SIW cavity. It is proved theoretically that the energy leakage from the via gaps can be neglected contrasting to the heat dissipation and a SIW cavity with high-Q can be obtained easily.
     And several kinds of SIW filters are designed and fabricated on standard printed circuit boards (PCB): the coplanar waveguide (CPW) coupled SIW-cavity filters, the direct coupled SIW-cavity filters, the folded SIW-cavity filters, the SIW microwave filters with the periodic cross-slot defected ground structures (DGS), the SIW microwave filters with the square-slot microstrip DGS, and the SIW microwave filters with high-impedance short-line element. The simulated and measured results are presented to demonstrate the promising performances of the proposed filters.
引文
1 Rothwell E J, Cloud M J. Electromagnetics[M].Boca Raton: CRC Press.
    2 顾墨林, 林守远.微波集成电路技术——回顾与展望[J].微波学报,2000,16(3):278-290.
    3 王安国, 吴咏诗.三维微波集成电路的发展[J].微波学报,1999,15(2):167-173.
    4 吴咏诗, 单片微波集成电路的技术进展[J].电子科技导报,1997(2):2-4.
    5 林金庭, 砷化镓微波集成电路的进展及其应用[J].电子了望,1992(1):22-24.
    6 李征帆, 曹毅.微波与高速电路中的电磁场及其数值方法[M].北京:科学出版社,2002.1-6.
    7 McQuiddy D N, Wassel J W, LaGrange J B, et al. Monolithic microwave integrated circuits: an historical perspective[J]. IEEE Transactions on microwave theory and techniques, September 1984. 32(9):997-1008.
    8 Howe H, Microwave Integrated Circuits-An Historical Perspective[J]. IEEE Transactions on microwave theory and techniques, September 1984. 32(9):991-996.
    9 Sudbury R W, Microwave and millimeter-wave monolithic circuit technology, its history and future[C]. Microwave and Millimeter-Wave Monolithic Circuits Symposium, June 1991. 1991:10-11.
    10 Kilby J S, The integrated circuit's early history[J]. Proceedings of the IEEE, Jane 2000. 88(1):109-111.
    11 Grochowski A, Bhattacharya D, Viswanathan T R, et al. Integrated circuit testing for quality assurance in manufacturing: history, current status, and future trends[J]. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, August 1997. 44(8): 610-633.
    12 Barrett R M, Microwave Printed Circuits - A Historical Survey[J]. IEEE Transactions on Microwave Theory and Techniques, March 1955. 3(2): 1-9.
    13 Peng S T, Oliner A A. Guidance and leakage properties of a class of open dielectric waveguides, part I-mathematical formulations[J]. IEEE Transactions on Microwave Theory and Techniques, September 1981. 29: 843-855.
    14 Oliner A A, Peng S T, Hsu T I, et al. Guidance and leakage properties of a class of open dielectric waveguides, part II-new physical effects[J]. IEEE Transactions on Microwave Theory and Techniques, September 1981. 29: 855-869.
    15 Yoneyama T, Nishida S. Nonradiative Dielectric Waveguide for Millimeter-Wave Integrated Circuits[J]. IEEE Transactions on Microwave Theory and Techniques, November 1981. 29(11): 1188-1192.
    16 Yoneyama T, Yamaguchi M, Nishida S. Bends in Nonradiative Dielectric Waveguides[J]. IEEE Transactions on Microwave Theory and Techniques, December 1982. 82(12): 2146-2150.
    17 Malherbe J. The design of a slot array in nonradiating dielectric waveguide, part I: Theory[J]. IEEE Transactions on Theory Antennas and Propagation, December 1984. 32(12): 1335-1340.
    18 Malherbe J A G, Olivier J C. A Bandstop Filter Constructed in Coupled Nonradiative Dielectric Waveguide[J]. IEEE Transactions on Microwave Theory and Techniques, December 1986. 34(12): 1408-1412.
    19 Di N C, Frezza F, Galli A, et al. Properties of NRD-guide and H-guide higher-order modes:physical and nonphysical ranges[J]. IEEE Transactions on Microwave Theory and Techniques, December 1994. 42(12): 2429-2434.
    20 Cassivi Y, Wu K. Substrate integrated nonradiative dielectric waveguide[J]. IEEE Microwave and Wireless Components Letters, March 2004. 14(3): 89-91.
    21 Abidi A A. Substrate integrated nonradiative dielectric waveguide [J]. IEEE Journal of Solid-State Circuits, April 2004. 39(4): 549-561.
    22 Wu K, Han Liang. Integrated planar NRD oscillator suitable for low cost millimeter-wave applications[J]. IEEE Microwave and Wireless Components Letters, September 1996. 6(9)): 329-331.
    23 Wu K, Han Liang. Hybrid integration technology of planar circuits and NRD-guide for cost-effective microwave and millimeter-wave applications[J]. IEEE Transactions on Microwave Theory and Techniques, June 1997. 45(6): 946-954.
    24 Qi S X, Wu K, Ou Z f. Hybrid integrated HEMT oscillator with a multiple ring nonradiative dielectric (NRD) resonator feedback circuit[J]. IEEE Transactions on Microwave Theory and Techniques, October 1998. 46(10): 1552-1558.
    25 Sayyah A A, Wu K. Efficient analysis of microstrip-coupled nonradiative dielectric (NRD) resonators for hybrid integrated circuits[J]. IEEE Transactions on Microwave Theory and Techniques, February 1999. 47(2): 216-223.
    26 Cassivi Y, Deslandes D, Wu K. Engraved NRD-guide for millimeter-wave integrated circuits[C]. IEEE MTT–S International microwave symposium digest, Boston, June 2000, 2: 605-608.
    27 Tang J B, Zeng X Y, Xu S J, et al. Low-loss millimeter-wave propagation characteristics of NRD-guide surface-mounted on planar substrate for hybrid integrated circuit[C]. IEEE MTT–S International microwave symposium digest, Boston, June 2000, 3: 1679-1682.
    28 Tang J, Deslandes D, Zeng X Y, et al. Substrate-mounted non-radiative dielectric guide for low-loss millimetre-wave integrated circuits[J]. IEE Proceedings on Microwaves, Antennas and Propagation, October 2001. 148(5): 291-294.
    29 Wu K, Boone F. Guided-wave properties of synthesized nonradiative dielectric waveguide for substrate integrated circuits (SICs)[C]. IEEE MTT–S International microwave symposium digest, May 2001. 2: 723-726.
    30 Cassivi Y, Wu K. Hybrid planar NRD-guide magic-tee junction [J]. IEEE Transactions on Microwave Theory and Techniques, October 2002. 50(10): 2405-2408.
    31 Cassivi Y, Deslandes D, Wu K. Design considerations of engraved NRD guide for millimeter-wave integrated circuits[J]. IEEE Transactions on Microwave Theory and Techniques, January 2002. 50(1): 165-171.
    32 Boone F, Wu K, Nonradiative dielectric (NRD) waveguide diplexer for millimeter-wave applications[C]. IEEE MTT–S International microwave symposium digest, June 2003. 3: 1471-1474.
    33 孙立宁, 周兆英,龚振邦. MEMS 国内外发展状况及我国 MEMS 发展战略的思考展[EB/OL].http://www.mie.gov.cn/download/qk/no-9.htm. 2004-10-25.
    34 Drayton R F, Katehi L P B. Development of miniature microwave circuit components using micromachining techniques[C]. IEEE MTT-S International Microwave Symposium Digest, May 1994. 1: 225 - 228.
    35 Milanovic V, Gaitan M, Bowen E D, et al. Micromachined microwave transmission lines in CMOS technology[J]. IEEE Transactions on Microwave Theory and Techniques, May 1997. 45(5): 630 - 635.
    36 David G, Yun T Y, Crites M H, et al. Absolute potential measurements inside microwave digital IC's using a micromachined photoconductive sampling probe[J]. IEEE Transactions on Microwave Theory and Techniques, December 1998. 46(12): 2330 - 2337.
    37 Valade P, Cros D, Guillon P. Analysis of microwave and micromachined filters by the method of lines with nonequidistant discretization[C]. IEEE MTT-S International Microwave Symposium Digest, June 1999. 2: 703 - 706.
    38 Tangonan G, Loo R, Schaffner J. Microwave photonic applications of MEMS technology[C]. International Topical Meeting on Microwave Photonics, November 1999. 1: 109 - 112.
    39 Larson L E. Microwave MEMS technology for next generation wireless communications[C]. IEEE MTT-S International Microwave Symposium Digest, June 1999. 3: 1073 - 1076.
    40 Ribas R P, Lescot J, Leclercq J L, et al. Micromachined microwave planar spiral inductors and transformers[J]. IEEE Transactions on Microwave Theory and Techniques, August 2000. 48(8): 1326 - 1335.
    41 Hah D Y, Hong S C. A low-voltage actuated micromachined microwave switch using torsion springs and leverage[J]. IEEE Transactions on Microwave Theory and Techniques, December 2000. 48(12): 2540 - 2545.
    42 Dec A, Suyama K. Microwave MEMS-based voltage-controlled oscillators [J]. IEEE Transactions on Microwave Theory and Techniques, November 2000. 48(11): 1943 - 1949.
    43 Bozler C, Drangmeister R, Duffy S, et al. MEMS microswitch arrays for reconfigurable distributed microwave components[C]. IEEE MTT-S International Microwave Symposium Digest, June 2000. 1: 153 - 156.
    44 Dahlmann G W, Yeatman E M, Young P R, et al. MEMS high Q microwave inductors using solder surface tension self-assembly[C]. IEEE MTT-S International Microwave Symposium Digest, May 2001. 1: 329 - 332.
    45 Yoon J B, Kim B I, Choi Y S, et al. 3-D lithography and metal surface micromachining for RF and microwave MEMS[C]. The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, January 2002. 673 - 676.
    46 Newlin D P, Pham A V H, Harriss J E. Development of low loss organic-micromachined interconnects on silicon at microwave frequencies[J]. IEEE Transactions on Components and Packaging Technologies, September 2002. 25(3): 506 - 510.
    47 Ramachandran R, Pham A V H. Development of RF/microwave on-chip inductors using an organic micromachining process[J]. IEEE Transactions on Advanced Packaging, May 2002. 25(2): 244 - 247.
    48 Yoon J B, Kim B I, Choi Y S, et al. 3-D construction of monolithic passive components for RF and microwave ICs using thick-metal surface micromachining technology[J]. IEEE Transactions on Microwave Theory and Techniques, January 2003. 51(1): 279 - 288.
    49 Chang H P, Qian J Y, Cetiner B A, et al. RF MEMS switches fabricated on microwave laminate printed circuit boards[J]. IEEE Electron Device Letters, April 2003. 24(4): 227 - 229.
    50 Cetiner B A, Qian J Y, Chang H P, et al. Microwave laminate PCB compatible RF MEMStechnology for wireless communication systems[C]. IEEE Antennas and Propagation Society International Symposium, June 2003. 1: 387 - 390.
    51 Burghartz J, Drayton R F. PTUC: Will micromachining ever make it into RF/microwave silicon volume manufacturing?[C]. IEEE MTT-S International Microwave Symposium Digest, June 2004. 1: XXII - XXII.
    52 Dunn V E, Domenico A J. Recent Advances in Microstrip Circulators[C]. G-MTT International Microwave Symposium Digest, May 1968. 68(1): 248 - 254.
    53 Emery F E, Noel P L. Recent Experimental Work on Silicon Microstrip Microwave Transmission Lines [J]. IEEE Journal of Solid-State Circuits, June 1968. 3(2): 145 - 146.
    54 Kuester E F, Chang D C. Some Recent Theoretical Studies on Open Microstrip[C]. IEEE MTT-S International Microwave Symposium Digest, April 1979. 79(1): 572 - 574.
    55 Hong J S, Lancaster M J. Recent advances in microstrip filters for communications and other applications[C]. IEE Colloquium on Advances in Passive Microwave Components (Digest No: 1997/154), May 1997. 2: 1 - 6.
    56 James J, Hall P, Wood C, et al. Some recent developments in microstrip antenna design[J]. IEEE Transactions on Antennas and Propagation, January 1981. 29(1): 124 - 128.
    57 Kobayashi M. A dispersion formula satisfying recent requirements in microstrip CAD[J]. IEEE Transactions on Microwave Theory and Techniques, August 1988. 36(8): 1246 - 1250.
    58 Guha D. Microstrip and printed antennas : recent trends and developments[C]. 6th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service, October 2003. 1: 39 - 44.
    59 Engelmann H F. Microstrip - A New Microwave Transmission Technique (Abstract)[J]. IEEE Transactions on Microwave Theory and Techniques, March 1953. 1(1): 22 - 22.
    60 Deschamps G A. Theoretical Aspects of Microstrip Waveguides [J]. IEEE Transactions on Microwave Theory and Techniques, April 1954. 2(1): 100 - 102.
    61 Bryant T G, Weiss J A. Parameters of microstrip transmission lines and coupled pairs of microstrip lines[J]. . IEEE Transactions on Microwave Theory and Techniques, December 1968. 16: 1021-1027.
    62 Emery F E, Noel P L. Recent Experimental Work on Silicon Microstrip Microwave Transmission Lines (Correspondence) [J]. IEEE Journal of Solid-State Circuits, June 1968. 16(7): 483 - 484.
    63 Stinehelfer H E. An Accurate Calculation of Uniform Microstrip Transmission Lines[J]. IEEE Journal of Solid-State Circuits, June 1968. 3(2): 101 - 106.
    64 Liu S G. Microstrip High-Power High-Efficiency Avalanche-Diode Oscillator [J]. IEEE Transactions on Microwave Theory and Techniques, December 1969. 17(12): 1068 - 1071.
    65 Krage M K, Haddad G I. Characteristics of Coupled Microstrip Transmission Lines - I: Coupled-Mode Formulation of Inhomogeneous Lines [J]. IEEE Transactions on Microwave Theory and Techniques, April 1970. 18(4): 217 - 222.
    66 Krage M K, Haddad G I. Characteristics of Coupled Microstrip Transmission Lines - II: Evaluation of Coupled-Line Parameters[J]. IEEE Transactions on Microwave Theory and Techniques, April 1970. 18(4): 222 - 228.
    67 Bryant T G, Weiss J A. MSTRIP (Parameters of Microstrip) (Computer Program Descriptions)[J]. IEEE Transactions on Microwave Theory and Techniques, April 1971. 19(4): 418 - 418.
    68 Rhodes J D. The Stepped Digital Elliptic Filter[J]. IEEE Transactions on Microwave Theory and Techniques, April 1969. 17(4): 178 - 184.
    69 Darlington S. A history of network synthesis and filter theory for circuits composed of resistors, inductors, and capacitors[J]. IEEE Transactions on Circuits and Systems, January 1984. 31(1): 3 - 13.
    70 Levy R, Cohn S B. A History of Microwave Filter Research, Design, and Development[J]. IEEE Transactions on Microwave Theory and Techniques, September 1984. 32(9): 1055 - 1067.
    71 Cameron R J. Advanced coupling matrix synthesis techniques for microwave filters[J]. IEEE Transactions on Microwave Theory and Techniques, January 2003. 51(1): 1 - 10.
    72 Hong J S, Lancaster M J. Microstrip Filters for RF/Microwave Applications[M].New York: Willey, 2001.
    73 Levy R, Snyder R V, Matthaei G. Design of microwave filters[J]. IEEE Transactions on Microwave Theory and Techniques, March 2002. 50(3): 783 - 793.
    74 Vincze A D. Practical Design Approach to Microstrip Combline-Type Filters [J]. IEEE Transactions on Microwave Theory and Techniques, December 1974. 22(12): 1171 - 1181.
    75 Childs W H. Design Techniques for Bandpass Filters Using Edge-Coupled Microstrip Lines on Fused Silica[C]. IEEE MTT-S International Microwave Symposium Digest, June 1976. 76(1): 194 - 196.
    76 Wong J S. Microstrip Tapped-Line Filter Design[J]. IEEE Transactions on Microwave Theory and Techniques, January 1979. 27(1): 44 - 50.
    77 Mehran R. Computer-Aided Design of Microstrip Filters Considering Dispersion, Loss, and Discontinuity Effects[J]. IEEE Transactions on Microwave Theory and Techniques, March 1979. 27(3): 239 - 245.
    78 Jokela K T. Narrow-Band Stripline or Microstrip Filters with Transmission Zeros at Real and Imaginary Frequencies[J]. IEEE Transactions on Microwave Theory and Techniques, June 1980. 28(6): 542 - 547.
    79 Wenzel R J, Erlinger W G. Problems in Microstrip Filter Design[C]. IEEE MTT-S International Microwave Symposium Digest, June 1981. 81(1): 203 - 205.
    80 Podcameni A, Conrado L F M. Design of Microwave Oscillators and Filters Using Transmission-Mode Dielectric Resonators Coupled to Microstrip Lines[J]. IEEE Transactions on Microwave Theory and Techniques, December 1985. 33(12): 1329 - 1332.
    81 Gat M. Commensurate line, microstrip, band-pass filters [C]. IEEE MTT-S International Microwave Symposium Digest, May 1988. 1: 423 - 426.
    82 Uysal S, Aghvami A H, Mohamed S A. Microstrip channelling filters using -3dB directional couplers[C]. IEE Colloquium on Multi-Octave Active and Passive Components and Antennas, May 1989. 12: 1 - 4.
    83 Kedia D N, Morgan G B. The design of integrated circuit microstrip hairpin-line band pass filters for short millimetre waves[C]. IEE Colloquium on Digital and Analogue Filters and Filtering Systems, November 1990. 10: 1 - 5.
    84 Hong J S, Li S Z. Theory and experiment of dual-mode microstrip triangular patch resonators and filters[J]. IEEE Transactions on Microwave Theory and Techniques, April 2004. 52(4): 1237- 1243.
    85 Wen C P. Coplanar Waveguide: A Surface Strip Transmission Line Suitable for Nonreciprocal Gyromagnetic Device Applications[J]. IEEE Transactions on Microwave Theory and Techniques, December 1969. 17(12): 1087-1090.
    86 Wen C P. Coplanar Waveguide Directional Couplers [J]. IEEE Transactions on Microwave Theory and Techniques, June 1970. 18(6): 318—322.
    87 Itoh T, Mittra R. Dispersion Characteristics of Slot Lines[J]. Electronics Letters, July 1971. 7(13): 364—365.
    88 Hatsuda T. Computation of the Characteristics of Coplanar-Type Strip Lines by the Relaxation Method[J]. IEEE Transactions on Microwave Theory and Techniques, June 1972. 20(6): 413—416.
    89 Dupuis P A J, Campbell C K. Characteristic Impedance of Surface-Strip Coplanar Waveguides [J]. International Journal of Electronics, August 1973. 9(16): 354—355.
    91 Becker J P, Jager D. Electrical Properties of Coplanar Transmission Lines on Lossless and Lossy Substrates[J]. International Journal of Electronics, February 1979. 15(3): 88—90.
    92 Riad A A R, Riad S M, Ahmad M, et al. Thick-Film Coplanar Strip and Slot Transmission Lines for Microwave and Wideband Integrated Circuits[C]. International Microelectronics Symposium Digest, November 1982. 18—21.
    93 Browne J. Broadband Amps Sport Coplanar Waveguide[J]. Microwaves RF, February 1987. 26(2): 131-134.
    94 Riaziat M, Bandy S, Zdasiuk G. Coplanar Waveguides for MMICs[J]. Microwave Journal, June 1987. 30(6): 125-131.
    95 Simons R N, Ponchak G E. Modeling of Some Coplanar Waveguide Discontinuities[J]. IEEE Transactions on Microwave Theory and Techniques, December 1988. 36(12): 1796—1803.
    96 Browne J. Coplanar Waveguide Supports Integrated Multiplier Systems[J]. Microwaves RF, March 1989. 28(3): 137-138,
    97 Kibuuka G, Bertenburg R, Naghed M, et al. Coplanar Lumped Elements and their Application in Filters on Ceramic and Gallium Arsenide Substrates[C]. 19th European Microwave Conference Proceedings, September 1989. 656-661.
    98 Ponchak G E, Simons R N. A New Rectangular Waveguide to Coplanar Waveguide Transition [C]. IEEE MTT-S International Microwave Symposium Digest, May 1990. 1: 491-492.
    99 Dib N I, Katehi L P B, Ponchak G E, et al. Theoretical and Experimental Characterization of Coplanar Waveguide Discontinuities for Filter Applications[J]. IEEE Transactions on Microwave Theory and Techniques, May 1991. 39(5): 873-882.
    100 Menzel W, Grabherr W. A Microstrip Patch Antenna with Coplanar Feed Line[J]. IEEE Microwave Guided Wave Letters, November 1991. 1(11): 340-342.
    101 Lee R Q, Simons R N. Coplanar Waveguide Aperture-Coupled Microstrip Patch Antenna[J]. IEEE Microwave Guided Wave Letters, April 1992. 2(4): 138-139.
    102 Simons R N, Lee R Q, Perl T D. New Techniques for Exciting Linearly Tapered Slot Antennas With Coplanar Waveguide[J]. Electronics Letters, March 1992. 28(7): 620-621.
    103 Walker J L B. A Survey of European Activity on Coplanar Waveguide[C]. IEEE MTT-S International Microwave Symposium Digest, June 1993. 2: 693-696.
    104 Simons R N, Taub S R. Coplanar Waveguide Radial Line Double Stub and Application to Filter Circuits[J]. Electronics Letters, August 1993. 29(17): 1584-1585.
    105 Everard J K A, Cheng K K M. High Performance Direct Coupled Bandpass Filters on Coplanar Waveguide[J]. IEEE Transactions on Microwave Theory and Techniques, September 1993. 41(9): 1568-1573.
    106 Hopf B P, Wolff I, Guglielmi M. Coplanar MMIC Active Bandpass Filters Using Negative Resistance Circuits[J]. IEEE Transactions on Microwave Theory and Techniques, December 1994. 42(12): 2598-2602.
    107 Kulke R, Sporkmann T, Kother D, et al. Coplanar Elements Support Circuit Designs to 67 GHz, Part 1[J]. Microwaves RF, December 1994. 33(13): 103-116.
    108 Kulke R, Sporkmann T, Kother D, et al. Modeling and Analysis Aid Coplanar Designs, Part 2[J]. Microwaves RF, January 1995. 34(1):89-916.
    109 Mernyei F, Aoki I, Matsuura H. New Cross T Junction for CPW Stub-Filters on MMIC’s[J]. IEEE Microwave Guided Wave Letters, May 1995. 5(5): 139-141.
    110 Ku F T, Yamashita E, Funada J. Novel Directional Couplers Using Broadside-Coupled Coplanar Waveguides for Double-Sided Printed Antennas[J]. IEEE Transactions on Microwave Theory and Techniques, February 1996. 44(2): 275-282.
    111 Goverdhanam K, Simons R N, Katehi L P B. Coplanar Stripline Propagation Characteristics and Bandpass Filter[J]. IEEE Microwave Guided Wave Letters, August 1997. 7(8): 214-216.
    112 Sporkmann T. The Evolution of Coplanar MMICs over the past 30 Years[J]. Microwave Journal, July 1998. 41(7): 96-111.
    113 Sporkmann T. The Current State of the Art in Coplanar MMICs[J]. Microwave Journal, August 1998. 41(8): 60-64.
    114 Hsu H J, Ziolkowski R W, Papapolymerou J. Simulated and measured results from a Duroid-based planar MBG cavity resonator filter[J]. IEEE Microwave and Wireless Components Letters, December 2000. 10(12): 528-530.
    115 Hsu H J, Ziolkowski R W, Papapolymerou J. A high-Q reconfigurable planar EBG cavity resonator[J]. IEEE Microwave and Wireless Components Letters, June 2001. 11(6): 255-257.
    116 Chappell J, Little M P, Katehi L P B. High isolation, planar filters using EBG substrates[J]. IEEE Microwave and Wireless Components Letters, June 2001. 11(6): 246-248.
    117 Hsu H J, Hill M J, Ziolkowski R W, et al. A Duroid-based planar EBG cavity resonator filter with improved quality factor[J]. IEEE Antennas and Wireless Propagation Letters, 2002. 1(2): 67-70.
    118 Lenoir B, Blondy P, Baillargeat D, et al. A novel planar silicon waveguide filter at 45 GHz based on a periodic structure[C]. IEEE MTT-S International Microwave Symposium Digest, June 2002. 3: 1923-1926.
    119 Tavernier C A, Henderson R M, Papapolymerou J. A reduced-size silicon micromachined high-Q resonator at 5.7 GHz[J]. IEEE Transactions on Microwave Theory and Techniques, October 2002. 50(10): 2305-2314.
    120 Chang C Y, Hsu W C. Photonic bandgap dielectric waveguide filter[J]. IEEE Microwave and Wireless Components Letters, April 2002. 12(4): 137-139.
    121 Hsu H J, Hill M J, Papapolymerou J, et al. A planar X-band electromagnetic band-gap (EBG)3-pole filter[J]. IEEE Microwave and Wireless Components Letters, July 2002. 12(7): 255-257.
    122 Gong X, Chappell W J, Katehi L P B.Reduced size capacitive defect EBG resonators[C]. IEEE MTT-S International Microwave Symposium Digest, June 2002. 2: 1091-1094.
    123 Euler T, Papapolymerou J. Silicon micromachined EBG resonator and two-pole filter with improved performance characteristics[J]. IEEE Microwave and Wireless Components Letters, September 2003. 13(9): 373-375.
    124 Euler T, Papapolymerou J. A novel micromachined planar filter on Si substrate at 45 GHz based on electromagnetic bandgap structures for wireless applications[C]. 2003 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, April 2003. 150-153.
    125 Chappell W J, Gong X. Wide bandgap composite EBG substrates[J]. IEEE Transactions on Antennas and Propagation, October 2003 . 51(10): 2744-2750.
    126 She W H, Gong X, Chappell W J. Fundamental constraints on two-dimensional ebg substrates[C]. IEEE Proceedings on Antennas and Propagation Society Symposium, June 2004. 2: 1419-1422.
    127 Kirby P L, Pukala D, Manohara H, et al. A micromachined 400 GHz rectangular waveguide and 3 -pole bandpass filter on a silicon substrate[C]. IEEE MTT-S International Microwave Symposium Digest, June 2004. 2: 1183-1186.
    128 Piloto A, Leahy K, Flanick B, et al. Waveguide filters having a layered dielectric structure [P].US Patent 5382931. 1995-01-17.
    129 Stevens D, Gipprich J. Microwave characterization and modeling of multilayered cofired ceramic waveguides[C]. Proceedings of international Microelectron symposium, San Diego, November 1998. 195–200.
    130 Gipprich J, Stevens D, Hageman M, et al. Embedded waveguide filters for microwave and wireless applications using cofired ceramic technologies[C]. Proceeding of international Microelectron symposium, San Diego, November 1998. 23–26.
    131 Rong Y, Zaki K A, Hageman M, et al. Low temperature cofired ceramic (LTCC) ridge waveguide andpass filters[C]. IEEE MTT–S International microwave symposium digest, June 1999. 3:1147–1150.
    132 Rong Y, Zaki K A, Gipprich J, et al. LTCC wide-band ridge-waveguide bandpass filters[J]. IEEE Transactions on Microwave Theory and Techniques, September 1999. 47(9): 1836-1840.
    133 Rong Y, Zaki K A, Hageman M, et al. Low-temperature cofired ceramic (LTCC) ridge waveguide bandpass chip filters[J]. IEEE Transactions on Microwave Theory and Techniques, December 1999. 47(12): 2317-2324.
    134 Rong Y, Zaki K A, Hageman M, et al. Low temperature cofired ceramic (LTCC) ridge waveguide multiplexers[C]. IEEE MTT–S International microwave symposium digest, June 2000. 2: 1169-1172.
    135 Uchimura H, Takenoshita T, Fujii M. Development of the “laminated waveguide”[C]. IEEE MTT-S International Microwave Symposium Digest, June 1998. 3: 1811-1814.
    136 Uchimura H, Takenoshita T, Fujii M. Development of a “laminated waveguide”[J]. IEEE Transactions on Microwave Theory and Techniques, December 1998. 46(12): 2438-2443.
    137 Hirokawa J, Ando M. 40 GHz parallel plate slot array fed by single-layer waveguide consisting of posts in a dielectric substrate[C]. IEEE Proceedings on Antennas and Propagation Society International Symposium, June 1998. 3: 1698-1701.
    138 Hirokawa J, Ando M. Single-layer feed waveguide consisting of posts for plane tem wave excitation in parallel plates[J]. IEEE Transactions on Antennas and Propagation, May 1998. 46: 625-630.
    139 Ando M, Hirokawa J, Yamamoto T, et al. Novel single-layer waveguides for high efficiency millimeter wave arrays[C]. 1997 Topical Symposium on Millimeter Waves, July 1998. 177-180.
    140 Ando M, Hirokawa J, Yamamoto T, et al. Novel Single-Layer Waveguides for High Efficiency Millimeter-Wave Arrays[J]. IEEE Transactions on Microwave Theory and Techniques, June 1998. 46(6): 792-799.
    141 Hirokawa J, Ando M. 76 GHz post-wall waveguide-fed parallel plate slot arrays with sidelobe suppression[C]. 1999 Asia Pacific Microwave Conference, December 1999. 3:694-697.
    142 Hirokawa J, Ando M. Model antenna of 76 GHz post-wall waveguide fed parallel plate slot arrays[C]. IEEE Proceedings on Antennas and Propagation Society International Symposium, July 1999. 1: 146-149.
    143 Hirokawa J, Ando M. Sidelobe suppression in 76-GHz post-wall waveguide-fed parallel-plate slot arrays[J]. IEEE Transactions on Antennas and Propagation, November 2000. 48(11): 1727-1732.
    144 Hirokawa J, Ando M. Efficiency of 76-GHz post-wall waveguide-fed parallel-plate slot arrays[J]. IEEE Transactions on Antennas and Propagation, November 2000. 48(11): 1742-1745.
    145 Hirokawa J, Ando M. 45° linearly polarised post-wall waveguide-fed parallel-plate slot arrays[J]. IEE Proceedings on Microwaves, Antennas and Propagation, December 2000. 147(6): 515-519.
    146 Yamamoto S, Hirokawa J, Ando M. A beam switching slot array with a 4-way Butler matrix installed in a single layer post-wall waveguide[C]. IEEE on Antennas and Propagation Society International Symposium, June 2002. 1: 138-141.
    147 Kai T, Hirokawa J, Ando M. Transformer between a thin post-wall waveguide to a standard metal waveguide[C]. IEEE Proceedings on Antennas and Propagation Society International Symposium, June 2002. 4: 436-439.
    148 Yamamoto S, Hikono N, Hirokawa J, et al. A 120-degree beamwidth post-wall waveguide slot array with a three-way power divider on a single-layer dielectric substrate[C]. IEEE Topical Conference on Wireless Communication Technology, October 2003. 354-355.
    149 Ando M, Hirokawa J, Hirano T, et al. Advances in the design of single-layer slotted waveguide arrays and their system applications[C]. ICECom 2003 17th International Conference on Applied Electromagnetics and Communications, October 2003. 352-359.
    150 Kai T, Hirokawa J, Ando M. Analysis of a feeding structure for TEM wave excitation in an oversized rectangular waveguide[C]. IEEE on Antennas and Propagation Society International Symposium, June 2003. 2: 1177-1180.
    151 Yamamoto S, Hirokawa J, Ando M. Length reduction of a short-slot directional coupler in a single-layer dielectric substrate waveguide by removing dielectric near the side walls of the coupler[C]. IEEE Proceedings on Antennas and Propagation Society Symposium, June 2004. 3: 2353-2356.
    152 Kai T, Hirokawa J, Ando M. A stepped post-wall waveguide with aperture interface to standard waveguide[C]. IEEE Proceedings on Antennas and Propagation Society International Symposium, June 2004. 2: 1527-1530.
    153 Deslandes D, Wu, K. Integrated microstrip and rectangular waveguide in planar form[J]. IEEE Microwave And Wireless Components Letters, February 2001. 11(2): 68-70.
    154 Deslandes D, Wu K. Integrated transition of coplanar to rectangular waveguides[C]. IEEE MTT-S International Microwave Symposium Digest, May 2001. 2: 619-622.
    155 Cassivi Y, Perregrini L, Arcioni P, et al. Dispersion characteristics of substrate integrated rectangular waveguide[J]. IEEE Microwave And Wireless Components Letters, September 2002. 12(9): 333-335.
    156 Deslandes D, Wu K. Single-substrate integration technique of planar circuits and waveguide filters[J]. IEEE Transactions on Microwave Theory and Techniques, February 2003. 51(2): 593-596.
    157 Cassivi Y, Wu K. Low cost microwave oscillator using substrate integrated waveguide cavity[J]. IEEE Microwave And Wireless Components Letters, February 2003. 13(2): 48-50.
    158 Germain S, Deslandes D, Wu K. Development of substrate integrated waveguide power dividers[C]. IEEE CCECE 2003. Canadian Conference on Electrical and Computer Engineering, May 2003. 3: 1921-1924.
    159 Deslandes D, Wu K. Millimeter-wave substrate integrated waveguide filters[C]. IEEE CCECE 2003. Canadian Conference on Electrical and Computer Engineering, May 2003. 3: 1917-1920.
    160 Deslandes D, Bozzi M, Arcioni P, et al. Substrate integrated slab waveguide (SISW) for wideband microwave applications[C]. IEEE MTT-S International Microwave Symposium Digest, June 2003. 2: 1103-1106.
    161 Bozzi M, Deslandes D, Arcioni P, et al. Analysis of Substrate Integrated Slab Waveguides (SISW) by the BI-RME method[C]. IEEE MTT-S International Microwave Symposium Digest, June 2003. 3: 1975-1978.
    162 Zhang Y L, Hong W, Xu F, et al. Analysis of guided-wave problems in substrate integrated waveguides -numerical simulations and experimental results[C]. IEEE MTT-S International Microwave Symposium Digest, June 2003. 3: 2049-2052.
    163 Li H, Hong W, Cui T J, et al. Propagation characteristics of substrate integrated waveguide based on LTCC[C]. IEEE MTT-S International Microwave Symposium Digest, June 2003. 3: 2045-2048.
    164 Che W q, Yung E K N, Wu K. Millimeter-wave ferrite phase shifter in substrate integrated waveguide (SIW)[C]. IEEE Antennas and Propagation Society International Symposium, June 2003. 4: 887-890.
    165 Deslandes D, Wu K. Substrate integrated waveguide dual-mode filters for broadband wireless systems[C]. RAWCON '03 Proceedings Radio and Wireless Conference, August 2003. 385 - 388.
    166 Bozzi M, Perregrini L, Deslandes D, et al. A compact, wideband, phase-equalized waveguide divider/combiner for power amplification[C]. 33rd European Microwave Conference, October 2003. 1: 155-158.
    167 Wu K, Deslandes D, Cassivi Y. The substrate integrated circuits - a new concept for high-frequency electronics and optoelectronics[C]. 6th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service, October 2003. 1: P - III-P-X.
    168 Che W q, Yung E K N, Wu K. Millimeter-wave substrate integrated waveguide ferrite phase shifter for wireless communication application[C]. IEEE Topical Conference on Wireless Communication Technology, October 2003. 320-324.
    169 Xu F, Zhang Y L, Hong W, et al. Finite-difference frequency-domain algorithm for modeling guided-wave properties of substrate integrated waveguide[J]. IEEE Transactions on Microwave Theory and Techniques, November 2003. 51(11): 2221-2227.
    170 Xu F, Wu K. Numerical multimode calibration technique for extraction of complex propagation constants of substrate integrated waveguide[C]. IEEE MTT-S International Microwave Symposium Digest, June 2004. 2: 1227 - 1230.
    171 Cassivi Y, Wu K. Substrate integrated nonradiative dielectric waveguide[J]. IEEE Microwave And Wireless Components Letters, March 2004. 14(3): 89-91.
    172 Schmid U, Menzel W, Cassivi Y, et al. Dual polarization antenna fed by a dual mode substrate integrated NRD-guide[C]. IEEE Antennas and Propagation Society International Symposium, June 2004. 4: 4348-4351.
    173 D'Orazio W, Wu K, Helszajn J. A substrate integrated waveguide degree-2 circulator[J]. IEEE Microwave And Wireless Components Letters, March 2004. 14(5): 207 - 209.
    174 Kim B S, Lee J W, Kim K S, et al. PCB substrate integrated waveguide-filter using via fences at millimeter-wave[C]. IEEE MTT-S International Microwave Symposium Digest, June 2004. 2: 1095 - 1098.
    175 Cassivi Y, Wu K. Substrate integrated NRD (SINRD) guide on high dielectric constant substrate for millimeter wave circuits and systems[C]. IEEE MTT-S International Microwave Symposium Digest, June 2004. 3: 1639 - 1642.
    176 Lu H C, Chu T H. Equivalent circuit of radiating longitudinal slots in substrate integrated waveguide[C]. IEEE Antennas and Propagation Society Symposium, June 2004. 3: 2341 - 2344.
    177 Schmid U, Menzel W, Cassivi Y, et al. Dual polarization antenna fed by a dual mode substrate integrated NRD-guide[C]. IEEE Antennas and Propagation Society Symposium, June 2004. 4: 4348 - 4351.
    178 Leung W Y, Cheng K K M, Wu K L. Design and implementation of LTCC filters with enhanced stop-band characteristics for Bluetooth applications[C]. 2001 Asia Pacific Microwave Conference, December 2001. 3: 1008-1011.
    179 Leung W Y, Cheng K K M, Wu K L. Multilayer LTCC bandpass filter design with enhanced stopband characteristics[J]. IEEE Microwave And Wireless Components Letters, July 2002. 12(7): 240-242.
    180 Yeung L K, Wu K L. A compact second-order LTCC bandpass filter with two finite transmission zeros[J]. IEEE Transactions on Microwave Theory and Techniques, February 2003. 51(2): 337-341.
    181 Huang Y, Wu K L, Ehlert M. An integrated LTCC laminated waveguide-to-microstrip line T-junction[J]. IEEE Microwave And Wireless Components Letters, August 2003. 13(8): 338-339.
    182 Wu K L, Yeung L K, Ding Y. An efficient PEEC algorithm for modeling of LTCC RF circuits with finite metal strip thickness[J]. IEEE Microwave And Wireless Components Letters, September 2003. 13(9): 390-392.
    183 Cheng S H, Cheng K K M, Wu K L. Low phase-noise integrated voltage controlled oscillator design using LTCC technology[J]. IEEE Microwave And Wireless Components Letters, August 2003. 13(8): 329 - 331
    184 Huang Y, Wu K L. A broad-band LTCC integrated transition of laminated waveguide to air-filled waveguide for millimeter-wave applications[J]. IEEE Transactions on Microwave Theory and Techniques, May 2003. 51(5): 1613-1617.
    185 Wu K L, Zhang R, Ehlert M, et al. An explicit knowledge-embedded space mapping technique and its application to optimization of LTCC RF passive circuits[J]. IEEE Transactions on Components and Packaging Technologies, June 2003. 26(2): 399-406.
    186 Wu K L, Huang Y. LTCC technology and its applications in high frequency front end modules[C]. 2003 6th International Symposium on Antennas, Propagation and EM Theory, October 2003. 730 - 734
    187 Huang Y, Wu K L. A broadband integrated LTCC laminated waveguide to metallic waveguide transition[C]. IEEE MTT-S International Microwave Symposium Digest, June 2003. 3: 2237-2240.
    188 Wu K L, Zhao Y J, Wang J, et al. An effective dynamic coarse model for optimization design of LTCC RF circuits with aggressive space mapping[J]. IEEE Transactions on Microwave Theory and Techniques, January 2004. 52(1): 393-402.
    189 Simpson J J, Taflove A, Mix J A, et al. Computational and Experimental Study of a Microwave Electromagnetic Bandgap Structure With Waveguiding Defect for Potential Use as a Bandpass Wireless Interconnect[J]. IEEE Microwave And Wireless Components Letters, July 2004. 14(7): 343-345.
    190 李皓,洪伟,许峰等. 微带电路与非辐射性介质波导的耦合分析[J]. 微波学报, 2001. 17:120-122。
    191 李皓,华光,陈继新等. 基片集成波导和微带转换器的理论与实验研究[J]. 电子学报,2003. 31:2002-2004。
    192 李皓,陈安定,洪伟等. 多层结构中微带线与基片集成波导转换器的研究[J]. 电子学报,已投稿。
    193 李皓,陈安定,洪伟等. 基片集成波导定向耦合器的仿真与实验研究[J].微波学报,已录用。
    1 Elachi Charles. waves in active and passive periodic structures: a review[J]. Proceedings of the IEEE, December 1976. 64(12): 1666-1698.
    2 水启刚. 微波技术[M].北京: 国防工业出版社,1986. 280-304.
    3 Yeh C, Casey K F, Kaprielian Z A. Magnetic Wave Propagation in Sinusoidally Stratified Dielectric Media[J]. IEEE Transactions on Microwave Theory and Techniques, May 1965. 13(3):297 - 302. JNL 01125993
    4 R. E. Collin, Field Theory of Guided waves, McGraw-Hill, 1960.
    5 柯林著.微波工程基础[M].吕继尧译.北京:人民邮电出版社,1981.
    6 Ghose R N. Microwave Circuit Theory and Analysis[M].New York: McGraw-Hill. 1963.
    7 Harvey A F. Periodic and Guiding Structures at Microwave Frequencies[J]. IEEE Transactions on Microwave Theory and Techniques, January 1960. 8(1):30 - 61. JNL 01124658
    8 Yen J. Multiple scattering and wave propagation in periodic structures[J]. IEEE Transactions on Antennas and Propagation, November 1962. 10(6):769 - 775. JNL 01137956
    9 Shefer J. Plane Waves on a Periodic Structure of Circular Disks and Their Application to Surface-Wave Antennas[J]. IEEE Transactions on Microwave Theory and Techniques, November 1962. 10(6):585 - 592. JNL 01125571
    10 James C R, Walker G B. An Approximate Wave Equation for an Axially Symmetric Periodic Waveguide[J]. IEEE Transactions on Microwave Theory and Techniques, September 1966.
    14(9):428 - 430. JNL 01126291
    11 Goell J E. On Wave Propagation in Periodic Media Containing Ferrite[C]. IEEE G-MTT International Microwave Symposium Digest, May 1967. 67(1):121 - 124. CNF 01122615
    12 McDiarmid D R, Walker G B. Two Examples of "Confluence" in Periodic Slow Wave Structures[J]. IEEE Transactions on Microwave Theory and Techniques, January 1968. 16(1):2 - 6. JNL 01126587
    13 Shen L C. Numerical analysis of wave propagation on a periodic linear array [J]. IEEE Transactions on Antennas and Propagation, March 1971. 19(2):289 - 292. JNL 01139916
    14 Elachi C. Electromagnetic wave propagation and wave-vector diagram in space-time periodic media[J]. IEEE Transactions on Antennas and Propagation, July 1972. 20(4):534 - 536. JNL 01140230
    15 Chang W S C. Periodic Structures and Their Application in Integrated Optics [J]. IEEE Transactions on Microwave Theory and Techniques, December 1973. 21(12):775 - 785. JNL 01128131
    16 Elachi C, Jaggard D, Yeh C. Transients in a periodic slab: Coupled waves approach[J]. IEEE Transactions on Antennas and Propagation, May 1975. 23(3):352 - 358. JNL 01141077
    17 Elachi C. Magnetic wave propagation in a periodic medium[J]. IEEE Transactions on Magnetics, January 1975. 11(1):36 - 39. JNL 01058546
    18 Peng S T, Tamir T, Bertoni H L. Theory of Periodic Dielect Waveguides[J]. IEEE Transactions on Microwave Theory and Techniques, January 1975. 23(1):123 - 133. JNL 01128513
    19 Inagaki N, Yamazawa M, Sekiguchi T. Active immitance concept in the analysis of wave propagation in periodic structures[C]. IEEE Antennas and Propagation Society International Symposium, October 1976. 14:343 - 346. CNF 01147655
    20 Nakayama J, Ogura H. Wave propagation in a random periodic structure[C]. IEEE Antennas and Propagation Society International Symposium, June 1977. 15:490 - 493. CNF 01147872
    21 Owens J M, Smith C V, Snapka E P, et al. Two-Port Magnetostatic Wave Resonators Utilizing Periodic Reflective Arrays[C]. IEEE MTT-S International Microwave Symposium Digest, June 1978. 78(1):440 - 442. CNF 01123919
    22 Kumazawa H, Ohtomo I. 30-GHz-Band Periodic Branching Filter Using a Traveling Wave Resonator for Satellite Applications[J]. IEEE Transactions on Microwave Theory and Techniques, August 1977. 25(8):683 - 687. JNL 01129186
    23 Mickelson A, Jaggard D. Electromagnetic wave propagation in almost periodic media[J]. IEEE Transactions on Antennas and Propagation, January 1979. 27(1):34 - 40. JNL 01142029
    24 Okamoto N. Scattering of obliquely incident plane waves from a finite periodic structure of ferrite cylinders[J]. IEEE Transactions on Antennas and Propagation, May 1979. 27(3):317 - 323. JNL 01142090
    25 Richmond J, Garbacz R. Surface waves on periodic array of imperfectly conducting vertical dipoles over the flat earth[J]. IEEE Transactions on Antennas and Propagation, November 1979. 27(6):783 - 787. JNL 01142207
    26 El Tanany M, El Said M, Mahmoud S. Scattering of radio waves from an earth model with a periodic rough subsurface[C]. IEEE Antennas and Propagation Society International Symposium, June 1980. 18:448 - 451 CNF 01148236
    27 Moussessian A, Rosenberg J J, Rutledge D B. Properties of periodic arrays of symmetric complementary structures and their application to grid amplifiers [J]. IEEE Transactions on Microwave Theory and Techniques, November 1998. 46(11):1956 - 1963. JNL 00734518
    28 魏因施泰因 Л A 著. 开放腔和开放波导[M].徐承和等译.北京:科学出版社,1987.
    29 Cassivi Y, Wu K. Low cost microwave oscillator using substrate integrated waveguide cavity[J]. IEEE Microwave And Wireless Components Letters, February 2003. 13(2): 48-50. [01178028]
    30 Zhang Y L, Hong W, Xu F, et al. Analysis of guided-wave problems in substrate integrated waveguides -numerical simulations and experimental results[C]. IEEE MTT-S International Microwave Symposium Digest, June 2003. 3: 2049-2052. 01210563
    31 Xu F, Zhang Y L, Hong W, et al. Finite-difference frequency-domain algorithm for modeling guided-wave properties of substrate integrated waveguide[J]. IEEE Transactions on Microwave Theory and Techniques, November 2003. 51(11): 2221-2227. 01242984
    32 Li H, Hong W, Cui T J, et al. Propagation characteristics of substrate integrated waveguide based on LTCC[C]. IEEE MTT-S International Microwave Symposium Digest, June 2003. 3: 2045-2048. 01210562
    33 Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1994. 114:185-200.
    34 Berenger J P. Perfectly matched layer for the FDTD solution of wave-structure interaction problems[J]. IEEE Transactions on Antennas and Propagation, January 1996. 44(1):110 - 117. JNL 00477535
    35 Berenger J P. Three-dimensional perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1996. 127:363–379.
    36 Berenger J P. Numerical reflection of evanescent waves from perfectly matched layers[C]. IEEE Antennas and Propagation Society International Symposium, July 1997. 3:1888 - 1891. CNF 00631640
    37 Berenger J P. Improved PML for the FDTD solution of wave-structure interaction problems[J]. IEEE Transactions on Antennas and Propagation, IEEE Transactions on , March 1997. 45(3):466 - 473. JNL 00558661
    38 Berenger J P. An effective PML for the absorption of evanescent waves in waveguides[J]. IEEE Microwave And Wireless Components Letters, May 1998. 8(5):188 - 190. JNL 00668706
    39 Berenger J P. Evanescent waves in PML's: origin of the numerical reflection in wave-structure interaction problems[J]. IEEE Transactions on Antennas and Propagation, October 1999.
    47(10):1497 - 1503. JNL 00805891 40 Berenger J P. Making use of the PML absorbing boundary condition in coupling and scattering FDTD computer codes[J]. IEEE Transactions on Electromagnetic Compatibility, May 2003. 45(2):189 - 197. JNL 01200855
    41 Berenger J P. Application of the CFS PML to the FDTD solution of wave-structure interaction problems[C]. IEEE Antennas and Propagation Society International Symposium, June 2003. 2:984 - 987. CNF 01219400
    42 Berenger J P. Application of the CFS PML to the absorption of evanescent waves in waveguides [J]. IEEE Microwave And Wireless Components Letters, June 2002. 12(6):218 - 220. JNL 01010000
    43 Berenger J P. On the reflection from Cummer's nearly perfectly matched layer[J]. IEEE Microwave And Wireless Components Letters, July 2004. 14(7):334 - 336. JNL 01309686
    44 Yee K S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, May 1966. 14(4):302-307.
    45 王长清, 祝西里. 电磁场计算中的时域有限差分法[M]. 北京: 北京大学出版社. 1994.
    46 高本庆. 时域有限差分法[M]. 北京: 国防工业出版社. 1995.
    47 王秉中. 计算电磁学[M]. 北京: 科学出版社. 2002.
    48 葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 西安: 西安电子科技大学出版社. 2002.
    49 Taflove A, Brodwin ME. Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations[J]. IEEE Transactions on Microwave Theory and Techniques, 1975. 23(8): 623–630.
    50 Merewether D E. Transient currents on a body of revolution by an electromagnetic pulse[J]. IEEE Transactions on Electromagnetic Compatibility, May 1971. 13:41–44.
    51 Lindman E L. “Free-space” boundary conditions for the time dependent wave equation[J]. Journal of Computational Physics, 1975. 18:66–78.
    52 Mur G. Absorbing boundary conditions for the finite-difference approximation of the timedomain electromagnetic-field equations [J]. IEEE Transactions on Electromagnetic Compatibility, November 1981. 23:377–382.
    53 Kunz K S, Lee K M. A three-dimensional finite-difference solution of the external response of anaircraft to a complex transient EM environment: I — The method and its implementation[J]. IEEE Transactions on Electromagnetic Compatibility, 1978. 20(2):328–333.
    54 Kunz K S, Lee K M. A three-dimensional finite-difference solution of the external response of an aircraft to a complex transient EM environment: II—Comparison of predictions and measurements[J]. IEEE Transactions on Electromagnetic Compatibility, 1978. 20(2): 333–341.
    55 Yee K S, Chen J S, Chang A H. Conformal finite-difference time-domain (FDTD) with overlapping grids[J]. IEEE Transactions on Antennas and Propagation, September 1992. 40:1068–1075.
    56 Yee K S, Chen J S. Conformal hybrid finite difference time domain and finite volume time domain[J]. IEEE Transactions on Antennas and Propagation, October 1994. 42:1450–1455.
    57 Gedney S D, Lansing F S, Rascoe D L. Full wave analysis of microwave monolithic circuit devices using a generalized Yee-algorithm based on an unstructured grid[J]. IEEE Transactions on Microwave Theory and Techniques, August 1996. 44:1393–1400.
    58 廖承恩编著. 微波技术基础[M]. 西安: 西安电子科技大学社. 1994.
    59 闫润卿, 李英惠编. 微波技术基础[M]. 第 2 版. 北京: 北京理工大学出版社. 1997.
    60 Harrington R F. Time-Harmonic Electromagnetic Field[M]. New York: McGraw-Hill. 1961.
    1 Piloto A, Leahy K, Flanick B, et al. Waveguide filters having a layered dielectric structure [P].US Patent 5382931. 1995-01-17.
    2 Rong Y, Zaki K A, Gipprich J, et al. LTCC wide-band ridge-waveguide bandpass filters[J]. IEEE Transactions on Microwave Theory and Techniques, September 1999. 47(9): 1836-1840.
    3 Uchimura H, Takenoshita T, Fujii M. Development of a “laminated waveguide” [J]. IEEE Transactions on Microwave Theory and Techniques, December 1998. 46(12): 2438-2443.
    4 Hirokawa J, Ando M. Single-layer feed waveguide consisting of posts for plane tem wave excitation in parallel plates[J]. IEEE Transactions on Antennas and Propagation, May 1998. 46: 625-630.
    5 Deslandes D, Wu, K. Integrated microstrip and rectangular waveguide in planar form[J]. IEEE Microwave And Wireless Components Letters, February 2001. 11(2): 68-70.
    6 Deslandes D, Wu K. Integrated transition of coplanar to rectangular waveguides[C]. IEEE MTT-S International Microwave Symposium Digest, May 2001. 2: 619-622
    7 Cassivi Y, Wu K. Low cost microwave oscillator using substrate integrated waveguide cavity[J]. IEEE Microwave And Wireless Components Letters, February 2003. 13(2): 48-50.
    8 Zeid A, Baudrand H. Electromagnetic scattering by metallic holes and its applications in microwave circuit design[J]. IEEE Transactions on Microwave Theory and Techniques, April 2002. 50(4): 1198-1206.
    9 Zhang Y L, Hong W, Xu F, et al. Analysis of guided-wave problems in substrate integrated waveguides -numerical simulations and experimental results[C]. IEEE MTT-S International Microwave Symposium Digest, June 2003. 3: 2049-2052.
    10 Li H, Hong W, Cui T J, et al. Propagation characteristics of substrate integrated waveguide based on LTCC[C]. IEEE MTT-S International Microwave Symposium Digest, June 2003. 3: 2045-2048.
    11 Leung W Y, Cheng K K M, Wu K L. Multilayer LTCC bandpass filter design with enhanced stopband characteristics[J]. IEEE Microwave And Wireless Components Letters, July 2002. 12(7): 240-242.
    12 Xu F, Zhang Y L, Hong W, et al. Finite-difference frequency-domain algorithm for modelingguided-wave properties of substrate integrated waveguide[J]. IEEE Transactions on Microwave Theory and Techniques, November 2003. 51(11): 2221-2227.
    13 魏因施泰因 Л A 著. 开放腔和开放波导[M].徐承和等译.北京:科学出版社,1987.
    14 Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1994. 114:185-200.
    15 Berenger J P. Perfectly matched layer for the FDTD solution of wave-structure interaction problems[J]. IEEE Transactions on Antennas and Propagation, January 1996. 44(1):110 - 117.
    16 Berenger J P. Three-dimensional perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1996. 127:363–379.
    17 Berenger J P. Numerical reflection of evanescent waves from perfectly matched layers[C]. IEEE Antennas and Propagation Society International Symposium, July 1997. 3:1888 - 1891.
    18 Berenger J P. Improved PML for the FDTD solution of wave-structure interaction problems[J]. IEEE Transactions on Antennas and Propagation, IEEE Transactions on , March 1997. 45(3):466 - 473.
    19 Tsuchimoto M, Yoneta A, Miya K, et al. An analysis of the scalar Helmholtz equation using the integral equation method[J]. IEEE Transactions on Microwave Theory and Techniques, January 1992. 40(1): 29-33.
    20 Yee K S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, May 1966. 14(4):302-307.
    21 Taflove A, Brodwin ME. Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations[J]. IEEE Transactions on Microwave Theory and Techniques, 1975. 23(8): 623–630.
    22 王长清, 祝西里. 电磁场计算中的时域有限差分法[M]. 北京: 北京大学出版社. 1994.
    23 高本庆. 时域有限差分法[M]. 北京: 国防工业出版社. 1995.
    24 邱关源编. 电路[M]. 北京: 高等教育出版社,1978.
    25 Ghose R N. Microwave Circuit Theory and Analysis[M].New York: McGraw-Hill. 1963.
    26 Harrington R F. Time-Harmonic Electromagnetic Field[M]. New York: McGraw-Hill. 1961.
    27 Hong J S, Lancaster M J. Microstrip Filters for RF/Microwave Applications[M].New York: Willey, 2001.
    1 Hong J S, Lancaster M J. Microstrip Filters for RF/Microwave Applications[M].New York: Willey, 2001.
    2 邱关源主编. 电路[M]. 第 3 版. 北京: 高等教育出版社. 1989.
    3 廖承恩编著. 微波技术基础[M]. 西安: 西安电子科技大学社. 1994.
    4 闫润卿, 李英惠编. 微波技术基础[M]. 第 2 版. 北京: 北京理工大学出版社. 1997.
    5 Harrington R F. Time-Harmonic Electromagnetic Field[M]. New York: McGraw-Hill. 1961.
    6 R. E. Collin, Field Theory of Guided waves, McGraw-Hill, 1960.
    7 柯林著.微波工程基础[M].吕继尧译.北京:人民邮电出版社,1981.
    8 Ghose R N. Microwave Circuit Theory and Analysis[M].New York: McGraw-Hill. 1963.
    9 Levy R. Theory of Direct-Coupled-Cavity Filters[J]. IEEE Transactions on Microwave Theory and Techniques, June 1967. 15(6):340 - 348.
    10 De R F C. A New Class of Microstrip Directional Couplers[C]. G-MTT International Microwave Symposium Digest, May 1970. 70(1):184 - 189.
    11 Podell A. A High Directivity Microstrip Coupler Technique [C]. G-MTT International Microwave Symposium Digest, May 1970. 70(1):33 - 36.
    12 Lee Y S. Mode Compensation Applied to Parallel Coupled Microstrip Directional Filter Design [J]. IEEE Transactions on Microwave Theory and Techniques, January 1974. 22(1):66- 69.
    13 Levy R. Microwave Filters with Single Attenuation Poles at Real or Imaginary Frequencies[C]. IEEE MTT-S International Microwave Symposium Digest, May 1975. 1:54 - 56.
    14 Levy R. Filters with Single Transmission Zeros at Real or Imaginary Frequencies[J]. IEEE Transactions on Microwave Theory and Techniques, April 1976. 24(4):172 - 181.
    15 Jokela K T. Narrow-Band Stripline or Microstrip Filters with Transmission Zeros at Real and Imaginary Frequencies[J]. IEEE Transactions on Microwave Theory and Techniques, June 1980. 28(6):542 - 547.
    16 Levy R. Filters And Passive Networks[C]. IEEE MTT-S International Microwave Symposium Digest, June 1982. 1:517 - 517.
    17 Chambers D S G, Rhodes J D. The Generalised Integrated-Pole Direct Coupled Cavity Filter[C]. IEEE MTT-S International Microwave Symposium Digest, June 1982. 82(1)::395 - 395.
    18 Roan G T, Zaki K A. Computer-aided design of microstrip filters by iterated analysis[J]. IEEE Transactions on Microwave Theory and Techniques, November 1988. 36(11):1482 - 1487.
    19 Watkins J, Uysal S. Novel microstrip directional band-pass/band-stop couplers and filters[C]. IEEE MTT-S International Microwave Symposium Digest, May 1990. 1:411 - 414.
    20 Rhodes J D. CAD of equiripple filters[C]. IEE Colloquium on Circuit Theory and DSP, February 1992. 8:1 - 6.
    21 Levy R. Synthesis of general asymmetric singly- and doubly-terminated cross-coupled filters[J]. IEEE Transactions on Microwave Theory and Techniques, December 1994. 42(12):2468 - 2471.
    22 Levy R. Direct synthesis of cascaded quadruplet (CQ) filters[J]. IEEE Transactions on Microwave Theory and Techniques, December 1995. 43(12):2940 - 2945.
    23 Cameron R J. General coupling matrix synthesis methods for Chebyshev filtering functions[J]. IEEE Transactions on Microwave Theory and Techniques, April 1999. 47(4):433 - 442.
    24 Levy R, Petre P. Design of CT and CQ filters using approximation and optimization[J]. IEEE Transactions on Microwave Theory and Techniques, December 2001. 49(12):2350 - 2356.
    25 Cameron R J, Harish A R, Radcliffe C J. Synthesis of advanced microwave filters without diagonal cross-couplings[C]. IEEE MTT-S International Microwave Symposium Digest, June 2002. 3:1437 - 1440.
    26 Levy R, Snyder R V, Matthaei G. Design of microwave filters[J]. IEEE Transactions on Microwave Theory and Techniques, March 2002. 50(3):783 - 793.
    27 Cameron R J, Harish A R, Radcliffe C J. Synthesis of advanced microwave filters without diagonal cross-couplings[J]. IEEE Transactions on Microwave Theory and Techniques,December 2002. 50(12):2862 - 2872.
    28 Cameron R J. Advanced coupling matrix synthesis techniques for microwave filters[J]. IEEE Transactions on Microwave Theory and Techniques, January 2003. 51(1):1 - 10.
    29 Yu M, Dokas V, Tang W C, et al. Novel adaptive predistortion technique for cross coupled filters[C]. IEEE MTT-S International Microwave Symposium Digest, June 2003. 2:929 - 932.
    30 Levy R. Generalized inverter-coupled bandpass filters [C]. IEEE MTT-S International Microwave Symposium Digest, June 2003. 3:1455 - 1457.
    31 Levy R. New cascaded trisections with resonant cross-couplings (CTR sections) applied to the design of optimal filters[C]. IEEE MTT-S International Microwave Symposium Digest, June 2004. 2:447 - 450.
    1 Elachi C. waves in active and passive periodic structures: a review[J]. Proceedings of the IEEE, December 1976. 64(12): 1666-1698.
    2 水启刚. 微波技术[M].北京: 国防工业出版社,1986. 280-304.
    3 R. E. Collin, Field Theory of Guided waves, McGraw-Hill, 1960.
    4 柯林著.微波工程基础[M].吕继尧译.北京:人民邮电出版社,1981.
    5 Coccioli R,Deal W R, Itoh T. Radiation characteristics of a patch antenna on a thin PBG substrate[C]. IEEE Antennas and Propagation Society Symposium, June 1998. 2:656 - 659.
    6 Rahmat-Samil Y. EM characterization of photonic band gap (PBG) structures: an overview[C]. IEEE Antennas and Propagation Society Symposium, June 1998. 2:872.
    7 Barlevy A S, Sievenpiper D F, Rahmat-Samii Y. Photonic bandgap (PBG) structures of multiple metallic periodic screens: efficient electromagnetic characterization[C]. IEEE Antennas and Propagation Society Symposium, June 1998. 2:1216 - 1219.
    8 Yang F R, Qian Y X, Itoh T. A novel uniplanar compact PBG structure for filter and mixer applications[C]. IEEE MTT-S International Microwave Symposium Digest, June 1999. 3:919 - 922.
    9 Nesic D, Nesic A. 1-D microstrip PBG band-pass filter without etching in the ground plane and with sinusoidal variation of the characteristic impedance[C]. IEEE 5th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service, September 2001. 1:181 - 183.
    10 Zhang W M, Mao J F Sun X W, et al. Compact resonant bandpass filter based on PBG structure[J]. Electronics Letters, April 2003. 39(7):615 - 617.
    11 Silveirinha M G M V, Fernandes C A. Design of waveguide filters using a PBG disk-type material[C]. IEEE Antennas and Propagation Society Symposium, June 2003. 4:875 - 878.
    12 Zhang X J, Liu A Q, Karim M F, et al. MEMS-based photonic bandgap (PBG) band-stop filter[C]. IEEE MTT-S International Microwave Symposium Digest, June 2004. 3:1463 - 1466.
    13 Mohan A S, Chin H M, Hoang T. Performance optimization of microwave filters using photonic band gap (PBG) structures[C]. IEEE Antennas and Propagation Society Symposium, June 2004. 4:3557 - 3560.
    14 Zhu L, Wu K. Multilayered coupled-microstrip lines technique with aperture compensation for innovative planar filter design[C]. IEEE Asia-Pacific Microwave Conference, November 1999. 2:303 - 306.
    15 Park J I, Kim C S, Park J S, et al. Modeling of photonic bandgap and its application for the low-pass filter design[C]. IEEE Asia-Pacific Microwave Conference, November 1999. 2:331-334.
    16 Zhu L, Bu H Z, Wu K. Aperture compensation technique for innovative design of ultra-broadband microstrip bandpass filter [C]. IEEE MTT-S International MicrowaveSymposium Digest, June 2000. 1:315 - 318.
    17 Yun J S, Kim G Y, Park J S , et al. A design of the novel coupled line bandpass filter using defected ground structure[C]. IEEE MTT-S International Microwave Symposium Digest, June 2000. 1:327 - 330.
    18 Zhu L, Bu H Z, Wu K. Aperture compensation and multipole generation techniques leading to the emergence of a new planar filter[C]. IEEE Asia-Pacific Microwave Conference, December 2000. 1310 - 1314.
    19 Ahn D, Park J S, Kim C S, et al. A design of the low-pass filter using the novel microstrip defected ground structure[J]. IEEE Transactions on Microwave Theory and Techniques, January 2001. 49(1):86 - 93.
    20 Yun T Y, Chang K. Uniplanar one-dimensional photonic-bandgap structures and resonators[J]. IEEE Transactions on Microwave Theory and Techniques, March 2001. 49(3):549 - 553.
    21 Chew S T, Itoh T. PBG-excited split-mode resonator bandpass filter[J]. IEEE Microwave and Wireless Components Letters, September 2001 . 11(9):364 - 366.
    22 Kuo J T, Jou C F, Chen C C. Design of microstrip bandpass filters with aperture coupled miniaturized hairpin resonators[C]. IEEE Asia-Pacific Microwave Conference, December 2001. 421 - 424.
    23 Zhu L, Bu H Z, Wu K. Broadband and compact multi-pole microstrip bandpass filters using ground plane aperture technique[J]. IEE Proceedings on Microwaves, Antennas and Propagation, February 2002. 149(1):71 - 77.
    24 Imada M, Noda S, Chutinan A, et al. Channel drop filter using a single defect in a 2-D photonic crystal slab waveguide[J]. Journal of Lightwave Technology, May 2002. 20(5):873 - 878.
    25 Im S S, Seo C H, Kim J H, et al. Improvement of microstrip open loop resonator filter using aperture[C]. IEEE MTT-S International Microwave Symposium Digest, June 2002. 3:1801 - 1804.
    26 Park J S, Kim J H, Lee J H, et al. A novel equivalent circuit and modeling method for defected ground structure and its application to optimization of a DGS lowpass filter[C]. IEEE MTT-S International Microwave Symposium Digest, June 2002. 1:417 - 420.
    27 Steinberg B Z, Boag A, Lisitsin R. Sensitivity analysis of narrow-band photonic crystal filters and waveguides[C]. IEEE Antennas and Propagation Society International Symposium, June 2002. 4:360 - 363.
    28 Pang Y B, Gao B X. Novel 1-D photonic bandgap structure and resonator for microstrip circuits[C]. IEEE 3rd International Conference on Microwave and Millimeter Wave Technology, August 2002. 1059 - 1062.
    29 Falcone F, Martin F, Bonache J, et al. PBG resonator in coplanar waveguide technology[C]. IEEE 27th International Conference on Infrared and Millimeter Waves, September 2002. 355 - 356.
    30 Park J S, Yun J S, Ahn D. A design of the novel coupled-line bandpass filter using defected ground structure with wide stopband performance[J]. IEEE Transactions on Microwave Theory and Techniques, September 2002. 50(9):2037 - 2043.
    31 Lim J S, Kim C S, Lee Y T, et al. Design of lowpass filters using defected ground structure and compensated microstrip line[J]. Electronics Letters, October 2002. 38(22):1357 - 1358.
    32 Asano T, Mochizuki M, Noda S, et al. A channel drop filter using a single defect in a 2-D photonic crystal slab-defect engineering with respect to polarization mode and ratio of emissions from upper and lower sides[J]. Journal of Lightwave Technology, May 2003. 21(5):1370 - 1376.
    33 Xun G, Chappell W J, Katehi L P B. Embedded radiating filters in metamaterial substrates[C]. IEEE Antennas and Propagation Society International Symposium, June 2003. 3:351 - 354.
    34 Chappell W J, Xun G, Katehi L P B. Narrow Ka bandpass filters using periodically loaded substrates[C]. IEEE MTT-S International Microwave Symposium Digest, June 2003. 3:1611 - 1614.
    35 Pistono E, Ferrari P, Duvillaret L, et al. Tunable bandpass microwave filters based on defect commandable photonic bandgap waveguides[J]. Electronics Letters, July 2003. 39(15):1131 - 1133.
    36 Iida Y, Omura Y, Tsuji M. Optically tunable narrowband filter using defect-induced pass-band in photonic crystal waveguide[C]. IEEE International SOI Conference, September 2003. 117 - 118.
    37 Frezza F, Pajewski L, Schettini G. Periodic defects in 2D-PBG materials: full-wave analysis and design[J]. IEEE Transactions on Nanotechnology, September 2003. 2(3):126 - 134.
    38 Lim J S, Jeong Y C, Ahn D, et al. Size-reduction and harmonic-rejection of microwave amplifiers using spiral-defected group structure[C]. IEEE 33rd European Microwave Conference, October 2003. 3:1421 - 1424.
    39 Velazquez-Ahumada, M C, Martel J, Medina F. Parallel coupled microstrip filters with ground-plane aperture for spurious band suppression and enhanced coupling[J]. IEEE Transactions on Microwave Theory and Techniques, March 2004. 52(3):1082 - 1086.
    40 Abdel R A, Verma A K, Boutejdar A, et al. Compact stub type microstrip bandpass filter using defected ground plane[J]. IEEE Microwave and Wireless Components Letters, April 2004. 14(4):136 - 138.
    41 Del Villar I, Matias I R, Arregui F J. Fiber-optic multiple-wavelength filter based on one-dimensional photonic bandgap structures with defects[J]. Journal of Lightwave Technology, June 2004. 22(6):1615 - 1621.
    42 Mollah M N, Karmakar N C. A novel hybrid defected ground structure as low pass filter[C]. IEEE Antennas and Propagation Society Symposium, June 2004. 4:3581 - 3584.
    43 Abdel-Rahman A B, Verma A K, Boutejdar A, et al. Control of bandstop response of Hi-Lo microstrip low-pass filter using slot in ground plane[J]. IEEE Transactions on Microwave Theory and Techniques, March 2004. 52(3):1008 - 1013.
    44 Chung Y, Jeon S S, Kim S, et al. Multifunctional microstrip transmission lines integrated with defected ground structure for RF front-end application[J]. IEEE Transactions on Microwave Theory and Techniques, May 2004. 52(5):1425 - 1432.
    45 Yoon J S, Kim J G, Park J S, et al. A new DGS resonator and its application to bandpass filter design[C]. IEEE MTT-S International Microwave Symposium Digest, June 2004. 3:1605 - 1608.
    46 Zhu L, Wu K. Characterization of unbounded multiport microstrip passive circuits using anexplicit network-based method of moments[J]. IEEE Transactions on Microwave Theory and Techniques, December 1997. 45(12):2114-2124.
    47 Hong J S, Lancaster M J. Microstrip Filters for RF/Microwave Applications[M].New York: Willey, 2001.
    48 CST Ltd., CST MICROWAVE STUDIO? 5 User's Manual, 2003.
    1 Benedek P, Silvester P. Equivalent Capacitances for Microstrip Gaps and Steps [J]. IEEE Transactions on Microwave Theory and Techniques, Nov 1972. 20(11):729 - 733.
    2 Horton R. Equivalent Representation of an Abrupt Impedance Step in Microstrip Line (Short Papers)[J]. IEEE Transactions on Microwave Theory and Techniques, Aug 1973. 21(8):562 - 564.
    3 Easter B. The Equivalent Circuit of Some Microstrip Discontinuities[J]. IEEE Transactions on Microwave Theory and Techniques, Aug 1975. 23(8):655 - 660.
    4 Gopinath A, Thomson A F, Stephenson I M. Equivalent Circuit Parameters of Microstrip Step Change in Width and Cross Junctions (Short Papers)[J]. IEEE Transactions on Microwave Theory and Techniques, Mar 1976. 24(3):142 - 144.
    5 Gupta C, Gopinath A. Equivalent Circuit Capacitance of Microstrip Step Change in Width[J]. IEEE Transactions on Microwave Theory and Techniques, October 1977. 25(10):819 - 822.
    6 Skrivervik A, Mosig J R. Equivalent circuits of microstrip discontinuities including radiation effects[C]. IEEE MTT-S International Microwave Symposium Digest, June 1989. 3:1147 - 1150.
    7 Webster M J, Easter B, Hornby J S. Accurate determination of frequency dependent three element equivalent circuit for symmetric step microstrip discontinuity[J]. IEE Proceedings H-Microwaves, Antennas and Propagation, Feb 1990. 137(1):51 - 54.
    8 Rao K S, Pandharipande V M. Equivalent network for an aperture in the center conductor of microstrip line[J]. IEEE Transactions on Microwave Theory and Techniques, Jan 1991. 39(1):149 - 151.
    9 Giannini F, Bartolucci G, Ciorciolini S, et al. New Model Of Microstrip Non-symmetrical Double Step Discontinuties[C]. IEEE Microwave Conference, August 1993. 1:111 - 115.
    10 Alexopoulos N G, Wu S C. Frequency independent equivalent circuit model for microstrip open-end and gap discontinuities[J]. IEEE Transactions on Microwave Theory and Techniques, July 1994. 42(7):1268 - 1272.
    11 Werner P L, Mittra R. A new technique for the extraction of SPICE-type equivalent circuits from measured or computed S-parameters of microstrip components and discontinuities[C]. IEEE 6th Topical Meeting on Electrical Performance of Electronic Packaging, Oct 1997. 70 - 73.
    12 Schuster C, Fichtner W. Explanation and extension of the equivalent circuit approach for parameter extraction[microstrip component analysis][J]. IEEE Microwave Guided Wave Letters, Oct 1999. 10(9):392 - 394.
    13 Hong J S, Lancaster M J. Microstrip Filters for RF/Microwave Applications[M].New York: Willey, 2001.
    14 Levy R. Theory of Direct-Coupled-Cavity Filters[J]. IEEE Transactions on Microwave Theory and Techniques, June 1967. 15(6):340 - 348.
    15 Levy R. Microwave Filters with Single Attenuation Poles at Real or Imaginary Frequencies[C]. IEEE MTT-S International Microwave Symposium Digest, May 1975. 1:54 - 56.
    16 Jokela K T. Narrow-Band Stripline or Microstrip Filters with Transmission Zeros at Real and Imaginary Frequencies[J]. IEEE Transactions on Microwave Theory and Techniques, June 1980. 28(6):542 - 547.
    17 Levy R. Direct synthesis of cascaded quadruplet (CQ) filters [J]. IEEE Transactions on Microwave Theory and Techniques, December 1995. 43(12):2940 - 2945.
    18 Cameron R J. General coupling matrix synthesis methods for Chebyshev filtering functions[J]. IEEE Transactions on Microwave Theory and Techniques, April 1999. 47(4):433 - 442.
    19 Cameron R J, Harish A R, Radcliffe C J. Synthesis of advanced microwave filters without diagonal cross-couplings[J]. IEEE Transactions on Microwave Theory and Techniques, December 2002. 50(12):2862 - 2872.
    20 Cameron R J. Advanced coupling matrix synthesis techniques for microwave filters[J]. IEEE Transactions on Microwave Theory and Techniques, January 2003. 51(1):1 - 10.
    21 Yu M, Dokas V, Tang W C, et al. Novel adaptive predistortion technique for cross coupled filters[C]. IEEE MTT-S International Microwave Symposium Digest, June 2003. 2:929 - 932.
    22 CST Ltd., CST MICROWAVE STUDIO? 5 User's Manual, 2003.
    1 吴明英, 毛秀华. 微波技术[M]. 西安:西北电讯工程学院出版社, 1985.
    2 孙传森. 微波技术[M]. 济南:山东大学出版社, 1996.
    3 李宗谦,佘京兆.微波工程基础[M].南京:东南大学出版社,1996.209 - 212
    4 R. E. Collin, Field Theory of Guided waves, McGraw-Hill, 1960.
    5 柯林著.微波工程基础[M].吕继尧译.北京:人民邮电出版社,1981.
    6 C Y Pon.Hybrid-ring directional couplers for arbitrary power division.IRE Transactions on Microwave Theory and Technology,1961,9,529 - 535
    7 D Kim,Y Naito.Broad-band design of improved hybrid-ring 3dB directional coupler [J]. IEEE Transactions on Microwave Theory and Techniques, December 1995. 43(12): 2749-2758.
    8 C H Ho, L Fan, K Chang. New uniplanar coplanar waveguide hybrid-ring couplers and magic-T's [J]. IEEE Transactions on Microwave Theory and Techniques, December 1994. 42(12): 2440-2448.
    9 L Fan, S Kanamaluru, K Chang. A new wide-band and reduced-size uniplanar magic-T [C]. IEEE MTT-S International Microwave Symposium Digest, May 1995. 2: 667-670
    10 G P Riblet. Compact planar microstrip-slotline symmetrical ring eight-port comparator circuits [J]. IEEE Transactions on Microwave Theory and Techniques, October 1990. 38(10): 1421-1426.
    11 H R Ahn, I Wolff. Asymmetric ring-hybrid phase shifters and attenuators[J]. IEEE Transactions on Microwave Theory and Techniques, April 2002. 50(4): 1146-1155.
    12 L Yan,W Hong,G Hua, et al. Simulation and experiment on SIW slot array antennas [J].IEEE Microwave and Wireless Components Letters,2004,14(9):446 - 448
    13 Ghose R N. Microwave Circuit Theory and Analysis[M].New York: McGraw-Hill. 1963.
    14 Harrington R F. Time-Harmonic Electromagnetic Field [M]. New York: McGraw-Hill. 1961.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700