超高频射频识别(RFID)中的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文的工作在超高频射频识别(UHF RFID)系统的理论研究和设计实践领域进行,包括了长距离无源后向散射UHF RFID阅读器射频前端的研制、UWB(超宽带)RFID系统源脉冲波形的优化设计、UHF RFID阅读器小型化天线的研制和UHF RFID标签天线的优化设计四个方面的研究内容。
     本论文为研制长距离UHF频段无源后向散射RFID阅读器射频前端提供了数学公式化理论模型和工程设计方案,填补了该领域的研究空白。论文研究了阅读器射频前端的工作原理并进行了详细的系统信号描述和分析,给出了整机结构及其射频前端的设计细节。通过计算标签的时间平均吸收功率和接收机解调输出信号的信噪比,论文给出了阅读器工作距离的数学公式模型,并概括了如何增加阅读距离的一系列关键设计建议。论文也给出了915 MHz和2.45 GHz两个频段阅读器射频前端的详细硬件设计和工程实现方案,对它们进行了测试评估,获得工作距离为11.8米的阅读器原型机,其性能达到了国际上一流阅读器设备的水平。测试结果和理论计算结果也显示了很好的一致性,验证了论文所给出的数学公式模型和设计方法的有效性。
     本论文为UWB RFID系统的源脉冲波形优化提供了创新性的数学公式化理论模型和设计实现方法。论文研究了基于延迟反射脉冲序列无源标签的UWB RFID系统的基本工作原理并进行了详细的信号描述和分析,通过建立基于接收脉冲“有效能量”概念的源脉冲波形函数的泛函和使用变分计算泛函极值,得到了相关于第二类齐次Fredholm线性积分方程特征函数的源脉冲波形最优解数学公式模型,并开发了一套有效的数值求解算法。论文也展示了一个UWB脉冲传输系统的设计例子,给出了优化所得的源脉冲信号波形,并比较了它和一些常见脉冲的传输性能差异,验证了所给出的优化模型和设计方法的有效性。基于论文所给出的数学模型,在设计UWB RFID系统时,通过优化阅读器的查询脉冲波形,就能增加阅读距离,获得最佳的系统性能。
     本论文研制了工作在2.45 GHz频段的小型化具有方向性增益的平面印制偶极子形式的UHF RFID阅读器天线。论文设计了新型的V形地平面反射结构,增加了天线的阻抗带宽和改善了它的辐射方向性,并通过电磁仿真优化得到了尺寸仅为51mm×40mm×1.6mm的小型化阅读器天线。测量结果表明,其百分比阻抗带宽大于33%,峰值天线增益超过了2dBi,后向辐射抑制超过7dB,性能优于无V形反射结构的传统天线。
     本论文开发了工作在2.45GHz频段的小型化平面印制偶极子形式的UHFRFID标签天线。论文设计了新型的阻抗变换器结构以对短偶极子进行电阻提升和感性补偿,有效地小型化了天线设计,并通过电磁仿真优化得到了尺寸仅为33.55mm×8.54mm×0.50mm的小型化标签天线。所设计天线实现了与标签芯片的良好共轭阻抗匹配,其方向图具有理想的全向辐射特性,峰值增益也达到-0.2dBi,满足了小型化标签天线的设计要求。
This dissertation focuses on theoretical investigations and design practices of ultra-high-frequency radio frequency identification (UHF RFID) systems, which are carried out in four research areas as follows: a) Design of the RF front-ends of long range passive backscatter UHF RFID readers; b) Source pulse waveforms optimizations for Ultra-wideband (UWB) RFID systems; c) Miniaturized antenna designs for UHF RFID readers; d) Design optimizations for UHF RFID tag antennas.
    This dissertation provides mathematically formulated theoretical models and practical engineering designs for developing the RF front-ends of UHF-band long range passive backscatter RFID readers, which fill the gap in the relevant research area. The operational principles of the reader's RF front-end are investigated and the signals in the system are described and analyzed in detail. The reader's structure is proposed and particularly the design details of its RF front-end are presented. Through evaluating the time-averaged absorption power of the tag and the demodulation output signal-noise-ratio of the receiver, the mathematical models of the read range are figured out. Based on the models, several key design suggestions are concluded to improve the performance of read range. This dissertation also presents the detailed hardware implementations and engineering designs for the RF front-ends of two readers, of which one works at 915 MHz and the other one at 2.45 GHz. The prototype readers are manufactured and measured, which achieve the read range of 11.8 meters and are comparable to the first-class readers in the international markets. The measurement results also show good agreement with the calculated ones, which validate the proposed mathematical models and design methods well.
    This dissertation creatively provides mathematically formulated theoretical models and design methods for optimizing the source pulse waveforms of UWB RFID systems. The basic operational principles of UWB RFID systems that are based on the delay-reflection-pulse-sequence passive tags are investigated and its
    signals are described and analyzed in detail. Through establishing the functional of the source pulse which is based on the concept of "usable energy" in the received pulse and then extremizing the functional by means of the calculus of variations, the mathematical models of the optimized source pulse waveforms are shown to be associated with the eigenfunctions of a homogeneous Fredholm linear integral equation of the second kind. An efficient algorithm is developed for numerically solving the integral equation models. A design example of UWB pulse transmission system is also demonstrated and the optimized source pulse waveforms are figured out. Specially, the transmission performance of the optimized pulse is compared with that of several common pulse waveforms, which validates the proposed optimization models and design methods well. Based on the proposed mathematical model, through optimizing the interrogating pulse waveforms of the reader, its read range can be maximized to efficiently improve the overall performance of UWB RFID systems.
    This dissertation develops a 2.45 GHz miniaturized planar printed-dipole-type UHF RFID reader antenna having necessary directive gain. The novel V-shaped ground plane reflection structure is proposed, which increases the antenna's impedance bandwidth and improve its radiation directivity. The antenna's dimensions are optimized by means of electromagnetic simulation and the finalized antenna's size is only 51 mm x 40 mm x 1.6 mm. The measurement results show that the antenna's percent impedance bandwidth is 33%, the peak antenna gain is more than 2 dBi, and the backward radiation suppression is beyond 7 dB, which all demonstrate better performance than the traditional antenna without such a V-shaped reflection structure.
    This dissertation develops a 2.45 GHz miniaturized planar printed-dipole-type UHF RFID tag antenna. The novel impedance transformer is proposed to boost the resistance of the short dipole and simultaneously compensate its reactance inductively, which contributes to miniaturizing the tag antenna efficiently. The antenna's dimensions are optimized by means of electromagnetic simulation and the
    finalized antenna's size is only 33.55 mm × 8.54 mm × 0.50 mm. The antenna achieves good conjugated-impedance matching with its terminated microchip, its radiation pattern has the ideal omni-directionality and the peak antenna gain reaches -0.2 dBi, which all meet the design requirements for the miniaturized tag antennas well.
引文
1. M.I. Skolnik, Introduction to Radar System. New York: McGrew-Hill Book CO., 1980.
    2. M.I. Skolnik, Radar Handbook. New York: McGrew-Hill Book CO., 1990.
    3. H. Stockman, "Communication by Means of Reflected Power," Proceedings of the IRE, vol. 36, no. 10, pp. 1196-1204, 1948.
    4. R. F. Harrington, "Theory of loaded scatterers," Proc. Inst. Elect. Eng., vol. 111, no. 4, pp. 617-623, 1964.
    5. A.R. Koelle, S. W. Depp, and R. W. Freyman, "Short-range radio-telemetry for electronic identification, using modulated RF backscatter," Proceedings of the IEEE, vol. 63, no. 8, pp. 1260-1261, 1975.
    6. N. Tesla, "The transmission of electric energy without wires," Electrical World and Engineer, March 1904.
    7. N. Tesla, "The transmission of electrical energy without wires as a means for furthering peace," Electrical World and Engineer, January 1905.
    8. W.C. Brown, "The History of Power Transmission by Radio Waves," Microwave Theory and Techniques, IEEE Transactions on, vol. 32, no. 9, pp. 1230-1242, 1984.
    9. N. Tesla, ""World system" of wireless transmission of energy," Telegraph and Telephone Age, vol. 20, pp. 457-460, Octorber 1927.
    10. J. Landt, "The history of RFID," Potentials, IEEE, vol. 24, no. 4, pp. 8-11, 2005.
    11. D.B. Harris, "Radio transmission systems with modulatable passive responder," U.S. Patent 2 927 321, 1960
    12. J.H. Vogelman, "Passive data transmission techniques using radar echoes," U.S. Patent 3 391 404, 1968
    13. J. Landt, "Shrouds of time—The history of RFID," AIM Inc., Pittsburg, PA, Oct. 2001
    14. R.J. King, Microwave Homodyne Systems. Stevenage, UK: Peregrinus, 1978.
    15. J.P. Curry, N. Joehl, C. Dehollain, and M. J. Declercq, "Remotely powered addressable UHF RFID integrated system," Solid-State Circuits, IEEE Journal of vol. 40, no. 11, pp. 2193-2202, 2005.
    16. G. De Vita and G. Iannaccone, "Ultra-low-power series voltage regulator for passive RFID transponders with subthreshold logic," Electronics Letters, vol. 42, no. 23, pp. 1350-1351, 2006.
    17. Z.G. Fan, S. Qiao, J. T. Huangfu, and L. X. Ran, "Signal Descriptions and Formulations for Long Range UHF RFID Readers," Progress in Electromagnetics Research, vol. 71, pp. 109-127, 2007.
    18. C.Z. Gu, Z. G. Fan, S. Y. Zheng, J. T. Huangfu, and L. X. Ran, "A System Design for the Reader of Microwave Radio Frequency Identification," in Progress in Electromagnetic Research Symposium (PIERS) Beijing, 2007.
    19. S.L. Wang, S. Qiao, S. Y. Zheng, Z. G. Fan, J. T. Huangfu, and L. X. Ran, "Simulation Study for the Decoding of UHF RFID Signals," in Progress in Electromagnetic Research Symposium (PIERS) Beijing, 2007.
    20. EPCglobal Inc, [Online]: http://www.epcglobalinc.org/home/.
    21. N. Tesla, "The transmission of electrical energy without wires as a means for furthering peace," Electrical World and Engineer, January 1904..
    22. J.C. Mankins, "Space solar power: A major new energy option?," Journal of Aerospace Engineering, vol. 14, pp. 38-45, April 2001.
    23. D.C. Jenn and R. L. Vitale, "Wireless power transfer for a micro remotely piloted vehicle," in International Symposium on Circuits and Systems Proceedings, Monterey, CA, May 1998, vol. 6, pp. 590-593.
    24. T. Umeda, H. Yoshida, S. Sekine, Y. Fujita, T. Suzuki, and S. Otaka, "A 950-MHz rectifier circuit for sensor network tags with 10-m distance," Solid-State Circuits, IEEE Journal of, vol. 41, no. 1, pp. 35-41, 2006.
    25. M. Ali, G. Yang, and R. Dougal, "A new circularly polarized rectenna for wireless power transmission and data communication," Antennas and Wireless Propagation Letters, vol. 4, pp. 205-208, 2005.
    26. M. Ali, G. Yang, and R. Dougal, "A wideband circularly polarized rectenna for wireless power transmission to embedded sensors," in IEEE Annual Conference on Wireless and Microwave Technology, 2005, pp. 11-11.
    27. D.C. Jenn, "RPVs. Tiny, microwave powered, remotely piloted vehicles," Potentials, IEEE, vol. 16, no. 5, pp. 20-22, 1997.
    28. B. van den, D. Tessmann, R. Lerch, G. Vom Bogel, D. Hammerschmidt, J. Amelung, B. Hosticka, and P. Mahdavi, "Remote CMOS pressure sensor chip with wireless power and data transmission," in IEEE International Solid-State Circuits Conference, 2000, pp. 186-187, 456.
    29. Y.H. Lam, W. H. Ki, and C. Y. Tsui, "Integrated Low-Loss CMOS Active Rectifier for Wirelessly Powered Devices," Circuits and Systems Ⅱ: Express Briefs, IEEE Transactions on [see also Circuits and Systems Ⅱ: Analog and Digital Signal Processing, IEEE Transactions on], vol. 53, no. 12, pp. 1378-1382, 2006.
    30. J. Heikkinen and M. Kivikoski, "Low-profile circularly polarized rectifying antenna for wireless power transmission at 5.8 GHz," Microwave and Wireless Components Letters, IEEE, vol. 14, no. 4, pp. 162-164, 2004.
    31. J. Riekki, T. Salminen, and I. Alakarppa, "Requesting Pervasive Services by Touching RFID Tags," Pervasive Computing, IEEE, vol. 5, no. 1, pp. 40-46, 2006.
    32. K.V.S. Rao, P. V. Nikitin, and S. F. Lain, "Antenna design for UHF RFID tags: a review and a practical application," Antennas and Propagation, IEEE Transactions on, vol. 53, no. 12, pp. 3870-3876, 2005.
    33. P.V. Nikitin, K. V. S. Rao, S. F. Lam, V. Pillai, R. Martinez, and H. Heinrich, "Power reflection coefficient analysis for complex impedances in RFID tag design," Microwave Theory and Techniques, IEEE Transactions on, vol. 53, no. 9, pp. 2721-2725, 2005.
    34. S. Jeon, Y. Yu, and J. Choi, "Dual-band slot-coupled dipole antenna for 900MHz and 2.45 GHz RFID tag application," Electronics Letters, vol. 42, no. 22, pp. 1259-1260, 2006.
    35. R. Glidden, C. Bockorick, S. Cooper, C. Diorio, D. Dressier, V. Gutnik, C. Hagen, D. Hara, T. Hass, T. Humes, J. Hyde, R. Oliver, O. Onen, A. Pesavento, K. Sundstrom, and M. Thomas, "Design of ultra-low-cost UHF RFID tags for supply chain applications," Communications Magazine, IEEE, vol. 42, no. 8, pp. 140-151, 2004.
    36. K. Seemann, G. Hofer, F. Cilek, and R. Weigel, "Single-ended ultra-low-power multistage rectifiers for passive RFID tags at UHF and microwave frequencies," in IEEE Radio and Wireless Symposium, 2006, pp. 479-482.
    37. L. Jong-Wook, K. Hongil, and L. Bomson, "Design Consideration of UHF RFID Tag for Increased Reading Range," in IEEE MTT-S International Microwave Symposium Digest, 2006, pp. 1588-1591.
    38. R. Barnett, S. Lazar, and L. Jin, "Design of multistage rectifiers with low-cost impedance matching for passive RFID tags," in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006, p. 4.
    39. R. Want, "Enabling ubiquitous sensing with RFID," Computer, vol. 37, no. 4, pp. 84-86, 2004.
    40. K. Opasjumruskit, T. Thanthipwan, O. Sathusen, P. Sirinamarattana, P. Gadmanee, E. Pootarapan, N. Wongkomet, A. Thanachayanont, and M. Thamsirianunt, "Self-powered wireless temperature sensors exploit RFID technology," Pervasive Computing, IEEE, vol. 5, no. 1, pp. 54-61, 2006.
    41. D.C. Ranasinghe, K. S. Leong, M. L. Ng, D. W. Engels, and P. H. Cole, "A Distributed Architecture for a Ubiquitous RFID Sensing Network," in International Conference on Intelligent Sensors, Sensor Networks and Information Processing Conference, 2005, pp. 7-12.
    42. J. Dongwon, K. Young-Gab, and I. Hoh Peter, "SA-RFID: situation-aware RFID architecture analysis in ubiquitous computing," in 11th Asia-Pacific Software Engineering Conference, 2004, pp. 738-739.
    43. W. Brunette, J. Lester, A. Rea, and G. Borriello, "Some sensor network elements for ubiquitous computing," in Fourth International Symposium on Information Processing in Sensor Networks, 2005, pp. 388-392.
    44. C. Sauer, M. Stanacevic, G. Cauwenberghs, and N. Thakor, "Power harvesting and telemetry in CMOS for implanted devices," Circuits and Systems Ⅰ: Regular Papers, IEEE Transactions on [Circuits and Systems Ⅰ: Fundamental Theory and Applications, IEEE Transactions on], vol. 52, no. 12, pp. 2605-2613, 2005.
    45. D.M. Russell, "UbiComp 2003: Sensors in Seattle," Pervasive Computing, IEEE, vol. 3, no. 2, pp. 76-80, 2004.
    46. A. Schmidt, S. Spiekermann, A. Gershman, and F. Michahelles, "Real-World Challenges of Pervasive Computing," Pervasive Computing, IEEE, vol. 5, no. 3, pp. 91-93, c3, 2006.
    47. B.J. Alfonsi, "Privacy debate centers on radio frequency identification," Security & Privacy Magazine, IEEE, vol. 2, no. 2, p. 12, 2004.
    48. T. Phillips, T. Karygiannis, and R. Kuhn, "Security standards for the RFID market," Security & Privacy Magazine, IEEE, vol. 3, no. 6, pp. 85-89, 2005.
    49. A. Juels, "RFID security and privacy: a research survey," Selected Areas in Communications, IEEE Journal on, vol. 24, no. 2, pp. 381-394, 2006.
    50. X. Yang, S. Xuemin, B. O. Sun, and C. Lin, "Security and privacy in RFID and applications in telemedicine," Communications Magazine, IEEE, vol. 44, no. 4, pp. 64-72, 2006.
    51. S.L. Garfinkel, A. Juels, and R. Pappu, "RFID privacy: an overview of problems and proposed solutions," Security & Privacy Magazine, IEEE, vol. 3, no. 3, pp. 34-43, 2005.
    52. R. Bansal, "Now you see it and now you don't [RFID technology]," Microwave Magazine, IEEE, vol. 5, no. 4, pp. 32-34, 2004.
    53. J. Siden, P. Jonsson, T. Olsson, and G. Wang, "Performance degradation of RFID system due to the distortion in RFID tag antenna," 11th International Conference on Microwave and Telecommunication Technology, 2001, pp. 371-373.
    54. J.L.M. Flores, S. S. Srikant, B. Sareen, and A. Vagga, "Performance of RFID tags in near and far field," in IEEE International Conference on Personal Wireless Communications, 2005, pp. 353-357.
    55. D.V. Kholodnyak, P. A. Turalchuk, A. B. Mikhailov, S. Y. Dudnikov, and I. B. Vendik, "3D Antenna for UHF RFID Tags with Eliminated Read-Orientation Sensitivity," in 36th European Microwave Conference, 2006, pp. 583-586.
    56. Y. Wooi Gan, C. Yeung Bun, G. Li Hui, A. P. Popov, T. Kok Yin, Z. Bin, and C. Xuesong, "A 2.45-GHz RFID tag with on-chip antenna," in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006, p. 4.
    57. G. De Vita and G. Iannaccone, "Ultra-low-power series voltage regulator for passive microwave RFID transponders," in 23rd NORCHIP Conference, 2005, pp. 58-61.
    58. C. Namjun, S. Seong-Jun, K. Sunyoung, K. Shiho, and Y. Hoi-Jun, "A 5.1-uW UHF RFID tag chip integrated with sensors for wireless environmental monitoring," in Proceedings of the 31st European Solid-State Circuits Conference, 2005, pp. 279-282.
    59. J.P. Curty, N. Joehl, C. Dehollain, and M. Declereq, "A 2.45 GHz remotely powered RFID system," in IEEE Research in Microelectronics and Electronics, 2005, vol. 1, pp. 153-156.
    60. C. Dehollain, M. Declercq, N. Joehl, and J. P. Curty, "A global survey on short range low power wireless data transmission architectures for ISM applications," in International Semiconductor Conference, 2001, vol. 1, pp. 117-126.
    61. N. Mun Leng, L. Kin Seong, and P. H. Cole, "Analysis of constraints in small UHF RFID tag," in IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 2005, vol. 1, pp. 507-510 Vol. 1.
    62. Y. He, j. Hu, Q. Li, and H. Min, "Design of low-power baseband-processor for RFID tag," in International Symposium on Applications and the Internet Workshops, 2006, p. 4.
    63. Y. He, J. Hu, Q. Li, and H. Min, "A low-power baseband-processor for UHF RFID tag," in 6th International Conference On ASIC, 2005, vol. 1, pp. 143-146.
    64. K. Mooseop, R. Jaecheol, C. Yongje, and J. Sungik, "Low-cost Cryptographic Circuits for Authentication in Radio Frequency Identification Systems," in IEEE Tenth International Symposium on Consumer Electronics, 2006, pp. 1-5.
    65. H. Chabanne and G. Fumaroli, "Noisy Cryptographic Protocols for Low-Cost RFID Tags," Information Theory, IEEE Transactions on, vol. 52, no. 8, pp. 3562-3566, 2006.
    66. C. Gwo-Ching, "A feasible security mechanism for low cost RFID tags," in International Conference on Mobile Business, 2005, pp. 675-677.
    67. L. Yong-Zhen, J. Yoon-Su, S. Ning, and L. Sang-Ho, "Low-cost Authentication Protocol of the RFID System Using Partial ID," in International Conference on Computational Intelligence and Security, 2006, vol. 2, pp. 1221-1224.
    68. J. Bringer, H. Chabanne, and E. Dottax, "HB++: a Lightweight Authentication Protocol Secure against Some Attacks," in Second International Workshop on Security, Privacy and Trust in Pervasive and Ubiquitous Computing, 2006, pp. 28-33.
    69. G. K. Balachandran and R. E. Barnett, "A 110 nA Voltage Regulator System With Dynamic Bandwidth Boosting for RFID Systems," Solid-State Circuits, IEEE Journal of, vol. 41, no. 9, pp. 2019-2028, 2006.
    70. K. Goojo and C. YouChung, "Optimization of UHF RFID tag antennas using a genetic algorithm," in IEEE Antennas and Propagation Society International Symposium, 2006, pp. 2087-2090.
    71. J. Hu, Y. He, and H. Min, "High efficient rectifier circuit eliminating threshold voltage drop for RFID transponders," in 6th International Conference On ASIC, 2005, vol. 2, pp. 607-610.
    72. A. Navarro and J. L. Del Valle, "Voltage Generator for UHF RFID Passive Tags using Schottky diodes based on a 0.5 um CMOS Technology," in 3rd International Conference on Electrical and Electronics Engineering, 2006, pp. 1-4.
    73. E. Bergeret, P. Pannier, and J. Gaubert, "Optimization of UHF voltage multiplier circuit for RFID application," in The 17th International Conference on Microelectronics, 2005, p. 6 pp.
    74. U. Karthaus and M. Fischer, "Fully integrated passive UHF RFID transponder IC with 16.7-uW minimum RF input power," Solid-State Circuits, IEEE Journal of, vol. 38, no. 10, pp. 1602-1608, 2003.
    75. A. Ibrahiem, V. Tan-Phu, A. Ghiotto, and S. Tedjini, "New design antenna for RFID UHF tags," in IEEE Antennas and Propagation Society International Symposium, 2006, pp. 1355-1358.
    76. J. S. Kim, K. H. Shin, S. M. Park, W. K. Choi, and N. S. Seong, "Polarization and Space Diversity Antenna Using Inverted-F Antennas for RFID Reader Applications," Antennas and Wireless Propagation Letters, vol. 5, no. 1, pp. 265-268, 2006.
    77. K. H. Park, T. Y. Kang, Y. H. Choi, B. G. Choi, S. B. Hyun, S. S. Park, S. H. Cho, and J. H. Ko, "900 MHz Passive RFID Reader Transceiver IC, " in 36th European Microwave Conference, 2006, pp. 1675-1678.
    78. Z. Jianming, X. Zeming, L. Shengli, and W. Zehai, "A design of RF receiving circuit of RFID reader, " in 4th International Conference on Microwave and Millimeter Wave Technology, 2004, pp. 406-409.
    79. L. Yu, Z. Qishan, and Z. Ming, "Signal Analysis and Design Criteria for UHF RFID Reader," in 6th International Conference on ITS Telecommunications Proceedings, 2006, pp. 233-236.
    80. J. Sang-Yoon, B. Hee-Mun, J. Sung-Jae, L. Dong-Hyun, and L. Henng-Bae, "Frequency Generation for Mobile RFID Reader," in The 1st European Microwave Integrated Circuits Conference, 2006, pp. 324-327.
    81. Z. G. Fan, S. Qiao, J. T. Huangfu, and L. X. Ran, "A Miniaturized Printed Dipole Antenna with V-shaped Ground for 2.45 GHz RFID Readers, " Progress in Electromagnetics Research, vol. 71, pp. 149-158, 2007.
    82. L. H. Guo, A. P. Popov, H. Y. Li, Y. H. Wang, V. Bliznetsov, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, "A small OCA on a 1 mm * 0.5 mm 2.45-GHz RFID Tag-design and integration based on a CMOS-compatible manufacturing technology," Electron Device Letters, IEEE, vol. 27, no. 2, pp. 96-98, 2006.
    83. J. Yi, W. H. Ki, and C. Y. Tsui, "Analysis and Design Strategy of UHF Micro-Power CMOS Rectifiers for Micro-Sensor and RFID Applications," Circuits and Systems I: Regular Papers, IEEE Transactions on [Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on], vol. 54, no. 1, pp. 153-166, 2007.
    84. H. Nakamoto, D. Yamazaki, T. Yamamoto, H. Kurata, S. Yamada, K. Mukaida, T. Ninomiya, T. Ohkawa, S. Masui, and K. Gotoh, "A Passive UHF RF Identification CMOS Tag IC Using Ferroelectric RAM in 0.35-um Technology," Solid-State Circuits, IEEE Journal of, vol. 42, no. 1, pp. 101-110, 2007.
    85. U. Kaiser and W. Steinhagen, "A low-power transponder IC for high-performance identification systems," Solid-State Circuits, IEEE Journal of, vol. 30, no. 3, pp. 306-310, 1995.
    86. J. Woochul, J. Melngailis, and R. W. Newcornb, "Disposable CMOS passive RFID transponder for patient monitoring, " in IEEE International Symposium on Circuits and Systems, 2006, p. 4.
    87. D. Huang and S. Vivek, "Iodine-doped pentacene schottky diodes for high-frequency RFID rectification," in 64th Device Research Conference, 2006, pp. 219-220.
    88. R. Barsatan, M. Tsz Yin, and C. Mansun, "A zero-mask one-time programmable memory array for RFID applications," in IEEE International Symposium on Circuits and Systems, 2006, p. 4.
    89. G. De Vita and G. Iannaccone, "Ultra-low-power flash memory in standard 0.35 um CMOS for passive microwave RFID transponders," in IEEE International Symposium on Circuits and Systems, 2006, p. 4.
    90. W. Jeon, J. Melngailis, and R. W. Newcomb, "CMOS passive RFID transponder with read-only memory for low cost fabrication, " in IEEE International SOC Conference, 2005, pp. 181-184.
    91. Y. Wooi Gan, C. Yeung Bun, T. Kok Yin, D. Sheng Xi, and L. Yi Song, "A CMOS 2.45-GHz radio frequency identification tag IC with read/write memory," in IEEE Radio Frequency integrated Circuits (RFIC) Symposium, 2005, pp. 365-368.
    92. D. -S. Liu, X. -C. Zou, F. Zhang, and M. Deng, "Embeded EEPROM Memory Achieving Lower Power-New design of EEPROM memory for RFID tag IC, " Circuits and Devices Magazine, IEEE, vol. 22, no. 6, pp. 53-59, 2006.
    93. K. TaeHoon, S. KwangMu, L. TaeHoon, and J. KiDong, "Design of a Reliable NAND Flash Software for Mobile Device," in The Sixth IEEE International Conference on Computer and Information Technology, 2006, pp. 173-173.
    94. L. Ukkonen, M. Schaffrath, D. W. Engels, L. Sydanheimo, and M. Kivikoski, "Operability of Folded Microstrip Patch-Type Tag Antenna in the UHF RFID Bands Within 865-928 MHz," Antennas and Wireless Propagation Letters, vol. 5, no. 1, pp. 414-417, 2006.
    95. L. Ukkonen, L. Sydanheimo, and M. Kivikoski, "Effects of metallic plate size on the performance of microstrip patch-type tag antennas for passive RFID, " Antennas and Wireless Propagation Letters, vol. 4, pp. 410-413, 2005.
    96. M. Hirvonen, K. Jaakkola, P. Pursula, and J. Saily, "Dual-Band Platform Tolerant Antennas for Radio-Frequency Identification," Antennas and Propagation, IEEE Transactions on, vol. 54, no. 9, pp. 2632-2637, 2006.
    97. A. S. Andrenko, "Conformal Fractal Loop Antennas for RFID Tag Applications," in 18th International Conference on Applied Elect romagnetics and Communications, 2005, pp. 1-6.
    98. S. Bovelli, F. Neubauer, and C. Heller, "A Novel Antenna Design for Passive RFID Transponders on Metal Surfaces," in 36th European Microwave Conference, 2006, pp. 580-582.
    99. K. Hongil and B. Lee, "Evaluation of RFID tag antenna performance using radar cross sections," in The European Conference on Wireless Technology, 2005, pp. 491-493.
    100. M. Ghovanloo and K. Najafi, "Fully integrated wideband high-current rectifiers for inductively powered devices," Solid-State Circuits, IEEE Journal of, vol. 39, no. 11, pp. 1976-1984, 2004.
    101. K. K. O, K. Kihong, B. A. Floyd, J. L. Mehta, Y. Hyun, H. Chih-Ming, D. Bravo, T. O. Dickson, G. Xiaoling, L. Ran, N. Trichy, J. Caserta, W. R. Bomstad, Ⅱ, J. Branch, Y. Dong-Jun, J. Bohorquez, E. Seok, G. Li, A. Sugavanam, J. J. Lin, C. Jie, and J. E. Brewer, "On-chip antennas in silicon ICs and their application," Electron Devices, IEEE Transactions on, vol. 52, no. 7, pp. 1312-1323, 2005.
    102. F. Kocer and M. P. Flynn, "A new transponder architecture with on-chip ADC for long-range telemetry applications," Solid-State Circuits, IEEE Journal of, vol. 41, no. 5, pp. 1142-1148, 2006.
    103. M. Ghovanloo and K. Najafi, "A wideband frequency-shift keying wireless link for inductively powered biomedical implants," Circuits and Systems I: Regular Papers, IEEE Transactions on [Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on], vol. 51, no. 12, pp. 2374-2383, 2004.
    104. J. P. Curty, N. Joehl, F. Krummenacher, C. Dehollain, and M. J. Declercq, "A model for u-power rectifier analysis and design," Circuits and Systems I: Regular Papers, IEEE Transactions on [Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on], vol. 52, no. 12, pp. 2771-2779, 2005.
    105. J. D. Griffin, G. D. Durgin, A. Haldi, and B. Kippelen, "RF Tag Antenna Performance on Various Materials Using Radio Link Budgets," Antennas and Wireless Propagation Letters, vol. 5, no. 1, pp. 247-250, 2006.
    106. C. C. Chang and Y. C. Lo, "Broadband RFID tag antenna with capacitively coupled structure, " Electronics Letters, vol. 42, no. 23, pp. 1322-1323, 2006.
    107. L. Ukkonen, D. Engels, L. Sydanheimo, and M. Kivikoski, "Planar wire-type inverted-F RFID tag antenna mountable on metallic objects," in IEEE Antennas and Propagation Society International Symposium, 2004, vol. 1, pp. 101-104 Vol. 1.
    108. K. Sung-Joo, Y. Byongkil, L. Ho-Jnn, P. Myun-Joo, F. J. Harackiewicz, and L. Byungje, "RFID tag antenna mountable on metallic plates," in Asia-Pacific Conference Proceedings Microwave Conference Proceedings, 2005, vol. 4, p. 3.
    109. C. Wonkyu, H. W. Son, S. Chansoo, B. Ji-Hoon, and C. Gilyoung, "RFID tag antenna with a meandered dipole and inductively coupled feed," in IEEE Antennas and Propagation Society International Symposium, 2006, pp. 619-622.
    110. Y. Byunggil, K. Sung-Joo, J. Byungwoon, F. J. Harackiewicz, P. Myun-Joo, and L. Byungje, "Balanced RFID Tag Antenna Mountable on Metallic Plates," in IEEE Antennas and Propagation Society International Symposium, 2006, pp. 3237-3240.
    111. D. M. Dobkin and S. M. Weigand, "Environmental effects on RFID tag antennas, " in IEEE MTT-S International Microwave Symposium Digest, 2005, p. 4.
    112. C. T. Rodenbeck, "Planar Miniature RFID Antennas Suitable for Integration With Batteries," Antennas and Propagation, IEEE Transactions on, vol. 54, no. 12, pp. 3700-3706, 2006.
    113. Y. Li, S. Serkan Basat, and M. M. Tentzeris, "Design and development of novel inductively coupled RFID antennas," in IEEE Antennas and Propagation Society International Symposium, 2006, pp. 1035-1038.
    114. J. Mitsugi and H. Hada, "Experimental study on UHF passive RFID readability degradation, " in International Symposium on Applications and the Internet Workshops, 2006, p. 4.
    115. G. Marrocco, A. Fonte, and F. Bardati, "Evolutionary design of miniaturized meander-line antennas for RFID applications, " in IEEE Antennas and Propagation Society International Symposium, 2002, vol. 2, pp. 362-365.
    116. Z. G. Fan, S. Qiao, J. T. Huangfu, and L. X. Ran, "A Miniaturized 2.45 GHz RFID Tag Using Planar Impedance Transformer," in Progress in Electromagnetics Research Symposium (PIERS) Beijing, March 2007.
    117. C. Jaeyul, C. Hosung, L. Park, and Y. Oh, "Design of multi-layered polygonal helix antennas for RFID readers in UHF band, " in IEEE Antennas and Propagation Society International Symposium, 2005, vol. 2B, pp. 283-286.
    118. S. M. Weigand, "Compact microstrip antenna with forward-directed radiation pattern for RFID reader card, " in 2005 IEEE Antennas and Propagation Society International Symposium, 2005, vol. 2B, pp. 337-340.
    119. L. Jong Moon, K. Nae Soo, and P. Cheol Sig, "A Circular Polarized Metallic Patch Antenna for RFID Reader," in Asia-Pacific Conference on Communications, 2005, pp. 116-118.
    120. Q. Xianming and Y. Ning, "2.45GHz circularly polarized RFID reader antenna," in The Ninth International Conference on Communications Systems, 2004, pp. 612-615.
    121. S. K. Padhi, N. C. Karmakar, and C. L. Law, "Dual polarized reader antenna array for RFID application, " in IEEE Antennas and Propagation Society International Symposium, 2003, vol. 4, pp. 265-268.
    122. K. M. K. H. Leong, R. Y. Miyamoto, and T. Itoh, "Moving forward in retrodirective antenna arrays," Potentials, IEEE, vol. 22, no. 3, pp. 16-21, 2003.
    123. P. Salonen, M. Keskilammi, L. Sydanheimo, and M. Kivikoski, "An intelligent 2.45 GHz beam-scanning array for modem RFID reader," in IEEE International Conference on Phased Array Systems and Technology, 2000, pp. 407-410.
    124. T. B. Hansen and M. L. Oristaglio, "Method for Controlling the Angular Extent of Interrogation Zones in RFID, " Antennas and Wireless Propagation Letters, vol. 5, no. 1, pp. 134-137, 2006.
    125. P. Salonen and L. Sydanheimo, "A 2.45 GHz digital beam-forming antenna for RFID reader, " in IEEE 55th Vehicular Technology Conference, 2002, vol. 4, pp. 1766-1770.
    126. Z. G. Fan, L. X. Ran, and K. S. Chen, "Printed Dipole Antenna Designed With Microstrip Balun On V-shaped Ground Plane," in Progress in Electromagnetics Research Symposium (PIERS) Hangzhou, August 2005.
    127.范志广,冉立新,陈抗生,“V形地平面反射结构新型印制偶极子天线,”浙江大学学报(工学版),vol.39,no.9,pp.1292-1295,2005.
    128. K. Wan-Kyu, L. Moon-Que, K. Jin-Hyun, L. Hyung-sun, Y. Jong-Won, J. Byung-Jun, and P. Jun-Seok, "A Passive Circulator with High Isolation using a Directional Coupler for RFID," in IEEE MTT-S International Microwave Symposium Digest, 2006, pp. 1177-1180.
    129. G. De Vita and G. Iannaccone, "Design criteria for the RF section of UHF and microwave passive RFID transponders," Microwave Theory and Techniques, IEEE Transactions on, vol. 53, no. 9, pp. 2978-2990, 2005.
    130. C. B. DeSoto, Two hundred meters anddown. Newington, CN, 1936.
    131. C, L. Bennett and G. F. Ross, "Time-domain electromagnetics and its applications," Proceedings of the IEEE, vol. 66, no. 3, pp. 299-318, 1978.
    132. G. F. Ross, "The evolution of UWB technology," in Radio and Wireless Conference, 2003, pp. 1-4.
    133. G. F. Ross, "The Transient Analysis of Certain TEM Mode Four-Port Networks," Microwave Theory and Techniques, IEEE Transactions on, vol. 14, no. 11, pp. 528-542, 1966.
    134. A. M. Nicolson, Jr. , C. L. Bennett, D. Lamesdorf, and L. Susman, "Applications of Time-Domain Metrology to the Automation of Broad-Band Microwave Measurements," Microwave Theory and Techniques, IEEE Transactions on, vol. 20, no. 1, pp. 3-9, 1972.
    135. F. Davis and H. W. Loeb, "Time-domain measurements for transistor and network characterization up to 1 Gc," Proceedings of the IEEE, vol. 53, no. 10, pp. 1649-1650, 1965.
    136. L. B. Felsen and. Transient electromagnetic fields. New York: Springer-Verlag, 1976.
    137. Hewlett-Packard, Time domain reflectometry. Palo Alto, CA, 1964.
    138. OSD/DARPA, "Assessment of ultra-wideband (UWB) technology," Ultra-wideband Radar Review Panel, p. 6280, 1990.
    139. M. Z. Win and R. A. Scholtz, "Impulse radio: how it works," Communications Letters, IEEE, vol. 2, no. 2, pp. 36-38, 1998.
    140. M. Z. Win and R. A. Scholtz, "Comparisons of analog and digital impulse radio for wireless multiple-access communications, " in IEEE International Conference on Communications, 1997, vol. 1, pp. 91-95.
    141. F. Ramirez-Mireles, M. Z. Win, and R. A. Scholtz, "Signal selection for the indoor wireless impulse radio channel," in IEEE 47th Vehicular Technology Conference, 1997, vol. 3, pp. 2243-2247.
    142. F. Ramirez-Mireles, M. Z. Win, and R. A. Scholtz, "Performance of ultra-wideband time-shift-modulated signals in the indoor wireless impulse radio channel," in the Thirty-First Asilomar Conference on Signals, Systems & Computers, 1997, vol. 1, pp. 192-196.
    143. F. Ramirez-Mireles and R. A. Scholtz, "Performance of equicorrelated ultra-wideband pulse-position-modulated signals in the indoor wireless impulse radio channel," in IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, 1997, vol. 2, pp. 640-644.
    144. M. Z. Win, R. A. Scholtz, and L. W. Fullerton, "Time-hopping SSMA techniques for impulse radio with an analog modulated data subcarrier," in IEEE 4th International Symposium on Spread Spectrum Techniques and Applications 1996, vol. 1, pp. 359-364.
    145. R. A. Scholtz, "Multiple access with time-hopping impulse modulation," in Proc. Military Communications Conf. , 1993, vol. 2, pp. 447-450.
    146. M. Z. Win and R. A. Scholtz, "Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications," Communications, IEEE Transactions on, vol. 48, no. 4, pp. 679-689, 2000.
    147. D. Porcino and W. Hirt, "Ultra-wideband radio technology: potential and challenges ahead," Communications Magazine, IEEE, vol. 41, no. 7, pp. 66-74, 2003.
    148. M. Z. Win and R. A. Scholtz, "On the robustness of ultra-wide bandwidth signals in dense multipath environments," Communications Letters, IEEE, vol. 2, no. 2, pp. 51-53, 1998.
    149. R. J. M. Cramer, M. Z. Win, and R. A. Scholtz, "Evaluation of the multipath characteristics of the impulse radio channel," in The Ninth IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 1998, vol. 2, pp. 864-868.
    150. M. Z. Win and R. A. Scholtz, "Characterization of ultra-wide bandwidth wireless indoor channels: a communication-theoretic view," Selected Areas in Communications, IEEE Journal on, vol. 20, no. 9, pp. 1613-1627, 2002.
    151. M. Z. Win, R. A. Scholtz, and M. A. Barnes, "Ultra-wide bandwidth signal propagation for indoor wireless communications," in IEEE International Conference on Communications, 1997, vol. 1, pp. 56-60.
    152. Federal Communications Commission, "Revision of Part 15 of the commission's rules regarding ultra-wideband transmission systems, FIRST REPORT AND ORDER," ET Docket 98-153, FCC 02-48, pp. 1-118, Feb. 14, 2002.
    153. E. T. S. Institute, "Harmonized standards covering ultra-wideband (UWB) applications," Directorate General of the European Commission, Standardization Mandate: DG ENTR/G/3M/329, Brussels, February 2003.
    154. F. Ramirez-Mireles and R. A. Scholtz, "Multiple-access with time hopping and block waveform PPM modulation," in IEEE International Conference on Communications, 1998, vol. 2, pp. 775-779.
    155. R. Scholtz, "Multiple access with time-hopping impulse modulation," in IEEE Military Communications Conference, 1993, vol. 2, pp. 447-450.
    156. http://grouper.IEEE.org/groups/802/15/pub/TG4a.html.
    157. http://grouper.IEEE.org/groups/802/15/pub/TG3a.html.
    158. C. Zhi Ning, W. Xuan Hui, L. Hui Feng, Y. Ning, and M. Y. W. Chia, "Considerations for source pulses and antennas in UWB radio systems," Antennas and Propagation, IEEE Transactions on, vol. 52, no. 7, pp. 1739-1748, 2004.
    159. J. Andrieu, S. Nouvet, V. Bertrand, B. Beillard, and B. Jecko, "Transient characterization of a novel ultrawide-band antenna: the scissors antenna," Antennas and Propagation, IEEE Transactions on, vol. 53, no. 4, pp. 1254-1261, 2005.
    160. A. Shlivinski, E. Heyman, and R. Kastner, "Antenna characterization in the time domain," Antennas and Propagation, IEEE Transactions on, vol. 45, no. 7, pp. 1140-1149, 1997.
    161. W. Xuan Hui and C. Zhi Ning, "Comparison of planar dipoles in UWB applications," Antennas and Propagation, IEEE Transactions on, vol. 53, no. 6, pp. 1973-1983, 2005.
    162. S. Licul and W. A. Davis, "Unified frequency and time-domain antenna modeling and characterization," Antennas and Propagation, IEEE Transactions on, vol. 53, no. 9, pp. 2882-2888, 2005.
    163. O. E. Allen, D. A. Hill, and A. R. Ondrejka, "Time-domain antenna characterizations," Electromagnetic Compatibility, IEEE Transactions on, vol. 35, no. 3, pp. 339-346, 1993.
    164. D. Lamensdorf and L. Susman, "Baseband-pulse-antenna techniques," Antennas and Propagation Magazine, IEEE, vol. 36, no. 1, pp. 20-30, 1994.
    165. D. Ghosh, A. De, M. C. Taylor, T. K. Sarkar, M. C. Wicks, and E. L. Mokole, "Transmission and Reception by Ultra-Wideband (UWB) Antennas," Antennas and Propagation Magazine, IEEE, vol. 48, no. 5, pp. 67-99, 2006.
    166. T. Dissanayake and K. P. Esselle, "Correlation-Based Pattern Stability Analysis and a Figure of Merit for UWB Antennas," Antennas and Propagation, IEEE Transactions on, vol. 54, no. 11, pp. 3184-3191, 2006.
    167. H. G. Schantz, "A brief history of UWB antennas," in IEEE Conference on Ultra Wideband Systems and Technologies, 2003, pp. 209-213.
    168. S. Bagga, A. V. Vorobyov, S. A. P. Haddad, A. G. Yarovoy, W. A. Serdijn, and J. R. Long, "Codesign of an impulse generator and miniaturized antennas for IR-UWB," Microwave Theory and Techniques, IEEE Transactions on, vol. 54, no. 4, pp. 1656-1666, 2006.
    169. M. Klemm and G. Troester, "Textile UWB Antennas for Wireless Body Area Networks," Antennas and Propagation, IEEE Transactions on, vol. 54, no. 11, pp. 3192-3197, 2006.
    170. B. S. Yildirim, "Low-Profile and Planar Antenna Suitable for WLAN/Bluetooth and UWB Applications," Antennas and Wireless Propagation Letters, vol. 5, no. 1, pp. 438-441, 2006.
    171. J. R. Verbiest and G. A. E. Vandenbosch, "A Novel Small-Size Printed Tapered Monopole Antenna for UWB WBAN," Antennas and Wireless Propagation Letters, vol. 5, no. 1, pp. 377-379, 2006.
    172. H. G. Schantz, "Planar elliptical element ultra-wideband dipole antennas," in IEEE Antennas and Propagation Society International Symposium, 2002, vol. 3, p. 44.
    173. M. Tzyh-Ghuang and J. Shyh-Kang, "Planar miniature tapered-slot-fed annular slot antennas for ultrawide-band radios," Antennas and Propagation, IEEE Transactions on, vol. 53, no. 3, pp. 1194-1202, 2005.
    174. S. Seong-Youp, W. L. Stutzman, and W. A. Davis, "A new ultrawideband printed monopole antenna: the planar inverted cone antenna (PICA)," Antennas and Propagation, IEEE Transactions on, vol. 52, no. 5, pp. 1361-1364, 2004.
    175. Z. G. Fan, L. X. Ran, and J. A. Kong, "Source Pulse Optimizations for UWB Radio Systems," Journal of Electromagnetic Waves and Applications, vol. 20, no. 11, pp. 1535-1550, 2006.
    176. Z. Irahhauten, H. Nikookar, and G. J. M. Janssen, "An overview of ultra wide band indoor channel measurements and modeling," Microwave and Wireless Components Letters, IEEE, vol. 14, no. 8, pp. 386-388, 2004.
    177. K. Haneda, T. Jun-ichi, and T. Kobayashi, "A parametric UWB propagation channel estimation and its performance validation in an anechoic chamber, " Microwave Theory and Techniques, IEEE Transactions on, vol. 54, no. 4, pp. 1802-1811, 2006.
    178. P. C. Richardson, X. Weidong, and W. Stark, "Modeling of ultra-wideband channels within vehicles, " Selected Areas in Communications, IEEE Journal on, vol. 24, no. 4, pp. 906-912, 2006.
    179. J. Keignart, C. Abou-Rjeily, C. Delaveaud, and N. Daniele, "UWB SIMO channel measurements and simulations," Microwave Theory and Techniques, IEEE Transactions on, vol. 54, no. 4, pp. 1812-1819, 2006.
    180. A. F. Molisch, "Ultrawideband propagation channels-theory, measurement, and modeling," Vehicular Technology, IEEE Transactions on, vol. 54, no. 5, pp. 1528-1545, 2005.
    181. K. Haneda, J. I. Takada, and T. Kobayashi, "Cluster Properties Investigated From a Series of Ultrawideband Double Directional Propagation Measurements in Home Environments," Antennas and Propagation, IEEE Transactions on, vol. 54, no. 12, pp. 3778-3788, 2006.
    182. P. Pagani and P. Pajusco, "Characterization and Modeling of Temporal Variations on an Ultrawideband Radio Link," Antennas and Propagation, IEEE Transactions on, vol. 54, no. 11, pp. 3198-3206, 2006.
    183. A. F. Molisch, D. Cassioli, C. C. Chong, S. Emami, A. Fort, B. Kannan, J. Karedal, J. Kunisch, H. G. Schantz, K. Siwiak, and M. Z. Win, "A Comprehensive Standardized Model for Ultrawideband Propagation Channels," Antennas and Propagation, IEEE Transactions on, vol. 54, no. 11, pp. 3151-3166, 2006.
    184. A. Muqaibel, A. Safaai-Jazi, A. Attiya, B. Woerner, and S. Riad, "Path-loss and time dispersion parameters for indoor UWB propagation," Wireless Communications, IEEE Transactions on, vol. 5, no. 3, pp. 550-559, 2006.
    185. W. P. Siriwongpairat, S. Weifeng, and K. J. R. Liu, "Performance characterization of multiband UWB communication systems using Poisson cluster arriving fading paths," Selected Areas in Communications, IEEE Journal on, vol. 24, no. 4, pp. 745-751, 2006.
    186. S. S. Ghassemzadeh, R. Jana, C. W. Rice, W. Turin, and V. Tarokh, "Measurement and modeling of an ultra-wide bandwidth indoor channel," Communications, IEEE Transactions on, vol. 52, no. 10, pp. 1786-1796, 2004.
    187. E. R. Bastidas-Puga, F. Ramirez-Mireles, and D. Munoz-Rodriguez, "On Fading Margin in Ultrawideband Communications Over Multipath Channels," Broadcasting, IEEE Transactions on, vol. 51, no. 3, pp. 366-370, 2005.
    188. R. C. Qiu, "A study of the ultra-wideband wireless propagation channel and optimum UWB receiver design," Selected Areas in Communications, IEEE Journal on, vol. 20, no. 9, pp. 1628-1637, 2002.
    189. D. Cassioli, M. Z. Win, and A. F. Molisch, "The ultra-wide bandwidth indoor channel: from statistical model to simulations," Selected Areas in Communications, IEEE Journal on, vol. 20, no. 6, pp. 1247-1257, 2002.
    190. M. Hamalainen, V. Hovinen, R. Tesi, J. H. J. Iinatti, and M. Latva-aho, "On the UWB system coexistence with GSM900, UMTS/WCDMA, and GPS," Selected Areas in Communications, IEEE Journal on, vol. 20, no. 9, pp. 1712-1721, 2002.
    191. R. Giuliano and F. Mazzenga, "On the coexistence of power-controlled ultrawide-band systems with UMTS, GPS, DCS1800, and fixed wireless systems," Vehicular Technology, IEEE Transactions on, vol. 54, no. 1, pp. 62-81, 2005.
    192. R. A. Scholtz, R. Weaver, E. Homier, J. Lee, P. Hilmes, A. Taha, and R. Wilson, "UWB radio deployment challenges," in The 11th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2000, vol. 1, pp. 620-625.
    193. K. Oimo and T. Ikegami, "Interference mitigation study for UWB radio using template waveform processing, " Microwave Theory and Techniques, IEEE Transactions on, vol. 54, no. 4, pp. 1782-1792, 2006.
    194. Y. Liuqing and G. B. Giannakis, "A general model and SINR analysis of low duty-cycle UWB access through multipath with narrowband interference and rake reception," Wireless Communications, IEEE Transactions on, vol. 4, no. 4, pp. 1818-1833, 2005.
    195. N. Boubaker and K. B. Letaief, "MMSE multipath diversity combining for multi-access TH-UWB in the presence of NBI," Wireless Communications, IEEE Transactions on, vol. 5, no. 4, pp. 712-719, 2006.
    196. L. Zhonghua, Z. Shihua, G. Yongliang, and W. Shaopeng, "Space-time narrowband interference suppression with receive diversity for DS-UWB systems," Consumer Electronics, IEEE Transactions on, vol. 52, no. 4, pp. 1207-1212, 2006.
    197. W. Jiangzhou and T. Wong Tat, "Narrowband interference suppression in time-hopping impulse radio ultra-wideband communications," Communications, IEEE Transactions on, vol. 54, no. 6, pp. 1057-1067, 2006.
    198. K. Shi, Y. Zhou, B. Kelleci, T. W. Fischer, E. Serpedin, and A. Karsilayan, "Impacts of Narrowband Interference on OFDM-UWB Receivers: Analysis and Mitigation," Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on], vol. 55, no. 3, pp. 1118-1128, 2007.
    199. Z. Li and A. M. Haimovich, "Performance of ultra-wideband communications in the presence of interference," Selected Areas in Communications, IEEE Journal on, vol. 20, no. 9, pp. 1684-1691, 2002.
    200. C. Xiaoli and R. D. Murch, "The effect of NBI on UWB time-hopping systems," Wireless Communications, IEEE Transactions on, vol. 3, no. 5, pp. 1431-1436, 2004.
    201. C. R. C. M. da Silva and L. B. Milstein, "The effects of narrowband interference on UWB communication systems with imperfect channel estimation," Selected Areas in Communications, IEEE Journal on, vol. 24, no. 4, pp. 717-723, 2006.
    202. B. Hu and N. C. Beaulieu, "Performance of an Ultra-Wideband Communication System in the Presence of Narrowband BPSK-and QPSK-Modulated OFDM Interference," Communications, IEEE Transactions on, vol. 54, no. 10, pp. 1720-1724, 2006.
    203. D. M. Pozar, "Waveform optimizations for ultrawideband radio systems," Antennas and Propagation, IEEE Transactions on, vol. 51, no. 9, pp. 2335-2345, 2003.
    204. T. Dissanayake and K. P. Esselle, "Waveform optimisation of UWB radio systems over range of directions," Electronics Letters, vol. 42, no. 7, pp. 384-385, 2006.
    205. B. Berksoy and W. Lei, "Pulse waveform optimization for UWB systems with PPM on Gaussian channels," in IEEE 58th Vehicular Technology Conference, 2003, vol. 5, pp. 3174-3178.
    206. S. Dong Mei, C. Zhi Ning, and W. Xuan Hui, "Signal optimization for UWB radio systems," Antennas and Propagation, IEEE Transactions on, vol. 53, no. 7, pp. 2178-2184, 2005.
    207. Y. Liuqing, "Timing PPM-UWB signals in ad hoc multiaccess," Selected Areas in Communications, IEEE Journal on, vol. 24, no. 4, pp. 794-800, 2006.
    208. F. Salem, R. Pyndiah, and A. Bouallegue, "New multiple access frame differential DS-UWB system," in 2nd International Conference on Broadband Networks, 2005, pp. 1163-1167 Vol. 2.
    209. H. Bo and N. C. Beaulieu, "Accurate evaluation of multiple-access performance in TH-PPM and TH-BPSK UWB systems," Communications, IEEE Transactions on, vol. 52, no. 10, pp. 1758-1766, 2004.
    210. C. Steiner and K. Witrisal, "Multiuser interference modeling and suppression for a multichannel differential IR-UWB system," in IEEE International Conference on Ultra-Wideband, 2005, p. 6.
    211. Z. Hongwei and Z. Zheng, "Multiple access performance analysis for TH-PPM UWB using PARR's monocycle in AWGN channel," in IEEE International Symposium on Communications and Information Technology, 2005, vol. 2, pp. 979-982.
    212. P. Yunseo, L. Chang-Ho, J. D. Cressler, and J. Laskar, "The analysis of UWB SiGe HBT LNA for its noise, linearity, and minimum group delay variation," Microwave Theory and Techniques, IEEE Transactions on, vol. 54, no. 4, pp. 1687-1697, 2006.
    213. A. Ismail and A. A. Abidi, "A 3.1-to 8.2-GHz zero-IF receiver and direct frequency synthesizer in 0.18-um SiGe BiCMOS for mode-2 MB-OFDM UWB communication," Solid-State Circuits, IEEE Journal of, vol. 40, no. 12, pp. 2573-2582, 2005.
    214. G. Cusmai, M. Brandolini, P. Rossi, and F. Svelto, "A 0.18-um CMOS Selective Receiver Front-End for UWB Applications," Solid-State Circuits, IEEE Journal of, vol. 41, no. 8, pp. 1764-1771, 2006.
    215. Y. Kawano, Y. Nakasha, K. Yokoo, S. Masuda, T. Takahashi, T. Hirose, Y. Oishi, and K. Hamaguchi, "RF Chipset for Impulse UWB Radar Using 0.13-um InP-HEMT Technology," Microwave Theory and Techniques, IEEE Transactions on, vol. 54, no. 12, pp. 4489-4497, 2006.
    216. L. Junwoo, P. Young-Jin, K. Myunghoi, C. Yoon, K. Joungho, and K. Kwan-Ho, "System-on-package ultra-wideband transmitter using CMOS impulse generator," Microwave Theory and Techniques, IEEE Transactions on, vol. 54, no. 4, pp. 1667-1674, 2006.
    217. X. Duo, T. Torikka, Z. Li-Rong, M. Ismail, H. Tenhunen, and E. Tjukanoff, "A DC-13GHz LNA for UWB RFID applications," in IEEE Norchip Conference, 2004, pp. 241-244.
    218. S. Meigen, T. Koivisto, T. Peltonen, Z. Li-Rong, E. Tjukanoff, and H. Tenhunen, "UWB Radio Module Design for Wireless Intelligent Systems-From Specification to Implementation," in IEEE Conference on High Density Microsystem Design and Packaging and Component Failure Analysis, 2005, pp. 1-7.
    219. S. Rodriguez Duenas, D. Xinzhong, S. Yamac, M. Ismail, and Z. Li-Rong, "CMOS UWB IR Non-Coherent Receiver for RF-ID Applications," in IEEE North-East Workshop on Circuits and Systems, 2006, pp. 213-216.
    220. C. S. Hartmann, "A global SAW ID tag with large data capacity," in IEEE Ultrasonics Symposium, 2002, vol. 1, pp. 65-69.
    221. S. Li, L. Ma, and D. Wang, "A remote wireless identification system based on passive surface acoustic wave (SAW) devices," in International Conference on Communications, Circuits and Systems, 2005, vol. 2, p. 1116.
    222. D. Puccio, D. C. Malocha, N. Saldanha, D. R. Gallagher, and J. H. Hines, "Orthogonal frequency coding for SAW tagging and sensors," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 53, no. 2, pp. 377-384, 2006.
    223. W. Buff, J. Ehrenpfordt, S. Klett, M. Rusko, and M. Goroll, "Identification with SAW devices in passive remote telemetry systems, " in IEEE International Frequency Control Symposium, Frequency and Time Forum, 1999, vol. 2, pp. 1027-1030.
    224. F. Qiuyun, W. J. Fischer, and H. Stab, "Simulation of wirelessly passive SAW ID-tags/sensors using VHDL-AMS," in IEEE Ultrasonics Symposium, 2004, vol. 2, pp. 1541-1544.
    225. V. P. Plessky, S. N. Kondratiev, R. Stierlin, and F. Nyffeler, "SAW tags: new ideas," in IEEE Ultrasonics Symposium, 1995, vol. 1, pp. 117-120.
    226. A. Stelzer, M. Pichler, S. Scheiblhofer, and S. Schuster, "Identification of SAW ID-tags using an FSCW interrogation unit and model-based evaluation, " Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 51, no. 11, pp. 1412-1420, 2004.
    227. K. Finkenzeller, RFID Handbook: Radio-Frequency Identification Fundamentals and Applications, 2nd ed. New York: Wiley, 2003.
    228. A. Chamarti and K. Varahramyan, "Transmission Delay Line Based ID Generation Circuit for RFID Applications," Microwave and Wireless Components Letters, IEEE, vol. 16, no. 11, pp. 588-590, 2006.
    229. P. Blythe, "RFID for road tolling, road-use pricing and vehicle access control," in IEE Colloquium on RFID Technology, 1999, pp. 8/1-8/6.
    230. R. Bansal, "Coming soon to a Wal-Mart near you," Antennas and Propagation Magazine, IEEE, vol. 45, no. 6, pp. 105-106, 2003.
    231. P. R. Foster and R. A. Burberry, "Antenna problems in RFID systems," in IEE Colloquium on RFID Technology, 1999, pp. 3/1-3/5.
    232. G. T. Ruck, Radar Cross Section Handbook vol. 1-2. New York: Plenum, 1970.
    233. W. K. Saunders, Radar Handbook, 2nd ed. New York: McGraw-Hill, 1990.
    234. EPCglobal Inc. , "EPC~(TM) Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for Communications at 860 MHz-960MHz Version 1.0.9, Jan. 2005," [Online]. Available: http://www.epcglobalinc.org/standards/.
    235. K. Daeyoung, M. A. Ingram, and W. W. Smith, Jr. , "Measurements of small-scale fading and path loss for long range RF tags," Antennas and Propagation, IEEE Transactions on, vol. 51, no. 8, pp. 1740-1749, 2003.
    236. K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical Methods for Physics and Engineering: A Comprehensive Guide, 2nd ed. Cambridge: Cambridge University, 2002.
    237. H. R. CHUANG and L. C. KUO, "3-D FDTD design analysis of a 2.4-GHz polarization-diversity printed dipole antenna with integrated balun and polarization-switching circuit for WLAN and wireless communication applications, " IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 2, pp. 374-381, 2003.
    238. R. BAWER and J. J. WOLFE, "A printed circuit balun for use with spiral antennas, " IRE Transactions on Microwave Theory and Techniques, vol. 8, no. 3, pp. 319-325, 1960.
    239. D. EDWARD and D. REES, "A broadband printed dipole with integrated balun," Microwave Journal, no. 5, pp. 339-344, 1987.
    240. C. M. BUTLER, "A formulation of the finite-length narrow slot or strip equation, " IEEE Transactions on Antennas and Propagation, vol. 30, no. 6, pp. 1254-1257, 1982.
    241. C. M. BUTLER, "The equivalent radius of a narrow conducting strip, " IEEE Transactions on Antennas and Propagation, vol. 30, no. 4, pp. 755-758, 1982.
    242.周朝栋,王元坤,周良明,线天线理论与工程.西安:西安电子科技大学出版社,1988.
    243. R. E. COLLIN, Antennas and Radiowave Propagation. New York: McGraw-Hill Book Company, 1985.
    244. M. Hirvonen, P. Pursula, K. Jaakkola, and K. Lankkanen, "Planar inverted-F antenna for radio frequency identification," Electronics Letters, vol. 40, no. 14, pp. 848-850, 2004.
    245. Q. Xianming and Y. Ning, "A folded dipole antenna for RFID, " in IEEE Antennas and Propagation Society International Symposium, 2004, vol. 1, pp. 97-100.
    246. G. Marrocco, "Gain-optimized self-resonant meander line antennas for RFID applications, " Antennas and Wireless Propagation Letters, vol. 2, pp. 302-305, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700